Dual-Path Framework Analysis of Crack Detection Algorithm and Scenario Simulation on Fujian Tulou Surface
Abstract
1. Introduction
2. Materials and Methods
2.1. Case Study Description
2.2. Data Prepossessing and Dataset Construction
2.3. Model Comparison and Improvement
2.4. Evaluation Metrics and Statistical Formulations
2.5. Crack Prediction Method and Model Description
2.6. Quantitative Validation and Cross-Check
3. Results
3.1. Ablation Experiments
3.2. Model Comparison Results
3.3. Performance Evaluation of CAM, Grad-CAM, XGrad-CAM, SSCAM for Deep Learning Model
3.4. Crack Simulation Results
3.5. Quantitative Results of Evolutionary Predictions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| YOLO | You Only Look Once |
| SSD | Single Shot MultiBox Detector |
| DETR | DEtection TRansformer |
| RFPA3D | Realistic Failure Process Analysis in 3D |
| CAM | Class Activation Mapping |
| Grad-CAM | Gradient-weighted Class Activation Mapping |
| SSCAM | Score-Weighted Class Activation Mapping |
| XGrad-CAM | Extended Gradient-weighted Class Activation Mapping |
| IoU | Intersection over Union |
| mAP@50 | Mean Average Precision at 50% IoU threshold |
| GFLOPs | Giga Floating Point Operations per Second |
| UIB | Universal Inverted Bottleneck |
| IMCA | Improved Multi-head Cross Attention |
| EnEIoU | Enhanced Efficient Intersection over Union |
| LSTM | Long Short-Term Memory |
| SaturatedLSTMCA | Saturated Long Short-Term Memory Convolutional Attention |
| MAE | Mean Absolute Error |
| EMD | Earth Mover’s Distance |
Appendix A
| Step | Operation | Algorithm/Function | Parameters | Notes |
|---|---|---|---|---|
| Binary conversion | Otsu thresholding | cv2.threshold (…, cv2.THRESH_OTSU) | N/A | Remove small regions <20 px |
| Skeletonization | Thinning | Zhang-Suen/cv2.ximgproc.thinning | mode = THINNING_ZHANGSUEN | Produces 1-pixel skeleton |
| Orientation estimation | Structure tensor | 3 × 3 window | Histogram bins = 18 (10° per bin) | Orientation in [0°, 180°) |
| Spacing extraction | Euclidean distance transform | cv2.distanceTransform | Pixel to mm scaling factor = s | Ridge detection = local maxima |
| Density calculation | Skeleton length/area | np.count_nonzero (skeleton) | Normalize by area | Gives cracks per cm2 |
| Skeleton IoU | Intersection over union | Binary maps | N/A | Evaluates overlap |
| Chamfer distance | Symmetric Chamfer | cv2.distanceTransform + NN search | N/A | Average distance both ways |
| Hausdorff distance | Max distance | scipy.spatial.cKDTree | N/A | Worst-case mismatch |
| Betti numbers | Connected components and loops | scipy.ndimage.label + contour hierarchy | N/A | Gives β0\beta_0, β1\beta_1 |
| Graph abstraction | Skeleton to graph | Nodes = endpoints/branchpoints | N/A | Compute avg. degree, loop ratio |
| Statistics | Significance tests | Paired t-test/Wilcoxon | α = 0.05 | With Shapiro–Wilk normality check |
| Binary conversion | Otsu thresholding | cv2.threshold (…, cv2.THRESH_OTSU) | N/A | Remove small regions <20 px |
| Skeletonization | Thinning | Zhang-Suen/cv2.ximgproc.thinning | mode = THINNING_ZHANGSUEN | Produces 1-pixel skeleton |
| Orientation estimation | Structure tensor | 3 × 3 window | Histogram bins = 18 (10° per bin) | Orientation in [0°, 180°) |
| Spacing extraction | Euclidean distance transform | cv2.distanceTransform | Pixel to mm scaling factor = s | Ridge detection = local maxima |
| Density calculation | Skeleton length / area | np.count_nonzero (skeleton) | Normalize by area | Gives cracks per cm2 |
| Skeleton IoU | Intersection over union | Binary maps | N/A | Evaluates overlap |
| Chamfer distance | Symmetric Chamfer | cv2.distanceTransform + NN search | N/A | Average distance both ways |
| Hausdorff distance | Max distance | scipy.spatial.cKDTree | N/A | Worst-case mismatch |
| Betti numbers | Connected components and loops | scipy.ndimage.label + contour hierarchy | N/A | Gives β0\beta_0, β1\beta_1 |
| Graph abstraction | Skeleton to graph | Nodes = endpoints/branchpoints | N/A | Compute avg. degree, loop ratio |
| Statistics | Significance tests | Paired t-test/Wilcoxon | α = 0.05 | With Shapiro–Wilk normality check |
References
- Porretta, P.; Pallottino, E.; Colafranceschi, E. Minnan and Hakka Tulou: Functional, typological and construction features of the rammed earth dwellings of Fujian (China). Int. J. Archit. Herit. 2022, 16, 899–922. [Google Scholar] [CrossRef]
- Chen, W.; Yan, B.; Guo, S.; Liu, Y.; Yang, F.; Zhang, K.; Mao, W. An in-situ conservation method of the rammed earth sites using a new silica protective agent. Constr. Build. Mater. 2024, 452, 138960. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, S.; Quan, D.; Fang, K.; Wang, B.; Ma, Z. Properties of sustainable earth construction materials: A state-of-the-art review. Sustainability 2024, 16, 670. [Google Scholar] [CrossRef]
- Golewski, G.L. The phenomenon of cracking in cement concretes and reinforced concrete structures: Mechanisms, causes, types, and detection methods—A review. Buildings 2023, 13, 765. [Google Scholar] [CrossRef]
- Azouz, Z.; Honarvar Shakibaei Asli, B.; Khan, M. Evolution of crack analysis in structures using image processing technique: A review. Electronics 2023, 12, 3862. [Google Scholar] [CrossRef]
- Pala, G.K.; Kesana, N.S.; Gopalapurapu, K.S. Advancements in optimizing the quality assurance and crack detection by leveraging the application of emerging artificial intelligence trends for enrichment of civil infrastructure—A recapitulation. In Recent Developments and Innovations in the Sustainable Production of Concrete; Woodhead Publishing: Cambridge, UK, 2025; pp. 635–655. [Google Scholar]
- Miao, P.; Srimahachota, T. Cost-effective system for detection and quantification of concrete surface cracks by combination of convolutional neural network and image processing techniques. Constr. Build. Mater. 2021, 293, 123549. [Google Scholar] [CrossRef]
- Vijayan, V.; Joy, C.M.; Shailesh, S. A survey on surface crack detection in concretes using traditional, image processing, machine learning, and deep learning techniques. In Proceedings of the 2021 International Conference on Communication, Control and Information Sciences (ICCISc), Idukki, India, 16–18 June 2021; Volume 1, pp. 1–6. [Google Scholar]
- Sun, Z.; Caetano, E.; Pereira, S.; Moutinho, C. Employing histogram of oriented gradient to enhance concrete crack detection performance with classification algorithm and Bayesian optimization. Eng. Fail. Anal. 2023, 150, 107351. [Google Scholar] [CrossRef]
- Han, H.; Deng, H.; Dong, Q.; Gu, X.; Zhang, T.; Wang, Y. An advanced Otsu method integrated with edge detection and decision tree for crack detection in highway transportation infrastructure. Adv. Mater. Sci. Eng. 2021, 2021, 9205509. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.Y.; Liu, J.X.; Zhang, Y.; Chen, Z.P.; Li, C.G.; Yan, R.B. Research on crack detection algorithm of the concrete bridge based on image processing. Procedia Comput. Sci. 2019, 154, 610–616. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, M.; Shi, P.; Ren, R.; He, X.; Wei, X.; Yang, H. Crack detection and comparison study based on faster R-CNN and mask R-CNN. Sensors 2022, 22, 1215. [Google Scholar] [CrossRef]
- Yu, F.; Du, C.; Hua, A.; Jiang, M.; Wei, X.; Peng, T.; Hu, X. EnCaps: Clothing image classification based on enhanced capsule network. Appl. Sci. 2021, 11, 11024. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, D.H.; Niaz, A.; Kim, C.Y.; Memon, A.A.; Choi, K.N. Multiple-clothing detection and fashion landmark estimation using a single-stage detector. IEEE Access 2021, 9, 11694–11704. [Google Scholar] [CrossRef]
- Sohaib, M.; Arif, M.; Kim, J.M. Evaluating YOLO models for efficient crack detection in concrete structures using transfer learning. Buildings 2024, 14, 3928. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, T.; Xu, J.; Hong, Y.; Pu, Q.; Wen, X. Rotating target detection method of concrete bridge crack based on YOLOv5. Appl. Sci. 2023, 13, 11118. [Google Scholar] [CrossRef]
- Yin, Z.; Li, H.; Qi, B.; Shan, G. BBW YOLO: Intelligent detection algorithms for aluminium profile material surface defects. Coatings 2025, 15, 684. [Google Scholar] [CrossRef]
- Karimi, N.; Mishra, M.; Lourenço, P.B. Automated surface crack detection in historical constructions with various materials using deep learning-based YOLO network. Int. J. Archit. Herit. 2025, 19, 581–597. [Google Scholar] [CrossRef]
- Ren, W.; Zhong, Z. LBA-YOLO: A novel lightweight approach for detecting micro-cracks in building structures. PLoS ONE 2025, 20, e0321640. [Google Scholar] [CrossRef]
- Bruno, S.; Galantucci, R.A.; Musicco, A. Decay detection in historic buildings through image-based deep learning. Vitruvio 2023, 8, 6–17. [Google Scholar] [CrossRef]
- Croce, V.; Caroti, G.; Piemonte, A.; De Luca, L.; Véron, P. H-BIM and Artificial Intelligence: Classification of Architectural Heritage for Semi-Automatic Scan-to-BIM Reconstruction. Sensors 2023, 23, 2497. [Google Scholar] [CrossRef] [PubMed]
- Laohaviraphap, N.; Waroonkun, T. Integrating Artificial Intelligence and the Internet of Things in Cultural Heritage Preservation: A Systematic Review of Risk Management and Environmental Monitoring Strategies. Buildings 2024, 14, 3979. [Google Scholar] [CrossRef]
- Odgers, D.; Henry, A. Practical Building Conservation: Stone; Ashgate: Farnham, UK, 2012; p. 338. [Google Scholar]
- D’Agostino, D.; Congedo, P.M.; Cataldo, R. Computational Fluid Dynamics (CFD) Modeling of Microclimate for Salts Crystallization Control and Artworks Conservation. J. Cult. Herit. 2014, 15, 448–457. [Google Scholar] [CrossRef]
- Pocobelli, D.P.; Boehm, J.; Bryan, P.; Still, J.; Grau-Bové, J. BIM for Heritage Science: A Review. Herit. Sci. 2018, 6, 30. [Google Scholar] [CrossRef]
- Ceccarelli, L.; Bevilacqua, M.G.; Caroti, G.; Castiglia, R.B.F.; Croce, V. Semantic Segmentation through Artificial Intelligence from Raw Point Clouds to H-BIM Representation. Disegnarecon 2023, 16, 171–178. [Google Scholar] [CrossRef]
- Yiğit, A.Y.; Uysal, M. Automatic Crack Detection and Structural Inspection of Cultural Heritage Buildings Using UAV Photogrammetry and Digital Twin Technology. J. Build. Eng. 2024, 94, 109952. [Google Scholar] [CrossRef]
- Rodrigues, F.; Cotella, V.; Rodrigues, H.; Rocha, E.; Freitas, F.; Matos, R. Application of Deep Learning Approach for the Classification of Buildings’ Degradation State in a BIM Methodology. Appl. Sci. 2022, 12, 7403. [Google Scholar] [CrossRef]
- Standoli, G.; Salachoris, G.P.; Masciotta, M.G.; Clementi, F. Modal-Based FE Model Updating via Genetic Algorithms: Exploiting Artificial Intelligence to Build Realistic Numerical Models of Historical Structures. Constr. Build. Mater. 2021, 303, 124393. [Google Scholar] [CrossRef]
- Gara, F.; Nicoletti, V.; Arezzo, D.; Cipriani, L.; Leoni, G. Model Updating of Cultural Heritage Buildings through Swarm Intelligence Algorithms. Int. J. Archit. Herit. 2025, 19, 259–275. [Google Scholar] [CrossRef]
- Salehi, H.; Burgueño, R. Emerging Artificial Intelligence Methods in Structural Engineering. Eng. Struct. 2018, 171, 170–189. [Google Scholar] [CrossRef]
- Fan, J.; Chen, Y.; Zheng, L. Artificial Intelligence for Routine Heritage Monitoring and Sustainable Planning of the Conservation of Historic Districts: A Case Study on Fujian Earthen Houses (Tulou). Buildings 2024, 14, 1915. [Google Scholar] [CrossRef]
- Luo, Y.; Yin, B.; Peng, X.; Xu, Y.; Zhang, L. Wind-Rain Erosion of Fujian Tulou Hakka Earth Buildings. Sustain. Cities Soc. 2019, 50, 101666. [Google Scholar] [CrossRef]
- Zhou, Q. Research on Traditional Reinforcement Techniques for Rammed Earth Walls in China. Int. J. Archit. Herit. 2025, 19, 496–514. [Google Scholar] [CrossRef]
- Tang, C.A. Numerical simulation of progressive rock failure and associated seismicity. Int. J. Rock Mech. Min. Sci. 1997, 34, 249–261. [Google Scholar] [CrossRef]
- Tang, C.A.; Liang, Z.Z.; Zhang, Y.B.; Xu, T. Three-dimensional material failure process analysis. Key Eng. Mater. 2005, 297–300, 1196–1201. [Google Scholar] [CrossRef]
- Helgeson, D.E.; Aydin, A. Characteristics of joint propagation across layer interfaces in sedimentary rocks. J. Struct. Geol. 1991, 13, 897–911. [Google Scholar] [CrossRef]
- Tang, C.A.; Zhang, Y.B.; Liang, Z.Z.; Xu, T.; Tham, L.G.; Lindqvist, P.-A.; Kou, S.Q.; Liu, H.Y. Fracture spacing in layered materials and pattern transition from parallel to polygonal fractures. Phys. Rev. E 2006, 73, 056120. [Google Scholar] [CrossRef]












| Width Class | Typical Locations/Cases | Dominant Drivers | Indicative Parameters |
|---|---|---|---|
| Micro <1 mm | Overlay surface | RH swings; daily solar ΔT; thickness transitions | RH 70%–85%, ±10–20%; ΔT 10–15 °C; seasonal widening 0.1–0.3 mm |
| Small 1–5 mm | Inner walls, near foundations | Moisture + minor settlement; legacy cement patches | RH ≈ 80%, ±20%; settlement 0.5–1 mm/yr; +0.5–1 mm at cement interfaces |
| Moderate 5–20 mm | Tall/leaning walls | Thickness gradient; high moisture; settlement; rigid repairs | Base 2.0 m → top 0.8 m; RH swing up to 30%; settlement ≈ 5 mm/yr; repair jacket 5–10 cm |
| Large >20 mm | Neglected sections/partial ruins | Wetting–drying cycles; extreme ΔT; no maintenance | RH ±25%; −2 to 38 °C; widening > 10 mm/yr; local collapse risk |
| Model | Mv4 | IMCA | EnEIoU | F1 Score | P (%) | R (%) | mAP@50 (%) | GFLOPs | Params (MB) |
|---|---|---|---|---|---|---|---|---|---|
| Baseline | 85.5 | 88.7 | 82.6 | 91.5 | 5.99 | 2.52 | |||
| Mobilenetv4 | √ | 89.1 | 93.7 | 85.0 | 93.7 | 4.68 | 2.21 | ||
| IMCA | √ | 87.4 | 90.9 | 84.1 | 92.8 | 5.99 | 2.52 | ||
| EnEIoU | √ | 89.0 | 92.2 | 86.0 | 94.0 | 5.99 | 2.52 | ||
| Mobilenetv4 + IMCA | √ | √ | 90.9 | 94.2 | 87.8 | 95.3 | 4.68 | 2.21 | |
| Mobilenetv4 + EnEIoU | √ | √ | 90.7 | 92.9 | 88.6 | 95.1 | 4.68 | 2.21 | |
| IMCA + EnEIoU | √ | √ | 88.2 | 87.5 | 88.9 | 93.9 | 5.99 | 2.52 | |
| Mv4 + IMCA + EnEIoU | √ | √ | √ | 91.8 | 91.5 | 92.0 | 95.5 | 4.68 | 2.21 |
| Parameter | Overlay | Substrate (Rammed-Earth Base) |
|---|---|---|
| Material homogeneity index (m) | 3–8 | 10–30 |
| Young’s modulus (E, MPa) | 1000–3000 | 300–1200 |
| Compressive strength (MPa) | 1–5 | 2–4 |
| Poisson’s ratio | 0.2–0.25 | 0.25–0.30 |
| Compression-to-tension ratio | 8–12 | 10–12 |
| Friction angle (°) | 28–32 | 30–36 |
| Model | F1 Score | P (%) | R (%) | mAP@50 (%) | GFLOPs | Params (MB) |
|---|---|---|---|---|---|---|
| DETR | 85.5 | 88.7 | 82.6 | 91.5 | 5.99 | 2.52 |
| YOLOv5n | 89.1 | 93.7 | 85.0 | 93.7 | 4.68 | 2.21 |
| YOLOv6n | 87.4 | 90.9 | 84.1 | 92.8 | 5.99 | 2.52 |
| YOLOv9n | 89.0 | 92.2 | 86.0 | 94.0 | 5.99 | 2.52 |
| YOLOv10n | 90.9 | 94.2 | 87.8 | 95.3 | 4.68 | 2.21 |
| YOLOv11n | 90.7 | 92.9 | 88.6 | 95.1 | 4.68 | 2.21 |
| YOLOv12n | 88.2 | 87.5 | 88.9 | 93.9 | 5.99 | 2.52 |
| YOLO-MLE | 91.8 | 91.5 | 92.0 | 95.5 | 4.68 | 2.21 |
| Overlay Thickness t/mm | 0 | 0.2 | 0.5 | 1 |
|---|---|---|---|---|
| 5 | ![]() | ![]() | ![]() | ![]() |
| 10 | ![]() | ![]() | ![]() | ![]() |
| 15 | ![]() | ![]() | ![]() | ![]() |
| 20 | ![]() | ![]() | ![]() | ![]() |
| Metric | Baseline Model | Calibrated Model | Improvement |
|---|---|---|---|
| Skeleton IoU | 0.72 ± 0.06 | 0.80 ± 0.05 | +11.1% |
| Chamfer distance (px) | 5.9 ± 1.1 | 3.7 ± 0.8 | −37.3% |
| Hausdorff distance (px) | 15.2 ± 3.6 | 9.8 ± 2.4 | −35.5% |
| Spacing MAE (mm) | 1.6 ± 0.5 | 0.95 ± 0.3 | −40.6% |
| Orientation EMD | 0.15 ± 0.04 | 0.09 ± 0.02 | −40.0% |
| Density error (%) | 7.5 ± 2.8% | 3.2 ± 1.4% | −57.3% |
| Parameter Setting | Skeleton IoU | Chamfer Distance (px) | Hausdorff Distance (px) | Orientation EMD |
|---|---|---|---|---|
| λ = 0.5 | 0.69 | 7.0 | 16.1 | 0.16 |
| λ = 1.0 (baseline) | 0.72 | 5.9 | 15.2 | 0.15 |
| λ = 1.5 | 0.74 | 5.5 | 13.9 | 0.14 |
| Calibrated (λ ≈ 1.1, t ≈ 1.0 cm) | 0.79 | 3.8 | 9.5 | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Chen, S.; Zhao, Z.; Cheng, S. Dual-Path Framework Analysis of Crack Detection Algorithm and Scenario Simulation on Fujian Tulou Surface. Coatings 2025, 15, 1156. https://doi.org/10.3390/coatings15101156
Hu Y, Chen S, Zhao Z, Cheng S. Dual-Path Framework Analysis of Crack Detection Algorithm and Scenario Simulation on Fujian Tulou Surface. Coatings. 2025; 15(10):1156. https://doi.org/10.3390/coatings15101156
Chicago/Turabian StyleHu, Yanfeng, Shaokang Chen, Zhuang Zhao, and Si Cheng. 2025. "Dual-Path Framework Analysis of Crack Detection Algorithm and Scenario Simulation on Fujian Tulou Surface" Coatings 15, no. 10: 1156. https://doi.org/10.3390/coatings15101156
APA StyleHu, Y., Chen, S., Zhao, Z., & Cheng, S. (2025). Dual-Path Framework Analysis of Crack Detection Algorithm and Scenario Simulation on Fujian Tulou Surface. Coatings, 15(10), 1156. https://doi.org/10.3390/coatings15101156

















