Amphoteric Doping Effect of Ho3+ on the Performance of Medium-Temperature-Sintered PLZT Energy Storage Ceramics
Abstract
1. Introduction
2. Experimental Procedures
3. Results and Discussion
3.1. X-Ray Diffraction Studies
3.2. Microstructural Characterization Studies
3.3. Raman Spectroscopic Studies
3.4. XPS Studies
3.5. Ferroelectric Studies
3.6. Charge–Discharge Behavior Studies
3.7. PFM Imaging Studies
4. Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dai, S.; Li, M.; Wu, X.; Wu, Y.; Li, X.; Hao, Y.; Luo, B. Combinatorial optimization of perovskite-based ferroelectric ceramics for energy storage applications. J. Adv. Ceram. 2024, 13, 877–910. [Google Scholar] [CrossRef]
- Yang, K.; Luo, G.; Ma, L.; Che, R.; Che, Z.; Feng, Q.; Cen, Z.; Chen, X.; Zhou, J.; Luo, N. Excellent energy storage performance in Bi0.5Na0.5TiO3-based lead-free high-entropy relaxor ferroelectrics via B-site modification. J. Adv. Ceram. 2024, 13, 345–353. [Google Scholar] [CrossRef]
- Li, D.; Deng, W.; Shen, Z.; Li, Z.; Zeng, X.; Shi, X.; Zhang, Y.; Luo, W.; Song, F.; Wu, C. Aliovalent Sm-doping enables BNT-based realxor ferroelectric ceramics with >90% energy efficiency. J. Adv. Ceram. 2024, 13, 2043–2050. [Google Scholar] [CrossRef]
- Tian, T.; Chen, F.; Zhang, L.; Li, C.; Shu, L. Advances in Energy Storage of AgNbO3-based Antiferroelectric Ceramics. Adv. Ceram. 2023, 44, 153–172. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, Z.; Han, B.; Peng, H.; Dai, K.; Xu, Z.; Fu, Z.; Hu, Z.; Wang, G. Designing silver niobate-based relaxor antiferroelectrics for ultrahigh energy storage performance. J. Adv. Ceram. 2024, 13, 1282–1290. [Google Scholar] [CrossRef]
- Li, J.; Yin, R.; Xiong, Z.; Bao, Y.; Zhang, X.; Wu, W.; Li, L.; Bai, Y. Manipulating Zr/Ti ratio based on phase diagram for large electrocaloric effects with multiple target operation temperatures in PLZT ceramics. J. Adv. Ceram. 2024, 13, 1422–1431. [Google Scholar] [CrossRef]
- Zhou, Y.; Xia, J.; Chen, X.; Wang, G. Excellent Energy-storage Property and Thermal Stability of PLZT-based Antiferroelectric Ceramics. J. Am. Ceram. Soc. 2023, 106, 448–455. [Google Scholar] [CrossRef]
- Kumar, A.; Emani, S.R.; Raju, K.C.J.; Ryu, J.; James, A.R. Investigation of the Effects of Reduced Sintering Temperature on Dielectric, Ferroelectric and Energy Storage Properties of Microwave-Sintered PLZT 8/60/40 Ceramics. Energies 2020, 13, 6457. [Google Scholar] [CrossRef]
- Gao, T.; Liao, Q.; Si, W.; Chu, Y.; Dong, H.; Li, Y.; Liao, Y.; Qin, L. From fundamentals to future challenges for flexible piezoelectric actuators. Cell Rep. Phys. Sci. 2024, 5, 101789. [Google Scholar] [CrossRef]
- Wang, X.; Sun, H.; Wang, M.; Tang, M.; Lan, Y.; Xu, R.; Feng, Y.; Li, Z.; Wei, X.; Xu, Z. Low-Temperature Sintering of PLSZT-Based Antiferroelectric Ceramics in Reducing Atmosphere for Energy Storage. J. Eur. Ceram. Soc. 2024, 44, 898–906. [Google Scholar] [CrossRef]
- Jain, A.; Wang, Y.G.; Guo, H. Emergence of Relaxor Behavior along with Enhancement in Energy Storage Performance in Light Rare-Earth Doped Ba0.90Ca0.10Ti0.90Zr0.10O3 Ceramics. Ceram. Int. 2021, 47, 10590–10602. [Google Scholar] [CrossRef]
- Meng, Y.; Liu, K.; Zhang, X.; Lei, X.; Chen, J.; Yang, Z.; Peng, B.; Long, C.; Liu, L.; Li, C. Defect Engineering in Rare-earth-doped BaTiO3 Ceramics: Route to High-temperature Stability of Colossal Permittivity. J. Am. Ceram. Soc. 2022, 105, 5725–5737. [Google Scholar] [CrossRef]
- Song, G.L.; Ma, G.J.; Su, J.; Wang, T.X.; Yang, H.Y.; Chang, F.G. Effect of Ho3+ doping on the Electric, Dielectric, Ferromagnetic Properties and TC of BiFeO3 Ceramics. Ceram. Int. 2014, 40, 3579–3587. [Google Scholar] [CrossRef]
- Wang, C.-B.; Fu, L.; Shen, Q.; Zhang, L.-M. Effect of Ho Doping on Structure and Ferroelectric Property of Bi4−xHoxTi3O12 Ceramics. J. Inorg. Mater. 2012, 27, 721–725. [Google Scholar] [CrossRef]
- Fu, Z.; Chen, X.; Li, Z.; Hu, T.; Zhang, L.; Lu, P.; Zhang, S.; Wang, G.; Dong, X.; Xu, F. Unveiling the Ferrielectric Nature of PbZrO3-Based Antiferroelectric Materials. Nat. Commun. 2020, 11, 3809. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Kang, X.; Yu, K.; Tian, C.; Zhou, Y.; Tang, H.; Manan, A.; Vtyurin, A.N.; Liu, G.; Yan, Y.; et al. Enhanced Dielectric Energy Storage Properties of PLZST Relaxor-Antiferroelectric Ceramics Achieved via Phase Transition Modulation and Processing Optimization. Ceram. Int. 2025, 51, 25069–25077. [Google Scholar] [CrossRef]
- Tsikriteas, Z.; Roscow, J.; Bowen, C.; Khanbareh, H. Exploring lead-free materials for screen-printed piezoelectric wearable devices. Cell Rep. Phys. Sci. 2024, 5, 101962. [Google Scholar] [CrossRef]
- Cai, Z.; Feng, P.; Zhu, C.; Wang, X. Dielectric Breakdown Behavior of Ferroelectric Ceramics: The Role of Pores. J. Eur. Ceram. Soc. 2021, 41, 2533–2538. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Fan, H.; Liu, L. Simulation for Microstructure Regulation of Textured Ferroelectric Ceramics by Grain Boundary Energy Anisotropy. Ceram. Int. 2021, 47, 20362–20370. [Google Scholar] [CrossRef]
- Li, L.; Zhou, C.; Zou, J.; Luo, Z.; Liu, L.; Chen, Y. Structures and Properties of the Sb-Doped PLZT Ferroelectric Ceramics around the Morphotropic Phase Boundary. Mater. Res. Bull. 2025, 191, 113549. [Google Scholar] [CrossRef]
- Yang, F.-J.; Cheng, X.; Zhang, Y. An In-Situ Raman Spectroscopic Investigation in Electric Fatigue Behaviors of PLZT Ceramics. Ceram. Int. 2016, 42, 2324–2329. [Google Scholar] [CrossRef]
- Maslakov, K.I.; Teterin, Y.A.; Stefanovskaya, O.I.; Kalmykov, S.N.; Teterin, A.Y.; Ivanov, K.E.; Danilov, S.S.; Yudintsev, S.V.; Myasoedov, B.F. X-Ray Photoelectron Spectroscopy of Murataite Ceramics Containing Lanthanides. Radiochemistry 2021, 63, 801–810. [Google Scholar] [CrossRef]
- Yavuz, A.; Aydin, D.; Disli, B.; Ozturk, T.; Gul, B.; Gubbuk, I.H.; Ersoz, M. Enhancing Visible Light Photocatalytic Activity of Holmium Doped G-C3N4 and DFT Theoretical Insights. Environ. Sci. Pollut. Res. 2024, 31, 44828–44847. [Google Scholar] [CrossRef]
- O’Malley, C.J.; Tang, X.; Koval, V.; Chen, K.; Wu, Z.; Banerjee, K.; Hu, W.; Yan, H. Unveiling the Mechanism of Substitution-Induced High Piezoelectric Performance in PLZT Ceramics. J. Adv. Ceram. 2025, 14, 9221097. [Google Scholar] [CrossRef]
- Ciuchi, I.V.; Mitoseriu, L.; Galassi, C. Antiferroelectric to Ferroelectric Crossover and Energy Storage Properties of (Pb1−xLax)(Zr0.90Ti0.10)1−x/4O3 (0.02 ≤ x ≤ 0.04) Ceramics. J. Am. Ceram. Soc. 2016, 99, 2382–2387. [Google Scholar] [CrossRef]
- Xu, R.; Zhu, Q.; Tian, J.; Feng, Y.; Xu, Z. Effect of Ba-Dopant on Dielectric and Energy Storage Properties of PLZST Antiferroelectric Ceramics. Ceram. Int. 2017, 43, 2481–2485. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, X.; Zhang, Y.; Song, X.; Zhu, J.; Baturin, I.; Chen, J. Effect of Barium Content on Dielectric and Energy Storage Properties of (Pb,La,Ba)(Zr,Sn,Ti)O3 Ceramics. Ceram. Int. 2015, 41, 3030–3035. [Google Scholar] [CrossRef]
- Zhang, T.F.; Tang, X.G.; Liu, Q.X.; Jiang, Y.P.; Huang, X.X.; Zhou, Q.F. Energy-Storage Properties and High-Temperature Dielectric Relaxation Behaviors of Relaxor Ferroelectric Pb(Mg1/3Nb2/3)O3–PbTiO3 Ceramics. J. Phys. D Appl. Phys. 2016, 49, 095302. [Google Scholar] [CrossRef]
- Wang, E.; Yue, L.; Chu, Y.; Sun, C.; Zhao, J.; Zhang, S.; Liu, J.; Zhang, Y.; Zhang, L. High Energy Storage Performance in Pb1−xLax(Hf0.45Sn0.55)0.995O3 Antiferroelectric Ceramics. Crystals 2024, 14, 732. [Google Scholar] [CrossRef]
- Kumar, A.; Kim, S.H.; Peddigari, M.; Jeong, D.-H.; Hwang, G.-T.; Ryu, J. High Energy Storage Properties and Electrical Field Stability of Energy Efficiency of (Pb0.89La0.11)(Zr0.70Ti0.30)0.9725O3 Relaxor Ferroelectric Ceramics. Electron. Mater. Lett. 2019, 15, 323–330. [Google Scholar] [CrossRef]
- Zhang, T.; Tang, X.; Huang, X.; Liu, Q.; Jiang, Y.; Zhou, Q. High-Temperature Dielectric Relaxation Behaviors of Relaxer-Like PbZrO3–SrTiO3 Ceramics for Energy-Storage Applications. Energy Technol. 2016, 4, 633–640. [Google Scholar] [CrossRef]
- Xu, R.; Xu, Z.; Feng, Y.; He, H.; Tian, J.; Huang, D. Temperature Dependence of Energy Storage in Pb0.90La0.04Ba0.04[(Zr0.7Sn0.3)0.88Ti0.12]O3 Antiferroelectric Ceramics. J. Am. Ceram. Soc. 2016, 99, 2984–2988. [Google Scholar] [CrossRef]
- Xu, R.; Tian, J.; Zhu, Q.; Zhao, T.; Feng, Y.; Wei, X.; Xu, Z. Effects of Phase Transition on Discharge Properties of PLZST Antiferroelectric Ceramics. J. Am. Ceram. Soc. 2017, 100, 3618–3625. [Google Scholar] [CrossRef]
- Ge, G.; Bai, H.; Shi, Y.; Shi, C.; He, X.; He, J.; Shen, B.; Zhai, J.; Chou, X. Optimizing the Energy Storage Properties of Antiferroelectric Ceramics by Modulating the Phase Structure via Constructing a Novel Binary Composite. J. Mater. Chem. A 2021, 9, 11291–11299. [Google Scholar] [CrossRef]
- Xu, R.; Tian, J.; Zhu, Q.; Feng, Y.; Wei, X.; Xu, Z. Effect of Temperature-Driven Phase Transition on Energy-Storage and -Release Properties of Pb0.97La0.02[Zr0.55Sn0.30Ti0.15]O3 Ceramics. J. Appl. Phys. 2017, 122, 024104. [Google Scholar] [CrossRef]
- Jiang, J.; Meng, X.; Li, L.; Guo, S.; Huang, M.; Zhang, J.; Wang, J.; Hao, X.; Zhu, H.; Zhang, S.-T. Ultrahigh Energy Storage Density in Lead-Free Relaxor Antiferroelectric Ceramics via Domain Engineering. Energy Storage Mater. 2021, 43, 383–390. [Google Scholar] [CrossRef]
- Yu, D.; Dai, K.; Zhang, J.; Yang, B.; Zhang, H.; Ma, S. Failure Mechanism of Multilayer Ceramic Capacitors under Transient High Impact. Appl. Sci. 2020, 10, 8435. [Google Scholar] [CrossRef]
- Lu, X.; Liu, G.; Lu, J. Development of Ceramic 3D/4D Printing in China. Addit. Manuf. Front. 2024, 3, 200158. [Google Scholar] [CrossRef]
- Mi, L.; Wu, D.; Zhou, H.; Chen, Y. Study on Sintering Characteristics of Ce-doped PZN-PZTTernary Piezoeleetrie Ceramics. Adv. Ceram. 2023, 44, 57–66. [Google Scholar] [CrossRef]
- Altiparmak, S.C.; Daminabo, S.I.C. Suitability Analysis for Extrusion-Based Additive Manufacturing Process. Addit. Manuf. Front. 2024, 3, 200106. [Google Scholar] [CrossRef]
- Tu, F.; Li, B.; Zeng, M.; Huang, X.; Li, H.; Liu, J. Regulation of Structure and Properties at the Ferroelectric–Antiferroelectric Phase Boundary in Ti4+-Doped PbZrO3 Ceramics. J. Mater. Sci. 2025, 60, 316–327. [Google Scholar] [CrossRef]
Ceramic | a (Å) | c (Å) | V (Å3) | Rwp | Rp | GOF |
---|---|---|---|---|---|---|
H1 | 4.13156 (13) | 4.11551 (22) | 70.251 (3) | 9.85 | 6.47 | 1.65 |
H2 | 4.13276 (4) | 4.13279 (5) | 70.5869 (21) | 10.15 | 7.02 | 1.62 |
H3 | 4.13094 (11) | 4.11786 (19) | 70.2700 (31) | 10.48 | 7.04 | 1.69 |
H4 | 4.12939 (14) | 4.12429 (23) | 70.327 (6) | 7.46 | 5.54 | 1.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Liao, Q.; Zhang, S.; Liu, X.; Zhang, H.; Qin, L. Amphoteric Doping Effect of Ho3+ on the Performance of Medium-Temperature-Sintered PLZT Energy Storage Ceramics. Coatings 2025, 15, 1067. https://doi.org/10.3390/coatings15091067
Xu Y, Liao Q, Zhang S, Liu X, Zhang H, Qin L. Amphoteric Doping Effect of Ho3+ on the Performance of Medium-Temperature-Sintered PLZT Energy Storage Ceramics. Coatings. 2025; 15(9):1067. https://doi.org/10.3390/coatings15091067
Chicago/Turabian StyleXu, Yue, Qingwei Liao, Shuhan Zhang, Xinyu Liu, Haoran Zhang, and Lei Qin. 2025. "Amphoteric Doping Effect of Ho3+ on the Performance of Medium-Temperature-Sintered PLZT Energy Storage Ceramics" Coatings 15, no. 9: 1067. https://doi.org/10.3390/coatings15091067
APA StyleXu, Y., Liao, Q., Zhang, S., Liu, X., Zhang, H., & Qin, L. (2025). Amphoteric Doping Effect of Ho3+ on the Performance of Medium-Temperature-Sintered PLZT Energy Storage Ceramics. Coatings, 15(9), 1067. https://doi.org/10.3390/coatings15091067