Remineralizing Effect of Three Fluorinated Varnishes on Dental Enamel Analyzed by Raman Spectroscopy, Roughness, and Hardness Surface
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. pH Cycling
2.3. Fluoride Testing
2.4. Raman Spectroscopy
2.5. Surface Roughness
2.6. Vickers Hardness
2.7. Statistical Analysis
3. Results
3.1. Ion-Selective Fluoride Test (ISE-F)
3.2. Raman Spectroscopy Results
3.3. Roughness Surface
3.4. Vickers Hardness
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hegedűs, M.; Kovács, Z.; Vásárhelyi, L.; Kukovecz, Á.; Illés, L.; Szász, N.; Mlinkó, É.; Katinka, N.R.; Kis, V.K. Ribbon-like hypomineralization in human dental enamel. Acta Biomater. 2025, 196, 281–292. [Google Scholar] [CrossRef]
- Arola, D.; Gao, S.; Zhang, H.; Masri, R. The tooth: Its structure and properties. Dent. Clin. N. Am. 2017, 61, 651. [Google Scholar] [CrossRef]
- Webb, E.C.; White, C.D.; Longstaffe, F.J. Investigating inherent differences in isotopic composition between human bone and enamel bioapatite: Implications for reconstructing residential histories. J. Archaeol. Sci. 2014, 50, 97–107. [Google Scholar] [CrossRef]
- Machiulskiene, V.; Campus, G.; Carvalho, J.C.; Dige, I.; Ekstrand, K.R.; Jablonski-Momeni, A.; Maltz, M.; Manton, D.J.; Martignon, S.; Martinez-Mier, E. Terminology of dental caries and dental caries management: Consensus report of a workshop organized by ORCA and Cariology Research Group of IADR. Caries Res. 2020, 54, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Roopa, K.B.; Pathak, S.; Poornima, P.; Neena, I.E. White spot lesions: A literature review. J. Pediatr. Dent. 2015, 3, 1–7. [Google Scholar] [CrossRef]
- Bishara, S.E.; Ostby, A.W. White spot lesions: Formation, prevention, and treatment. Semin. Orthod. 2008, 14, 174–182. [Google Scholar] [CrossRef]
- Belli, R.; Rahiotis, C.; Schubert, E.W.; Baratieri, L.N.; Petschelt, A.; Lohbauer, U. Wear and morphology of infiltrated white spot lesions. J. Dent. 2011, 39, 376–385. [Google Scholar] [CrossRef]
- de Dios Teruel, J.; Alcolea, A.; Hernández, A.; Ruiz, A.J.O. Comparison of chemical composition of enamel and dentine in human, bovine, porcine and ovine teeth. Arch. Oral Biol. 2015, 60, 768–775. [Google Scholar] [CrossRef]
- Batista, G.R.; Torres, C.R.G.; Sener, B.; Attin, T.; Wiegand, A. Artificial saliva formulations versus human saliva pretreatment in dental erosion experiments. Caries Res. 2016, 50, 78–86. [Google Scholar] [CrossRef]
- Manchanda, S.; Liu, P.; Sardana, D.; Peng, S.; Lo, E.C.; Yiu, C.K. Randomized clinical trial to compare three fluoride varnishes in preventing early childhood caries. J. Dent. 2024, 147, 105141. [Google Scholar] [CrossRef]
- Sun, J.; Wu, T.; Fan, Q.; Hu, Q.; Shi, B. Comparative study of hydroxyapatite, fluor-hydroxyapatite and Si-substituted hydroxyapatite nanoparticles on osteogenic, osteoclastic and antibacterial ability. RSC Adv. 2019, 9, 16106–16118. [Google Scholar] [CrossRef]
- Barrera-Ortega, C.C.; Olmos, A.R.V.; Berrú, R.I.S.; Itzel, P.D.K. Application of Raman Spectroscopy for Dental Enamel Surface Characterization. In Infrared Spectroscopy-Perspectives and Applications; IntechOpen: London, UK, 2022. [Google Scholar]
- Fernandez-de-Quezada, R.B.E.; Escobar, G.A.A.; de González, W.Y.E.; Cartagena, F.J.R.; Anaya, S.M.S. Vigilancia epidemiológica de enfermedades bucales de población atendida en Unidades de Salud en el año 2021. Rev. Minerva 2023, 6, 37–53. [Google Scholar] [CrossRef]
- Guido, P.M.P.; Aguilar, G.D.; Torres, S.C. Developments in the use of varnish flúor. Reporte case. Rev. Odontopediatría Latinoam. 2021, 3, 111–117. [Google Scholar]
- Malcangi, G.; Patano, A.; Morolla, R.; De Santis, M.; Piras, F.; Settanni, V.; Mancini, A.; Di Venere, D.; Inchingolo, F.; Inchingolo, A.D. Analysis of dental enamel remineralization: A systematic review of technique comparisons. Bioengineering 2023, 10, 472. [Google Scholar] [CrossRef] [PubMed]
- Juárez-López, M.L.A.; Adriano-Anaya, M.P.; Molina-Frechero, N.; Murrieta-Pruneda, F. Remineralization effect on incipient carious lesions of a sodium fluoride with tricalcium phosphate varnish. Acta Pediátrica México 2019, 39, 263–270. [Google Scholar]
- Seppä, L. Fluoride varnishes in caries prevention. Med. Princ. Pract. 2004, 13, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Bijle, M.N.; Abdalla, M.M.; Ashraf, U.; Ekambaram, M.; Yiu, C.K.Y. Enamel remineralization potential of arginine-fluoride varnish in a multi-species bacterial pH-cycling model. J. Dent. 2021, 104, 103528. [Google Scholar] [CrossRef]
- Skucha-Nowak, M.; Gibas, M.; Tanasiewicz, M.; Twardawa, H.; Szklarski, T. Natural and Controlled Demineralization for Study Purposes in Minimally Invasive Dentistry. Adv. Clin. Exp. Med. Off. Organ Wroc. Med. Univ. 2015, 24, 891–898. [Google Scholar] [CrossRef]
- Ten Cate, J.M. Models and role models. Caries Res. 2015, 49, 3–10. [Google Scholar] [CrossRef]
- Barrera-Ortega, C.C.; Rodil, S.E.; Silva-Bermudez, P.; Delgado-Cardona, A.; Almaguer-Flores, A.; Prado-Prone, G. Fluoride Casein Phosphopeptide and Tri-Calcium Phosphate Treatments for Enamel Remineralization: Effects on Surface Properties and Biofilm Resistance. Dent. J. 2025, 13, 246. [Google Scholar] [CrossRef]
- Farooq, I.; Bugshan, A. The role of salivary contents and modern technologies in the remineralization of dental enamel: A narrative review. F1000Research 2021, 9, 171. [Google Scholar] [CrossRef]
- Mohd Said, S.N.; Ekambaram, M.; Yiu, C.K. Effect of different fluoride varnishes on remineralization of artificial enamel carious lesions. Int. J. Paediatr. Dent. 2017, 27, 163–173. [Google Scholar]
- Barrera-Ortega, C.; Vázquez-Olmos, A.; Sato-Berrú, R.; Araiza-Téllez, M. Study of demineralized dental enamel treated with different fluorinated compounds by Raman spectroscopy. J. Biomed. Phys. Eng. 2020, 10, 635. [Google Scholar] [CrossRef]
- Magalhães, G.D.A.; Fraga, M.A.A.; de Souza Araújo, I.J.; Pacheco, R.R.; Correr, A.B.; Puppin-Rontani, R.M. Effect of a self-assembly peptide on surface roughness and hardness of bleached enamel. J. Funct. Biomater. 2022, 13, 79. [Google Scholar] [CrossRef]
- Al Saady, D.; Hall, C.; Edwards, S.; Reynolds, E.C.; Richards, L.C.; Ranjitkar, S. Erosion-inhibiting potential of the stannous fluoride-enriched CPP-ACP complex in vitro. Sci. Rep. 2023, 13, 7940. [Google Scholar]
- Wakwak, M.A.; Alaggana, N.A.A.A.; Morsy, A.S. Evaluation of surface roughness and microhardness of enamel white spot lesions treated by resin infiltration technique (icons): An: In-vitro: Study. Tanta Dent. J. 2021, 18, 88–91. [Google Scholar] [CrossRef]
- Suwannapong, N.; Chantarangsu, S.; Kamnoedboon, P.; Srinivasan, M.; Pianmee, C.; Bunsong, C.; Sivavong, P.; Nantanapiboon, D. Effect of different protocols in preventing demineralization in irradiated human enamel, in vitro study. BMC Oral Health 2025, 25, 46. [Google Scholar] [CrossRef] [PubMed]
- Enerbäck, H.; Lingström, P.; Möller, M.; Nylén, C.; Bresin, C.Ö.; Ros, I.Ö.; Westerlund, A. Effect of a mouth rinse and a high-fluoride toothpaste on caries incidence in orthodontic patients: A randomized controlled trial. Am. J. Orthod. Dentofac. Orthop. 2022, 162, 6–15.e3. [Google Scholar] [CrossRef]
Treatment | Mean (SD) Ra 0 Days | Value p | Ra 5 Days | Value p | Ra 10 Days | Value p | Ra 15 Days | Value p |
---|---|---|---|---|---|---|---|---|
HE | 0.71 (± 0.06) | 0.52 | ||||||
IL | 6.29 (± 1.85) | 0.41 | ||||||
FP | 0.609 (± 0.18) | 0.68 | 1.60 (± 0.13) | 0.31 | 0.358 (± 0.12) | 0.77 | ||
β-TCP | 1.363 (± 0.21) | 0.98 | 0.73 (± 0.09) | 0.47 | 0.776 (± 0.03) | 0.342 | ||
CDu | 1.55 (± 0.09) | 0.57 | 0.65 (± 0.09) | 0.38 | 0.99 (± 0.11) | 0.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pineda-Domínguez, K.I.; Morales-Gonzalez, S.E.; Rodil, S.E.; Arredondo-Velazquez, I.L.; Rivera-Yañez, N.; Callejas-Gomez, C.A.; Nieto-Yañez, O.; Barera-Ortega, C.C. Remineralizing Effect of Three Fluorinated Varnishes on Dental Enamel Analyzed by Raman Spectroscopy, Roughness, and Hardness Surface. Coatings 2025, 15, 1091. https://doi.org/10.3390/coatings15091091
Pineda-Domínguez KI, Morales-Gonzalez SE, Rodil SE, Arredondo-Velazquez IL, Rivera-Yañez N, Callejas-Gomez CA, Nieto-Yañez O, Barera-Ortega CC. Remineralizing Effect of Three Fluorinated Varnishes on Dental Enamel Analyzed by Raman Spectroscopy, Roughness, and Hardness Surface. Coatings. 2025; 15(9):1091. https://doi.org/10.3390/coatings15091091
Chicago/Turabian StylePineda-Domínguez, Karla Itzel, Samuel Eloy Morales-Gonzalez, Sandra E. Rodil, Isela Lizbeth Arredondo-Velazquez, Nelly Rivera-Yañez, Cesar Adolfo Callejas-Gomez, Oscar Nieto-Yañez, and Cecilia Carlota Barera-Ortega. 2025. "Remineralizing Effect of Three Fluorinated Varnishes on Dental Enamel Analyzed by Raman Spectroscopy, Roughness, and Hardness Surface" Coatings 15, no. 9: 1091. https://doi.org/10.3390/coatings15091091
APA StylePineda-Domínguez, K. I., Morales-Gonzalez, S. E., Rodil, S. E., Arredondo-Velazquez, I. L., Rivera-Yañez, N., Callejas-Gomez, C. A., Nieto-Yañez, O., & Barera-Ortega, C. C. (2025). Remineralizing Effect of Three Fluorinated Varnishes on Dental Enamel Analyzed by Raman Spectroscopy, Roughness, and Hardness Surface. Coatings, 15(9), 1091. https://doi.org/10.3390/coatings15091091