Investigation on the Deviation and Thermal Damage Effects in Laser-Induced Lateral Crack Propagation of Soda–Lime Glass
Abstract
1. Introduction
2. Moving Heat Source Model
3. Simulation Modeling
4. Simulation Results and Discussions
4.1. Temperature Distribution
4.2. Stress Field
5. Experiment Validation and Analysis of the Heat Flux Density Threshold
5.1. Experimental Setup
5.2. Temperature Measurement
5.3. Analysis of the Heat Flux Density Threshold for Crack Propagation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Axinte, E. Glasses as engineering materials: A review. Mater. Des. 2011, 32, 1717–1732. [Google Scholar]
- Seong, C.Y.; Kim, H.U.; Kim, N.S.; Kim, B.C. Comparison of laser glass cutting process using ps and fs lasers. In Proceedings of the International Congress on Applications of Lasers & Electro-Optics, Orlando, FL, USA, 13–17 May 2012. [Google Scholar]
- Naresh; Khatak, P. Laser cutting technique: A literature review. Mater. Today Proc. 2022, 56, 2484–2489. [Google Scholar]
- Zhimalov, A.B.; Solinov, V.F.; Kondratenko, V.S.; Kaplina, T.V. Laser cutting of float glass during production. Glass Ceram. 2006, 63, 319–321. [Google Scholar]
- Dornfeld, D.; Min, S.; Takeuchi, Y. Recent advances in mechanical micromachining. CIRP Ann. Manuf. Technol. 2006, 55, 745–768. [Google Scholar]
- Ikawa, N.; Donaldson, R.R.; Komanduri, R.; König, W.; McKeown, P.A.; Moriwaki, T.; Stowers, I.F. Ultraprecision metal cutting-the past, the present and the future. CIRP Ann. Manuf. Technol. 1991, 40, 587–594. [Google Scholar]
- Khdair, A.I.; Melaibari, A.A. Experimental evaluation of cut quality and temperature field in fiber laser cutting of AZ31B magnesium alloy using response surface methodology. Opt. Fiber Technol. 2023, 77, 103196. [Google Scholar]
- Shin, J.S.; Song, K.H.; Oh, S.Y.; Park, S.K. Laser cutting studies on 10-60 mm thick stainless steels with short focus head for nuclear decommissioning. Opt. Laser Technol. 2024, 169, 110121. [Google Scholar]
- Wang, J.; Gao, F.; Xiong, B.; Zhang, X.; Yuan, X. Study on Processing Parameters of Glass Cutting by Nanosecond 532 nm Fiber Laser; SPIE: Bellingham, WA, USA, 2018; Volume 10710, pp. 1056–1063. [Google Scholar]
- Yang, L.J.; Wang, Y.; Tian, Z.G.; Cai, N. YAG laser cutting soda-lime glass with controlled fracture and volumetric heat absorption. Int. J. Mach. Tools Manuf. 2010, 50, 849–859. [Google Scholar]
- Liu, Y.; Hu, L.; Guo, Q.; Hou, Y.; Lü, L.; Gurevich, E.L.; Ostendorf, A. Studies of Laser Cutting on Glass by Picosecond Laser; SPIE: Bellingham, WA, USA, 2023; Volume 12762, p. 1276205. [Google Scholar]
- Wlodarczyk, K.L.; Brunton, A.; Rumsby, P.; Hand, D.P. Picosecond laser cutting and drilling of thin flex glass. Opt. Laser Eng. 2016, 78, 64–74. [Google Scholar]
- Crimella, D.; Jwad, T.; Demir, A.G. Microcutting of glass with high ablation efficiency by means of high power ps-pulsed NIR laser. Opt. Laser Technol. 2023, 166, 109645. [Google Scholar]
- Luo, Y.; Xie, X.; Zhang, Z.; Li, Z.; Huang, Y. Ultrafast laser composite cutting ultrathin glass. Opt. Commun. 2024, 555, 130224. [Google Scholar]
- Dong, H.; Huang, Y.; Rong, Y.; Chen, C.; Li, W.; Gao, Z. 532 nm nanosecond laser cutting solar float glass: Surface quality evaluation with different laser spot positions in field lens. Optik 2020, 223, 165620. [Google Scholar]
- Dong, H.; Huang, Y.; Li, W.; Li, J.; Rong, Y. Error analysis in 532 nm nanosecond laser cutting of solar glass. Optik 2021, 231, 166451. [Google Scholar]
- Chen, C.; Wang, Y.; Huang, Y.; Rong, Y. Influence of helix geometric parameters on surface quality during laser cutting of photovoltaic float glass. Optik 2020, 220, 164985. [Google Scholar]
- Li, W.; Rong, Y.; Liu, W.; Zhang, G.; Wang, H.; Huang, Y.; Gao, Z. Investigation of solar float glass hole cutting using 532 nm nanosecond pulsed laser. Optik 2020, 222, 165385. [Google Scholar]
- Li, W.; Huang, Y.; Rong, Y.; Chen, L.; Zhang, G.; Gao, Z. Analysis and comparison of laser cutting performance of solar float glass with different scanning modes. Front. Mech. Eng. 2020, 16, 97–110. [Google Scholar]
- Dahmani, F.; Schmid, A.W.; Lambropoulos, J.C.; Burns, S. Dependence of birefringence and residual stress near laser-induced cracks in fused silica on laser fluence and on laser-pulse number. Appl. Opt. 1998, 37, 7772–7784. [Google Scholar]
- Liu, P.; Deng, L.; Zhang, F.; Chen, H.; Duan, J.; Zeng, X. Study on high-efficiency separation of laminated glass by skillfully combining laser-induced thermal-crack propagation and laser thermal melting. Appl. Phys. A 2020, 126, 348. [Google Scholar]
- Yamamoto, K.; Hasaka, N.; Morita, H.; Ohmura, E. Influence of glass substrate thickness in laser scribing of glass. Precis Eng. 2009, 34, 55–61. [Google Scholar]
- Yamamoto, K.; Hasaka, N.; Morita, H.; Ohmura, E. Influence of thermal expansion coefficient in laser scribing of glass. Precis Eng. 2009, 34, 70–75. [Google Scholar]
- Yamamoto, K.; Hasaka, N.; Morita, H.; Ohmura, E. Partial growth of crack in laser scribing of glass. J. Laser Appl. 2009, 21, 67–75. [Google Scholar]
- Yamamoto, K.; Hasaka, N.; Morita, H.; Ohmura, E. Three-dimensional thermal stress analysis on laser scribing of glass. Precis Eng. 2007, 32, 301–308. [Google Scholar]
- Mishchik, K.; Leger, C.J.; Caulier, O.D.; Skupin, S.; Chimier, B.; Hönninger, C.; Kling, R.; Duchateau, G.; Lopez, J. Ultrashort pulse laser cutting of glass by controlled fracture propagation. Nanotechnol. Wkly. 2016, 10, 15. [Google Scholar]
- Karube, K.; Member, N.K.S. Laser-induced full body cleavage of flat-panel-display glass. J. Soc. Inf. Disp. 2009, 17, 323–329. [Google Scholar]
- Miyashita, Y.; Mogi, M.; Hasegawa, H.; Sujatanod, S.; Mutoh, Y. Study on controlling method for crack nucleation and propagation behavior in laser cutting of glass. J. Solid Mech. Mater. Eng. 2008, 2, 1555–1566. [Google Scholar]
- Furumoto, T.; Hashimoto, Y.; Ogi, H.; Kawabe, T.; Yamaguchi, M.; Koyano, T.; Hosokawa, A. CO2 laser cleavage of chemically strengthened glass. J. Mater. Process. Technol. 2020, 289, 116961. [Google Scholar]
- Guo, M.; Lu, M.; Lin, J.; Zhou, X. Modeling and experimental study on cutting forces during pulsed laser-assisted fast tool servo turning free-form glass-ceramics. Ceram. Int. 2025, 51, 6641–6653. [Google Scholar]
- Cai, Y.; Wang, M.; Zhang, H.; Yang, L.; Fu, X.; Wang, Y. Laser cutting sandwich structure glass-silicon-glass wafer with laser induced thermal-crack propagation. Opt. Laser Technol. 2017, 93, 49–59. [Google Scholar]
- Cai, Y.; Yang, L.; Zhang, H.; Wang, Y. Laser cutting silicon-glass double layer wafer with laser induced thermal-crack propagation. Opt. Laser Eng. 2016, 82, 173–185. [Google Scholar]
- Wang, Y.; Cerigato, C.; Waisman, H.; Benvenuti, E. XFEM with high-order material-dependent enrichment functions for stress intensity factors calculation of interface cracks using Irwin’s crack closure integral. Eng. Fract. Mech. 2017, 178, 148–168. [Google Scholar]
- Kocsis, L.; Herman, P.; Eke, A. The modified Beer-Lambert law revisited. Phys. Med. Biol. 2006, 51, N91–N98. [Google Scholar] [PubMed]
- Fuwa, K.; Valle, B.L. The physical basis of analytical atomic absorption spectrometry. Anal. Chem. 1963, 35, 942–946. [Google Scholar]
- da Silva, R.C.; Kubaski, E.T.; Tenório-Neto, E.T.; Lima-Tenório, M.K.; Tebcherani, S.M. Foam glass using sodium hydroxide as foaming agent: Study on the reaction mechanism in soda-lime glass matrix. J. Non-Cryst Solids 2019, 511, 177–182. [Google Scholar]
Material Properties | Values |
---|---|
Density (g/cm3) | 2.53 |
Young’s modulus (GPa) | 74 |
Poisson’s ratio | 0.23 |
Softening point/TBDT (°C) | 586 |
Heat transfer coefficient (W·K−1·m−2) | 10 |
Laser absorption rate/η | 3.4% |
Specific heat [J/(kg·K)] | 828–1160 |
Expansion coefficient (K−1) | 8 × 10−6–10−5 |
Thermal conductivity [W/(m·K)] | 1.06–1.38 |
Parameters | Value |
---|---|
Laser power, P/(W) | 50 |
Feed speed, v/(mm/s) | 0.2 |
Laser beam diameter, D/(mm) | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, H.; Zhu, X.; Liu, Y.; Zhang, D.; Du, X. Investigation on the Deviation and Thermal Damage Effects in Laser-Induced Lateral Crack Propagation of Soda–Lime Glass. Coatings 2025, 15, 802. https://doi.org/10.3390/coatings15070802
Kong H, Zhu X, Liu Y, Zhang D, Du X. Investigation on the Deviation and Thermal Damage Effects in Laser-Induced Lateral Crack Propagation of Soda–Lime Glass. Coatings. 2025; 15(7):802. https://doi.org/10.3390/coatings15070802
Chicago/Turabian StyleKong, Huaye, Xijing Zhu, Yao Liu, Dekang Zhang, and Xingqi Du. 2025. "Investigation on the Deviation and Thermal Damage Effects in Laser-Induced Lateral Crack Propagation of Soda–Lime Glass" Coatings 15, no. 7: 802. https://doi.org/10.3390/coatings15070802
APA StyleKong, H., Zhu, X., Liu, Y., Zhang, D., & Du, X. (2025). Investigation on the Deviation and Thermal Damage Effects in Laser-Induced Lateral Crack Propagation of Soda–Lime Glass. Coatings, 15(7), 802. https://doi.org/10.3390/coatings15070802