Controlling the Scandium Gradient and Microstructure in AlN Thin Films via a Magnetron Sputtering-Ion Implantation Strategy
Abstract
1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ballandras, S.; Courjon, E.; Bernard, F.; Laroche, T.; Clairet, A.; Radu, I. New generation of SAW devices on advanced engineered substrates combining piezoelectric single crystals and silicon. In Proceedings of the 2019 Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum (EFTF/IFC), Miami, FL, USA, 14–18 April 2019; p. 1. [Google Scholar]
- Chen, P.; Li, G.; Zhu, Z. Development and application of SAW filter. Micromachines 2022, 13, 656. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Wu, L.; Chang, J.H.; Chang, F.C. SAW modes on ST-X quartz with an AlN layer. Mater. Lett. 2001, 51, 331–335. [Google Scholar] [CrossRef]
- Wang, L.; Chen, S.; Zhang, J.; Zhou, J.; Yang, C.; Chen, Y.; Duan, H. High performance 33.7 GHz surface acoustic wave nanotransducers based on AlScN/diamond/Si layered structures. Appl. Phys. Lett. 2018, 113, 93502. [Google Scholar] [CrossRef]
- Bai, P.; Zhou, Y.; Ji, M.; Wang, Y.; Ren, Q.; Zhang, S. A piezoelectric micro machined ultrasonic transducer based hybrid-morph AlScN film. J. Microelectromechanical Syst. 2023, 32, 154–156. [Google Scholar] [CrossRef]
- Liu, H.; Zeng, F.; Tang, G.; Pan, F. Enhancement of piezoelectric response of diluted Ta doped AlN. Appl. Surf. Sci. 2013, 270, 225. [Google Scholar] [CrossRef]
- Yokoyama, T.; Iwazaki, Y.; Onda, Y.; Nishihara, T.; Sasajima, Y.; Ueda, M. Highly piezoelectric co-doped AlN thin films for wideband FBAR applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2015, 62, 1007–1015. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Oguchi, H.; Van Minh, L.; Kuwano, H. High-Throughput Investigation of a Lead-Free AlN-Based Piezoelectric Material, (Mg, Hf)xAl1–xN. ACS Comb. Sci. 2017, 19, 365–369. [Google Scholar] [CrossRef]
- Uehara, M.; Shigemoto, H.; Fujio, Y.; Nagase, T.; Aida, Y.; Umeda, K.; Akiyama, M. Giant increase in piezoelectric coefficient of AlN by Mg-Nb simultaneous addition and multiple chemical states of Nb. Appl. Phys. Lett. 2017, 111, 112901. [Google Scholar] [CrossRef]
- Noor-A-Alam, M.; Olszewski, O.Z.; Campanella, H.; Nolan, M. Large piezoelectric response and ferroelectricity in Li and V/Nb/Ta co-doped w-AlN. ACS Appl. Mater. Interfaces 2020, 13, 944–954. [Google Scholar] [CrossRef]
- Pan, F. Surface Acoustic Wave Materials and Devices; Scientific Publishers: Beijing, China, 2012. [Google Scholar]
- Fichtner, S.; Wolff, N.; Krishnamurthy, G.; Petraru, A.; Bohse, S.; Lofink, F.; Wagner, B. Identifying and overcoming the interface originating c-axis instability in highly Sc enhanced AlN for piezoelectric micro-electromechanical systems. J. Appl. Phys. 2017, 122, 35301. [Google Scholar] [CrossRef]
- Felmetsger, V.; Mikhov, M.; Ramezani, M.; Tabrizian, R. Sputter process optimization for Al 0.7 Sc 0.3 N piezoelectric films. In Proceedings of the 2019 IEEE International Ultrasonics Symposium (IUS), Glasgow, UK, 6–9 October 2019; p. 2600. [Google Scholar]
- Akiyama, M.; Kamohara, T.; Kano, K.; Teshigahara, A.; Takeuchi, Y.; Kawahara, N. Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering. Adv. Mater. 2009, 21, 593–596. [Google Scholar] [CrossRef]
- Fiedler, H.; Leveneur, J.; Mitchell, D.R.; Arulkumaran, S.; Ng, G.I.; Alphones, A.; Kennedy, J. Enhancing the piezoelectric modulus of wurtzite AlN by ion beam strain engineering. Appl. Phys. Lett. 2021, 118, 12108. [Google Scholar] [CrossRef]
- Fiedler, H.; Jovic, V.; Mitchell, D.R.; Leveneur, J.; Anquillare, E.; Smith, K.E.; Kennedy, J. Tuning the electromechanical properties and polarization of aluminium nitride by ion beam-induced point defects. Acta Mater. 2021, 203, 116495. [Google Scholar] [CrossRef]
- Sharma, V. The Effect of Helium and Scandium Ion Implantation on the Structural, Vibrational and Piezoelectric Properties of Aluminium Nitride Thin Films. Ph.D. Thesis, Te Herenga Waka-Victoria University of Wellington, Wellington, New Zealand, 2020. [Google Scholar]
- Fiedler, H.; Fuchs, F.; Leveneur, J.; Nancarrow, M.; Mitchell, D.R.; Schuster, J.; Kennedy, J. Giant piezoelectricity of deformed aluminum nitride stabilized through noble gas interstitials for energy efficient resonators. Adv. Electron. Mater. 2021, 7, 2100358. [Google Scholar] [CrossRef]
- Manova, D.; Mändl, S. In situ XRD measurements to explore phase formation in the near surface region. J. Appl. Phys. 2019, 126, 200901. [Google Scholar] [CrossRef]
- Mukhopadhyay, P.; Fletcher, I.; Couvertier, Z.C.; Schwab, B.; Gumpher, J.; Schoenfeld, W.V.; Fulford, J. Nucleation of highly uniform AlN thin films by high volume batch ALD on 200 mm platform. J. Vac. Sci. Technol. A 2024, 42, 32401. [Google Scholar] [CrossRef]
- Sarkar, P.; Nisha; Kumar, P.; Katiyar, R.S. Enhanced Opto-Electrical Properties of Chalcogenide-Rich Tin Selenide Thin Film after Incorporating Sulfur Yielding Tin Sulfoselenide. ChemistrySelect 2023, 8, e202301545. [Google Scholar] [CrossRef]
- Chenakin, S.P.; Prada Silvy, R.; Kruse, N. Effect of X-rays on the surface chemical state of Al2O3, V2O5, and aluminovanadate oxide. J. Phys. Chem. B 2005, 109, 14611–14618. [Google Scholar] [CrossRef]
- Motamedi, P.; Cadien, K. XPS analysis of AlN thin films deposited by plasma enhanced atomic layer deposition. Appl. Surf. Sci. 2014, 315, 104–109. [Google Scholar] [CrossRef]
- Vo, D.D.; Lipnitskii, A.G.; Nguyen, T.K.; Nguyen, T.T. Nitrogen Trapping Ability of Hydrogen-Induced Vacancy and the Effect on the Formation of AlN in Aluminum. Coatings 2017, 7, 79. [Google Scholar] [CrossRef]
- Al-Atabi, H.A.; Zhang, X.; He, S.; Chen, C.; Chen, Y.; Rotenberg, E.; Edgar, J.H. Lattice and electronic structure of ScN observed by angle-resolved photo emission spectroscopy measurements. Appl. Phys. Lett. 2022, 121, 182102. [Google Scholar] [CrossRef]
- Rudresh, J.; Sandeep, S.; Venugopalrao, S.N.; Nagaraja, K.K. Impact of Sc-doping on structural, phase purity, and dielectric properties of AlN thin films. J. Appl. Phys. 2025, 137, 95306. [Google Scholar] [CrossRef]
- Okumura, H.; Watanabe, Y.; Shibata, T.; Yoshizawa, K.; Uedono, A.; Tokunaga, H.; Palacios, T. Impurity diffusion in ion implanted AlN layers on sapphire substrates by thermal annealing. Jpn. J. Appl. Phys. 2022, 61, 26501. [Google Scholar] [CrossRef]
- Conconi, R.; Ortega, M.M.A.; Nieto, F.; Buono, P.; Capitani, G. TEM-EDS microanalysis: Comparison between different electron sources, accelerating voltages and detection systems. Ultramicroscopy 2025, 276, 114201. [Google Scholar] [CrossRef]
- Tougaard, S. Practical guide to the use of backgrounds in quantitative XPS. J. Vac. Sci. Technol. A 2021, 39, 11201. [Google Scholar] [CrossRef]
- Du, J.; Liu, H.; Wang, S.; Wu, B.; Zong, W. Atomic-scale observation and prediction of gallium ion implantation induced amorphization on natural diamond surface. Vacuum 2023, 214, 112226. [Google Scholar] [CrossRef]
- Schmid, U.; Sánchez-Rojas, J.L. Piezoelectric properties of sputtered AIN thin films and their applications. Adv. Sci. Technol. 2008, 54, 41–49. [Google Scholar]






| Samples | Targets | Ar/N2 Flow Ratio | Chamber Pressure | Sputtering Pressure | Sputtering Temperature | Sputtering Power |
|---|---|---|---|---|---|---|
| AlN thin films | Al | 21:6 | 5 × 10−5 Pa | 0.4 Pa | 500 °C | 450 W for Al |
| Pre-doped ScAlN thin films | Sc + Al | 21:6 | 5 × 10−5 Pa | 0.4 Pa | 500 °C | 175 W for Sc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, X.; Bai, X.; Huang, K.; Wei, J.; Chen, L.; Liu, J.; Li, C.; Wang, W. Controlling the Scandium Gradient and Microstructure in AlN Thin Films via a Magnetron Sputtering-Ion Implantation Strategy. Coatings 2025, 15, 1481. https://doi.org/10.3390/coatings15121481
Yuan X, Bai X, Huang K, Wei J, Chen L, Liu J, Li C, Wang W. Controlling the Scandium Gradient and Microstructure in AlN Thin Films via a Magnetron Sputtering-Ion Implantation Strategy. Coatings. 2025; 15(12):1481. https://doi.org/10.3390/coatings15121481
Chicago/Turabian StyleYuan, Xiaolu, Xueyang Bai, Ke Huang, Junjun Wei, Liangxian Chen, Jinlong Liu, Chengming Li, and Wenrui Wang. 2025. "Controlling the Scandium Gradient and Microstructure in AlN Thin Films via a Magnetron Sputtering-Ion Implantation Strategy" Coatings 15, no. 12: 1481. https://doi.org/10.3390/coatings15121481
APA StyleYuan, X., Bai, X., Huang, K., Wei, J., Chen, L., Liu, J., Li, C., & Wang, W. (2025). Controlling the Scandium Gradient and Microstructure in AlN Thin Films via a Magnetron Sputtering-Ion Implantation Strategy. Coatings, 15(12), 1481. https://doi.org/10.3390/coatings15121481

