Effects of Polysaccharide-Based Edible Coatings on the Quality of Fresh-Cut Beetroot (Beta vulgaris L.) During Cold Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Coating Solutions
2.3. Coating Preparation
2.3.1. Coating Thickness
2.3.2. UV Light Transmittance
2.3.3. Colour
2.3.4. Opacity
2.3.5. Mechanical Properties
2.3.6. Contact Angle
2.3.7. Water Vapour Permeability
2.4. Vegetable Coating
2.5. Dry Matter
2.6. pH Value
2.7. Hardness
2.8. Colour
2.9. Polyphenols
2.10. Flavonoids
2.11. Betalains
2.12. Microstructure
2.13. Statistical Analysis
3. Results and Discussion
3.1. Coating Characterisation
3.2. The Characteristics of the Raw Material
3.3. The Effect of Polysaccharide Coatings on the Hardness of Fresh-Cut Beetroot
3.4. The Effect of Polysaccharide Coatings on the Colour of Fresh-Cut Beetroot
3.5. The Effect of Polysaccharide Coatings on the Polyphenol Content in Fresh-Cut Beetroot
3.6. The Effect of Polysaccharide Coatings on the Flavonoid Content in Fresh-Cut Beetroot
3.7. The Effect of Polysaccharide Coatings on the Betalain Content in Fresh-Cut Beetroot
3.8. The Effect of Polysaccharide Coatings on the Microstructure of Fresh-Cut Beetroot
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Granato, G.; Wassmann, B. To imitate or not to imitate? How consumers perceive animal origin products and plant-based alternatives imitating minimally processed vs. ultra-processed food. J. Clean. Prod. 2024, 472, 143447. [Google Scholar] [CrossRef]
- Khan, M.R.; Di Giuseppe, F.A.; Torrieri, E.; Sadiq, M.B. Recent advances in biopolymeric antioxidant films and coatings for preservation of nutritional quality of minimally processed fruits and vegetables. Food Packag. Shelf Life 2021, 30, 100752. [Google Scholar] [CrossRef]
- Dangal, A.; Timsina, P.; Dahal, S.; Rai, K.; Giuffrè, A.M. Advances in Non-thermal Food Processing Methods-Principle Advantages and Limitations for the Establishment of Minimal Food Quality as well as Safety Issues: A Review. Curr. Nutr. Food Sci. 2024, 20, 836–849. [Google Scholar] [CrossRef]
- Denoya, G.I.; Colletti, A.C.; Vaudagna, S.R.; Polenta, G.A. Application of non-thermal technologies as a stress factor to increase the content of health-promoting compounds of minimally processed fruits and vegetables. Curr. Opin. Food Sci. 2021, 42, 224–236. [Google Scholar] [CrossRef]
- Miteluț, A.C.; Popa, E.E.; Drăghici, M.C.; Popescu, P.A.; Popa, V.I.; Bujor, O.C.; Ion, V.A.; Popa, M.E. Latest Developments in Edible Coatings on Minimally Processed Fruits and Vegetables: A Review. Foods 2021, 10, 2821. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, H.; Marzec, A.; Domian, E.; Kowalska, J.; Ciurzyńska, A.; Galus, S. Edible coatings as osmotic dehydration pretreatment in nutrient-enhanced fruit or vegetable snacks development: A review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5641–5674. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhang, L.; Fan, K. Recent advances in polysaccharide-based edible coatings for preservation of fruits and vegetables: A review. Crit. Rev. Food Sci. Nutr. 2024, 64, 3823–3838. [Google Scholar] [CrossRef]
- Chavan, P.; Lata, K.; Kaur, T.; Rezek Jambrak, A.; Sharma, S.; Roy, S.; Sinhmar, A.; Thory, R.; Pal Singh, G.; Aayush, K.; et al. Recent advances in the preservation of postharvest fruits using edible films and coatings: A comprehensive review. Food Chem. 2023, 418, 135916. [Google Scholar] [CrossRef]
- Bajaj, K.; Adhikary, T.; Gill, P.P.S.; Kumar, A. Edible coatings enriched with plant-based extracts preserve postharvest quality of fruits: A review. Prog. Org. Coat. 2023, 182, 107669. [Google Scholar] [CrossRef]
- Ribeiro, I.S.; Maciel, G.M.; Bortolini, D.G.; Fernandes, I.d.A.A.; Maroldi, W.V.; Pedro, A.C.; Rubio, F.T.V.; Haminiuk, C.W.I. Sustainable innovations in edible films and coatings: An overview. Trends Food Sci. Technol. 2024, 143, 104272. [Google Scholar] [CrossRef]
- Jurić, M.; Maslov Bandić, L.; Carullo, D.; Jurić, S. Technological advancements in edible coatings: Emerging trends and applications in sustainable food preservation. Food Biosci. 2024, 58, 103835. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, H.; Hu, L. Recent Advances of Proteins, Polysaccharides and Lipids-Based Edible Films/Coatings for Food Packaging Applications: A Review. Food Biophys. 2023, 19, 29–45. [Google Scholar] [CrossRef]
- Trajkovska Petkoska, A.; Daniloski, D.; D’Cunha, N.M.; Naumovski, N.; Broach, A.T. Edible packaging: Sustainable solutions and novel trends in food packaging. Food Res. Int. 2021, 140, 109981. [Google Scholar] [CrossRef]
- Mohamed, S.A.A.; El-Sakhawy, M.; El-Sakhawy, M.A. Polysaccharides, Protein and Lipid Based Natural Edible Films in Food Packaging: A Review. Carbohydr. Polym. 2020, 238, 116178. [Google Scholar] [CrossRef]
- Maringgal, B.; Hashim, N.; Tawakkal, I.S.M.A.; Mohamed, M.T.M. Recent advance in edible coating and its effect on fresh/fresh-cut fruits quality. Trends Food Sci. Technol. 2020, 96, 253–267. [Google Scholar] [CrossRef]
- Galus, S. Development of Edible Coatings in the Preservation of Fruits and Vegetables. In Polymers for Agri-Food Applications; Gutiérrez, T.J., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 377–390. [Google Scholar]
- Knez, E.; Kadac-Czapska, K.; Dmochowska-Slezak, K.; Grembecka, M. Root Vegetables-Composition, Health Effects, and Contaminants. Int. J. Environ. Res. Public Health 2022, 19, 15531. [Google Scholar] [CrossRef] [PubMed]
- Thiruvengadam, M.; Chung, I.M.; Samynathan, R.; Chandar, S.R.H.; Venkidasamy, B.; Sarkar, T.; Rebezov, M.; Gorelik, O.; Shariati, M.A.; Simal-Gandara, J. A comprehensive review of beetroot (Beta vulgaris L.) bioactive components in the food and pharmaceutical industries. Crit. Rev. Food Sci. Nutr. 2024, 64, 708–739. [Google Scholar] [CrossRef]
- Punia Bangar, S.; Singh, A.; Chaudhary, V.; Sharma, N.; Lorenzo, J.M. Beetroot as a novel ingredient for its versatile food applications. Crit. Rev. Food Sci. Nutr. 2022, 63, 8403–8427. [Google Scholar] [CrossRef] [PubMed]
- Milton-Laskibar, I.; Martínez, J.A.; Portillo, M.P. Current Knowledge on Beetroot Bioactive Compounds: Role of Nitrate and Betalains in Health and Disease. Foods 2021, 10, 1314. [Google Scholar] [CrossRef]
- Igual, M.; Moreau, F.; Garcia-Segovia, P.; Martinez-Monzo, J. Valorization of Beetroot By-Products for Producing Value-Added Third Generation Snacks. Foods 2023, 12, 176. [Google Scholar] [CrossRef]
- Szymański, J.; Szwajgier, D.; Baranowska-Wójcik, E. The Role of Beetroot Ingredients in the Prevention of Alzheimer’s Disease. Appl. Sci. 2023, 13, 1044. [Google Scholar] [CrossRef]
- Niemira, J.; Galus, S. Valorization of Red Beetroot (Beta vulgaris L.) Pomace Combined with Golden Linseed (Lini semen) for the Development of Vegetable Crispbreads as Gluten-Free Snacks Rich in Bioactive Compounds. Molecules 2024, 29, 2105. [Google Scholar] [CrossRef]
- Pakulska, A.; Bartosiewicz, E.; Galus, S. The Potential of Apple and Blackcurrant Pomace Powders as the Components of Pectin Packaging Films. Coatings 2023, 13, 1409. [Google Scholar] [CrossRef]
- Butler, I.P.; Banta, R.A.; Tyuftin, A.A.; Holmes, J.; Pathania, S.; Kerry, J. Pectin as a biopolymer source for packaging films using a circular economy approach: Origins, extraction, structure and films properties. Food Packag. Shelf Life 2023, 40, 101224. [Google Scholar] [CrossRef]
- García, A.; Burgos, N.; Jimenez, A.; Garrigós, M. Natural Pectin Polysaccharides as Edible Coatings. Coatings 2015, 5, 865–886. [Google Scholar] [CrossRef]
- Sucheta; Chaturvedi, K.; Sharma, N.; Yadav, S.K. Composite edible coatings from commercial pectin, corn flour and beetroot powder minimize post-harvest decay, reduces ripening and improves sensory liking of tomatoes. Int. J. Biol. Macromol. 2019, 133, 284–293. [Google Scholar] [CrossRef]
- Nazir, S.; Wani, I.A. Development and characterization of an antimicrobial edible film from basil seed (Ocimum basilicum L.) mucilage and sodium alginate. Biocatal. Agric. Biotechnol. 2022, 44, 102450. [Google Scholar] [CrossRef]
- Khodanazary, A.; Mohammadzadeh, B. Effect of alginate-gallic acid coating on freshness and flavor properties of Mackerel (Scomberomorus commerson) fillets under refrigerated storage. Int. J. Biol. Macromol. 2023, 249, 125999. [Google Scholar] [CrossRef] [PubMed]
- Ureña, M.; Carullo, D.; Phùng, T.T.-T.; Fournier, P.; Farris, S.; Lagorce, A.; Karbowiak, T. Effect of polymer structure on the functional properties of alginate for film or coating applications. Food Hydrocoll. 2024, 149, 109557. [Google Scholar] [CrossRef]
- Jiang, T. Effect of alginate coating on physicochemical and sensory qualities of button mushrooms (Agaricus bisporus) under a high oxygen modified atmosphere. Postharvest Biol. Technol. 2013, 76, 91–97. [Google Scholar] [CrossRef]
- Sobral, P.; Santos, J.; García, F. Effect of protein and plasticizer concentrations in film forming solutions on physical properties of edible films based on muscle proteins of a Thai Tilapia. J. Food Eng. 2005, 70, 93–100. [Google Scholar] [CrossRef]
- Galus, S.; Mikus, M.; Ciurzyńska, A.; Janowicz, M. Whey Protein Isolate-Based Edible Coatings Incorporated with Jojoba Oil as a Novel Approach for Improving the Quality of Fresh-Cut Root Parsley during Refrigerated Storage. Appl. Sci. 2022, 12, 9023. [Google Scholar] [CrossRef]
- Elgasim, E.A.; Al-Wesali, M.S. Water activity and Hunter colour values of beef patties extended with Samh (Mesembryanthemum forsskalei Hochst) flour. Food Chem. 2000, 69, 181–185. [Google Scholar] [CrossRef]
- Bahorun, T.; Gressier, B.; Trotin, F.; Brunet, C.; Dine, T.; Luyckx, M.; Vasseur, J.; Cazin, M.; Cazin, J.C.; Pinkas, M. Oxygen species scavenging activity of phenolic extracts from hawthorn fresh plant organs and pharmaceutical preparations. Arzneimittel-Forschung 1996, 46, 1086–1089. [Google Scholar]
- Nilsson, T. Studies into the pigments in beetroot (Beta vulgaris L. ssp. vulgaris var. rubra L.). Lantbrukshogskolans Ann. 1970, 36, 179–219. [Google Scholar]
- Kchaou, H.; Jridi, M.; Nasri, M.; Debeaufort, F. Design of Gelatin Pouches for the Preservation of Flaxseed Oil during Storage. Coatings 2020, 10, 150. [Google Scholar] [CrossRef]
- Chhikara, N.; Kushwaha, K.; Sharma, P.; Gat, Y.; Panghal, A. Bioactive compounds of beetroot and utilization in food processing industry: A critical review. Food Chem. 2019, 272, 192–200. [Google Scholar] [CrossRef]
- Ignaczak, A.; Salamon, A.; Kowalska, J.; Marzec, A.; Kowalska, H. Influence of Pre-Treatment and Drying Methods on the Quality of Dried Carrot Properties as Snacks. Molecules 2023, 28, 6407. [Google Scholar] [CrossRef]
- Lufu, R.; Ambaw, A.; Opara, U.L. Water loss of fresh fruit: Influencing pre-harvest, harvest and postharvest factors. Sci. Hortic. 2020, 272, 109519. [Google Scholar] [CrossRef]
- Tao, S.; Wang, J.; Xie, J. Influence of different pre-cooling methods on the freshness preservation of bok choi(Brassica rapa var. chinensis). Food Chem. X 2024, 23, 101599. [Google Scholar] [CrossRef]
- Janiszewska, E. Microencapsulated beetroot juice as a potential source of betalain. Powder Technol. 2014, 264, 190–196. [Google Scholar] [CrossRef]
- Płatosz, N.; Sawicki, T.; Wiczkowski, W. Profile of Phenolic Acids and Flavonoids of Red Beet and Its Fermentation Products. Does Long-Term Consumption of Fermented Beetroot Juice Affect Phenolics Profile in Human Blood Plasma and Urine? Pol. J. Food Nutr. Sci. 2020, 70, 55–65. [Google Scholar] [CrossRef]
- Sentkowska, A.; Pyrzyńska, K. Old-Fashioned, but Still a Superfood—Red Beets as a Rich Source of Bioactive Compounds. Appl. Sci. 2023, 13, 7445. [Google Scholar] [CrossRef]
- Baião, D.D.S.; de Freitas, C.S.; Gomes, L.P.; da Silva, D.; Correa, A.; Pereira, P.R.; Aguila, E.M.D.; Paschoalin, V.M.F. Polyphenols from Root, Tubercles and Grains Cropped in Brazil: Chemical and Nutritional Characterization and Their Effects on Human Health and Diseases. Nutrients 2017, 9, 1044. [Google Scholar] [CrossRef] [PubMed]
- Deliorman Orhan, D.; Hartevioğlu, A.; Küpeli, E.; Yesilada, E. In vivo anti-inflammatory and antinociceptive activity of the crude extract and fractions from Rosa canina L. fruits. J. Ethnopharmacol. 2007, 112, 394–400. [Google Scholar] [CrossRef]
- Lisiecka, K.; Wójtowicz, A. Effect of fresh beetroot application and processing conditions on some quality features of new type of potato-based snacks. LWT 2021, 141, 110919. [Google Scholar] [CrossRef]
- Kowalska, H.; Kowalska, J.; Ignaczak, A.; Masiarz, E.; Domian, E.; Galus, S.; Ciurzynska, A.; Salamon, A.; Zajac, A.; Marzec, A. Development of a High-Fibre Multigrain Bar Technology with the Addition of Curly Kale. Molecules 2021, 26, 3939. [Google Scholar] [CrossRef]
- Shrivastava, S.; Prasad, R.; Varma, A. Anatomy of Root from Eyes of a Microbiologist. In Root Engineering; Soil Biology; Springer: Berlin/Heidelberg, Germany, 2014; pp. 3–22. [Google Scholar]
- Rossi Marquez, G.; Di Pierro, P.; Mariniello, L.; Esposito, M.; Giosafatto, C.V.L.; Porta, R. Fresh-cut fruit and vegetable coatings by transglutaminase-crosslinked whey protein/pectin edible films. LWT 2017, 75, 124–130. [Google Scholar] [CrossRef]
- Mikus, M.; Galus, S. Food coating—Materials, methods and application in the food industry. Food Sci. Technol. Qual. 2020, 125, 5–24. [Google Scholar] [CrossRef]
- Sorrenti, V.; Burò, I.; Consoli, V.; Vanella, L. Recent Advances in Health Benefits of Bioactive Compounds from Food Wastes and By-Products: Biochemical Aspects. Int. J. Mol. Sci. 2023, 24, 2019. [Google Scholar] [CrossRef]
- Samtiya, M.; Aluko, R.E.; Dhewa, T.; Moreno-Rojas, J.M. Potential Health Benefits of Plant Food-Derived Bioactive Components: An Overview. Foods 2021, 10, 839. [Google Scholar] [CrossRef] [PubMed]
- Złotek, U.; Wójcik, W. Use of Chitosan Film Coatings in the Storage of Carrots (Daucus carota). Prog. Chem. Appl. Chitin Deriv. 2008, 13, 141–148. [Google Scholar]
- Pen, L.T.; Jiang, Y.M. Effects of chitosan coating on shelf life and quality of fresh-cut Chinese water chestnut. LWT 2003, 36, 359–364. [Google Scholar] [CrossRef]
- Złotek, U.; Wójcik, W. Effect of Coating Parsley Roots (Petroselinum Hortense) with Chitosan Film on Selected Characteristics Thereof during Storage. Food Sci. Technol. Qual. 2012, 19, 75–85. [Google Scholar]
Tested Feature | AP | SA |
---|---|---|
Mean ± Standard Deviation | ||
Thickness (µm) | 62.5 ± 5.0 | 61.2 ± 5.0 |
L* | 85.96 ± 1.92 | 89.32 ± 0.36 |
a* | −0.16 ± 0.68 | −0.52 ± 0.02 |
b* | 14.24 ± 3.71 | 3.35 ± 0.51 |
Total colour difference (ΔE) | 14.22 ± 4.17 | 3.25 ± 0.58 |
Opacity (A/mm) | 1.78 ± 0.23 | 0.88 ± 0.11 |
Tensile strength (MPa) | 1.04 ± 0.14 | 1.58 ± 0.18 |
Elongation at break (%) | 3.82 ± 0.63 | 1.55 ± 0.21 |
Water contact angle (°) | 39.92 ± 2.73 | 42.35 ± 4.97 |
Water vapour permeability (10−10 g/m·Pa·s) | 5.84 ± 0.22 | 5.16 ± 0.07 |
Tested Feature | Mean ± Standard Deviation |
---|---|
Dry matter (%) | 10.77 ± 0.25 |
pH | 5.89 ± 0.01 |
Hardness (N) | 65.73 ± 4.78 |
L* | 28.69 ± 1.66 |
a* | 25.78 ± 1.70 |
b* | 5.89 ± 1.64 |
Hue tone (°) | 12.83 ± 3.25 |
Content of polyphenols (mg gallic acid/g d.m.) | 9.13 ± 0.57 |
The content of flavonoids (mg quercetin/g d.m.) | 44.63 ± 0.31 |
Red pigment content (mg betanin/g d.m.) | 6.73 ± 0.35 |
Yellow pigment content (mg vulgaxanthin/g d.m.) | 5.29 ± 0.13 |
Time (Days) | Hardness (N) | ||
---|---|---|---|
Type of Material | |||
Control | AP | SA | |
0 | 59.19 ± 6.11 b,AB | 56.38 ± 5.77 a,A | 56.43 ± 9.26 b,A |
7 | 58.62 ± 3.21 b,AB | 55.55 ± 3.44 a,A | 54.77 ± 1.73 b,A |
14 | 56.76 ± 4.69 b,A | 55.08 ± 4.3 a,A | 53.51 ± 1.4 ab,A |
21 | 53.65 ± 4.9 b,A | 54.75 ± 5.2 a,A | 52.58 ± 0.9 ab,A |
28 | 45.41 ± 3.71 a,A | 50.31 ± 2.07 a,B | 47.6 ± 2.98 a,AB |
Time (Days) | Type of Material | ||
---|---|---|---|
Control | AP | SA | |
L* | |||
0 | 34.35 ± 0.96 a,A | 35.23 ±1.27 a,A | 34.96 ± 1.67 a,A |
7 | 43.11 ± 1.39 b,C | 38.32 ± 1.62 bc,A | 40.72 ± 1.21 b,B |
14 | 43.31 ± 2.10 b,B | 40.81 ± 2.21 c,A | 39.95 ± 2.21 b,A |
21 | 43.36 ± 2.42 b,B | 37.80 ± 2.56 ab,A | 41.03 ± 1.32 b,B |
28 | 42.26 ± 2.01 b,B | 38.74 ± 3.04 bc,A | 39.85 ± 1.48 b,AB |
a* | |||
0 | 17.27 ± 3.79 bc,A | 18.65 ± 5.46 a,A | 21.86 ± 3.96 b,A |
7 | 15.06 ± 1.26 ab,A | 16.98 ± 2.44 a,AB | 17.93 ± 2.59 a,B |
14 | 19.14 ± 2.17 c,A | 18.34 ± 2.12 a,A | 16.75 ± 3.40 a,A |
21 | 13.63 ± 1.95 a,A | 15.55 ± 2.55 a,A | 18.08 ± 1.32 a,B |
28 | 16.14 ± 2.97 abc,A | 15.25 ± 2.09 a,A | 14.58 ± 1.95 a,A |
b* | |||
0 | 3.92 ± 0.89 a,A | 4.66 ± 1.13 a,AB | 5.36 ± 1.18 ab,B |
7 | 4.14 ± 1.34 ab,A | 4.78 ± 1.97 a,A | 5.98 ± 1.61 ab,A |
14 | 4.82 ± 0.74 ab,A | 4.55 ± 1.14 a,A | 6.48 ± 0.84 b,B |
21 | 5.49 ± 1.02 b,B | 4.28 ± 1.15 a,A | 4.78 ± 0.67 a,AB |
28 | 6.90 ± 1.29 c,A | 6.79 ± 1.20 b,A | 5.55 ± 1.45 ab,A |
Hue (°) | |||
28 | 13.25 ± 1.43 a,A | 13.84 ± 2.05 a,A | 15.08 ± 1.42 a,A |
7 | 14.45 ± 2.00 a,A | 15.19 ± 1.81 a,AB | 16.50 ± 1.57 ab,B |
14 | 18.89 ± 2.26 b,A | 15.82 ± 4.40 a,A | 18.21 ± 1.51 ac,A |
21 | 19.78 ± 4.32 b,A | 16.24 ± 3.62 a,A | 19.67 ± 1.36 c,A |
28 | 19.79 ± 2.95 b,A | 20.20 ± 1.63 b,A | 18.20 ± 1.97 ac,A |
Time (Days) | Polyphenols (mg Gallic Acid/g d.m.) | ||
---|---|---|---|
Type of Material | |||
Control | AP | SA | |
0 | 22.39 ± 2.11 d,A | 23.86 ± 0.10 d,A | 23.83 ± 0.37 d,A |
7 | 18.86 ± 0.29 c,A | 23.92 ± 0.18 d,C | 20.68 ± 0.90 c,B |
14 | 17.51 ± 0.94 c,AB | 19.58 ± 2.42 c,B | 14.21 ± 2.05 b,A |
21 | 10.78 ± 1.19 b,A | 13.95 ± 0.52 b,B | 13.44 ± 0.38 b,B |
28 | 2.05 ± 0.28 a,A | 7.65 ± 1.72 a,B | 4.80 ± 1.14 a,AB |
Time (Days) | Flavonoids (mg Quercetin/g d.m.) | ||
---|---|---|---|
Type of Material | |||
Uncoated | AP | SA | |
0 | 48.86 ± 0.07 e,C | 44.43 ± 0.26 d,A | 45.91 ± 0.20 d,B |
7 | 35.47 ± 0.20 d,A | 49.27 ± 0.14 e,C | 44.79 ± 0.33 c,B |
14 | 32.53 ± 0.20 a,A | 35.95 ± 0.19 b,C | 33.16 ± 0.07 a,B |
21 | 33.35 ± 0.13 b,A | 33.69 ± 0.40 a,A | 37.45 ± 0.07 b,B |
28 | 34.39 ± 0.13 c,A | 42.47 ± 0.19 c,B | 44.62 ± 0.20 c,C |
Time (Days) | Type of Material | ||
---|---|---|---|
Control | AP | SA | |
Red Pigments (mg betanin/g d.m.) | |||
0 | 4.75 ± 0.05 d,C | 4.21 ± 0.06 d,B | 4.00 ± 0.06 d,A |
7 | 2.44 ± 0.07 a,B | 2.08 ± 0.02 a,A | 2.74 ± 0.05 c,C |
14 | 2.22 ± 0.21 a,A | 2.20 ± 0.03 a,A | 1.90 ± 0.08 a,A |
21 | 3.51 ± 0.03 b,C | 3.40 ± 0.06 b,B | 2.41 ± 0.01 b,A |
28 | 4.17 ± 0.01 c,C | 3.68 ± 0.16 c,B | 2.72 ± 0.01 c,A |
Yellow Pigments (mg vulgaxanthin/g d.m.) | |||
0 | 3.77 ± 0.03 c,C | 3.49 ± 0.04 c,B | 3.26 ± 0.11 c,A |
7 | 2.24 ± 0.07 a,A | 2.13 ± 0.02 a,A | 2.68 ± 0.05 b,B |
14 | 2.16 ± 0.16 a,B | 2.18 ± 0.02 a,B | 1.86 ± 0.06 a,A |
21 | 3.41 ± 0.03 b,C | 3.19 ± 0.06 b,B | 2.56 ± 0.01 b,A |
28 | 3.91 ± 0.01 c,C | 3.45 ± 0.14 c,B | 2.70 ± 0.01 b,A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galus, S.; Kowalska, H.; Ignaczak, A.; Kowalska, J.; Karwacka, M.; Ciurzyńska, A.; Janowicz, M. Effects of Polysaccharide-Based Edible Coatings on the Quality of Fresh-Cut Beetroot (Beta vulgaris L.) During Cold Storage. Coatings 2025, 15, 583. https://doi.org/10.3390/coatings15050583
Galus S, Kowalska H, Ignaczak A, Kowalska J, Karwacka M, Ciurzyńska A, Janowicz M. Effects of Polysaccharide-Based Edible Coatings on the Quality of Fresh-Cut Beetroot (Beta vulgaris L.) During Cold Storage. Coatings. 2025; 15(5):583. https://doi.org/10.3390/coatings15050583
Chicago/Turabian StyleGalus, Sabina, Hanna Kowalska, Anna Ignaczak, Jolanta Kowalska, Magdalena Karwacka, Agnieszka Ciurzyńska, and Monika Janowicz. 2025. "Effects of Polysaccharide-Based Edible Coatings on the Quality of Fresh-Cut Beetroot (Beta vulgaris L.) During Cold Storage" Coatings 15, no. 5: 583. https://doi.org/10.3390/coatings15050583
APA StyleGalus, S., Kowalska, H., Ignaczak, A., Kowalska, J., Karwacka, M., Ciurzyńska, A., & Janowicz, M. (2025). Effects of Polysaccharide-Based Edible Coatings on the Quality of Fresh-Cut Beetroot (Beta vulgaris L.) During Cold Storage. Coatings, 15(5), 583. https://doi.org/10.3390/coatings15050583