Synthesis of Nanoscale Antimony Powder Using Aluminum as a Reducing Agent: Characterization and Sintering Microstructure
Abstract
1. Introduction
2. Materials and Methods
3. Experimental Workflow
- Production of nanoscale Sb powder via a single-step process using Al powder as a reducing agent.
- Characterization of Al powder, commercial Sb (Com-Sb), and produced Sb (Pro-Sb) using SEM, XRD, FTIR, TGA, and reflectance (R%) analyses as appropriate. The Al and Com-Sb powders were first sieved using a 38 µm stainless steel micro-sieve to obtain finer particle sizes for subsequent use. The sieving of each powder was essential to prepare a fine Al powder that would react quickly with the SbCl3 solution, as the surface area is inversely proportional to the particle size. As for Com-Sb, the fine powder is good for XRD, FTIR, compaction, and sintering.
- Compaction and sintering of both Com-Sb and Pro-Sb powders.
- Microstructural and compositional analysis of sintered samples using SEM/EDS and XRD.
3.1. Production of Sb Nanoscale Powder
3.2. Sintering of Sb Powder
3.3. Characterizations
4. Results and Discussion
4.1. XRD and FT-IR Characterization
4.2. SEM Investigation of Com-Sb, Al, Pro-Sb Powders, and XRD of Pro-Sb
4.3. Green and Sintered Densities
4.4. Microstructure of Sintered Samples
4.5. TGA and DTG Curves
4.6. Percent Refractivity % of Compacted and Sintered Com-Sb and Pro-Sb Samples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sune, P.R.; Jumde, K.S.; Hatwar, P.R.; Bakal, R.L.; More, S.D.; Korde, A.V. Nanoparticles: Classification, types and applications: A comprehensive review. GSC Biol. Pharm. Sci. 2024, 29, 190–197. [Google Scholar] [CrossRef]
- Salem, S.S.; Hammad, E.N.; Mohamed, A.A.; El-Dougdoug, W. A comprehensive review of nanomaterials: Types, synthesis, characterization, and applications. Biointerface Res. Appl. Chem. 2023, 13, 41. [Google Scholar] [CrossRef]
- Balan, L.; Dailly, A.; Schneider, R.; Billaud, D.; Willmann, P.; Olivier-Fourcade, J.; Jumas, J.C. Synthesis of nanoscale antimony particles. Hyperfine Interact. 2005, 165, 101–106. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, P.; Gu, Y.; Fan, Z.; Song, S. Preparation and performance of nanoscale antimony tin oxide aqueous slurry with high water dispersion stability. J. Dispers. Sci. Technol. 2024, 1–13. [Google Scholar] [CrossRef]
- Moolayadukkam, S.; Bopaiah, K.A.; Parakkandy, P.K.; Thomas, S. Antimony (Sb)-based anodes for lithium–ion batteries: Recent advances. Condens. Matter 2022, 7, 27. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, F.; Zhang, D.; Shen, Y.; Wang, S.; Cheng, Y.; Li, C.; Wang, L. Antimony nanoparticles encapsulated in self-supported organic carbon with a polymer network for high-performance lithium-ion battery anodes. Nanomaterials 2022, 12, 2322. [Google Scholar] [CrossRef]
- Ali, M. Applications of nanotechnology and nanoproduction techniques. Open Eng. 2024, 14, 20240063. [Google Scholar] [CrossRef]
- Balaji, D.; Kumar, P.S.; Bhuvaneshwari, V.; Rajeshkumar, L.; Singh, M.K.; Sanjay, M.R.; Siengchin, S. Effect of nanoparticle addition on thermal behavior of natural fiber–reinforced composites: A review. Heliyon 2025, 11, e41192. [Google Scholar] [CrossRef] [PubMed]
- Mntungwa, N.; Khan, M.D.; Mlowe, S.; Revaprasadu, N. A simple route to alkylamine capped antimony nanoparticles. Mater. Lett. 2015, 145, 239–242. [Google Scholar] [CrossRef]
- Kou, J.; Wang, Y.; Liu, X.; Zhang, X.; Chen, G.; Xu, X.; Bao, J.; Yang, K.; Yuwen, L. Continuous preparation of antimony nanocrystals with near-infrared photothermal property by pulsed laser ablation in liquids. Sci. Rep. 2020, 10, 15095. [Google Scholar] [CrossRef]
- Thirumal, V.; Yuvakkumar, R.; Kumar, P.S.; Saravanakumar, B.; Ravi, G.; Shobana, M.; Velauthapillai, D. Preparation and characterization of antimony nanoparticles for hydrogen evolution activities. Fuel 2022, 325, 124908. [Google Scholar] [CrossRef]
- Ulusoy, U. A review of particle shape effects on material properties for various engineering applications: From macro to nanoscale. Minerals 2023, 13, 91. [Google Scholar] [CrossRef]
- Benrabah, B.; Bouaza, A.; Hamzaoui, S.; Dehbi, A. Sol–gel preparation and characterization of antimony-doped tin oxide (ATO) powders and thin films. Eur. Phys. J. Appl. Phys. 2009, 48, 30301. [Google Scholar] [CrossRef]
- Gao, H.; Guo, X.; Wang, S.; Zhang, F.; Liu, H.; Wang, G. Antimony-based nanomaterials for high-performance potassium-ion batteries. EcoMat 2020, 2, e12027. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Q.; Wu, J.; Geng, Y.; Zhang, J.; Ai, G.; Mao, W. Design of antimony nanocomposite for high areal capacity sodium battery anodes. J. Alloys Compd. 2022, 914, 165336. [Google Scholar] [CrossRef]
- Walter, M.; Erni, R.; Kovalenko, M.V. Inexpensive antimony nanocrystals and their composites with red phosphorus as high-performance anode materials for Na-ion batteries. Sci. Rep. 2015, 5, 8418. [Google Scholar] [CrossRef]
- Zhu, Y.; Shao, J.; Jiang, Y.; Zhang, K.; Shi, Q.; Qu, Q.; Zheng, H. Sb nanocrystallites derived from industrial antimony white as promising alloying-type anodes for Na-ion batteries. J. Alloys Compd. 2022, 926, 166808. [Google Scholar] [CrossRef]
- Li, R.; Wang, X.; Wang, X.; Zhang, H.; Pan, J.; Tang, J.; Fang, D.; Ma, X.; Li, Y.; Yao, B.; et al. Synthesis of antimony nanotubes via facile template-free solvothermal reactions. Nanoscale Res. Lett. 2016, 11, 486. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yi, Z.; Lin, N.; Zhang, W.; Wang, W.; Zhu, Y.; Qian, Y. Preparation of Sb nanoparticles in molten salt and their potassium storage performance and mechanism. Nanoscale 2018, 10, 13236–13241. [Google Scholar] [CrossRef] [PubMed]
- Nazir, A.; Le, H.T.T.; Nguyen, A.; Kim, J.; Park, C. Conductive metal–organic framework mediated Sb nanoparticles as high-capacity anodes for rechargeable potassium-ion batteries. Chem. Eng. J. 2022, 450, 138408. [Google Scholar] [CrossRef]
- Nair, M.; Peña, Y.; Campos, J.; Garcia, V.M.; Nair, P.K. Chemically deposited Sb2S3 and Sb2S3–CuS thin films. J. Electrochem. Soc. 1998, 145, 2113–2120. [Google Scholar] [CrossRef]
- Amutha, E.; Rajaduraipandian, S.; Sivakavinesan, M.; Annadurai, G. Hydrothermal synthesis and characterization of the antimony–tin oxide nanomaterial and its application as a high-performance asymmetric supercapacitor, photocatalyst, and antibacterial agent. Nanoscale Adv. 2023, 5, 255–267. [Google Scholar] [CrossRef] [PubMed]
- Al-Saqarat, B.S.; Al-Mobydeen, A.; Al-Dalahmeh, Y.; Al-Masri, A.N.; Altwaiq, A.M.; Hamadneh, I.; Abu-Afifeh, Q.; Zoubi, M.M.; Esaifan, M.; Moosa, I.S.; et al. Study of galena ore powder sintering and its microstructure. Metals 2024, 14, 439. [Google Scholar] [CrossRef]
- Al-Mobydeen, A.; AlShamaileh, E.; Lahlouh, B.; Al-Qderat, M.; Al-Masri, A.N.; Mahmoud, W.; Hamadneh, I.; Esaifan, M.; Moosa, I.S. Synthesis of ZnS nanopowders and fabrication of ZnS thin films via electron-beam evaporation: Structural and optical characterization. Coatings 2025, 15, 796. [Google Scholar] [CrossRef]
- Kaviyarasu, K.; Sajan, D.; Devarajan, P.A. A rapid and versatile method for solvothermal synthesis of Sb2O3 nanocrystals under mild conditions. Appl. Nanosci. 2013, 3, 529–533. [Google Scholar] [CrossRef]
- Trivedi, M.K.; Tallapragada, R.M.; Branton, A.; Nayak, G.; Latiyal, O.; Jana, S. The Potential Impact of Biofield Energy Treatment on the Atomic and Physical Properties of Antimony Tin Oxide Nanopowder. Am. J. Opt. Photonics 2015, 3, 123–128. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, L. Synthesis of antimony-doped tin oxide (ATO) nanoparticles by the nitrate-citrate combustion method. Mater. Res. Bull. 2004, 39, 2249–2255. [Google Scholar] [CrossRef]
- Frommelius, A.; Wirth, K.G.; Ohlerth, T.; Siebenkotten, D.; Wintersteller, S.; Abouserie, A.; Du, H.; Mayer, J.; Yarema, M.; Taubner, T.; et al. 3D Confinement Stabilizes the Metastable Amorphous State of Antimony Nanoparticles-A New Material for Miniaturized Phase Change Memories? Small 2024, 20, 2402257. [Google Scholar] [CrossRef] [PubMed]
- Vyazovkin, S.; Burnham, A.K.; Favergeon, L.; Koga, N.; Moukhina, E.; Pérez-Maqueda, L.A.; Sbirrazzuoli, N. ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics. Thermochim. Acta 2020, 689, 178597. [Google Scholar] [CrossRef]
- Vyazovkin, S. Isoconversional methods: The many uses of variable activation energy. Thermochim. Acta 2024, 733, 179701. [Google Scholar] [CrossRef]
- Muravyev, N.V.; Vyazovkin, S. The Status of Pyrolysis Kinetics Studies by Thermal Analysis: Quality Is Not as Good as It Should and Can Readily Be. Thermo 2022, 2, 435–452. [Google Scholar] [CrossRef]
Parameter | Measured Value, Pro-Sb | Measured Value, Pro-Sint-Sb |
---|---|---|
Crystallites mean diameter (D) | 25.3 nm | 33.48 nm |
Produced Sb Phase | rhombohedral | rhombohedral |
Calculated lattice constants | a = b = 4.3070 Å, c = 11.2730 Å | a = b = 4.3084 Å, c = 11.2740 Å |
Calculated density | 6.698 g/cm3 | 6.693 g/cm3 |
Composition wt. % | 100% Sb | 99% Sb, 1% Sb2O3 |
Sintered Sample | Average Green Density (g/cm3) | Average Sintered Density (g/cm3) | Relative Density | Sintering Condition |
---|---|---|---|---|
Com-Sb, 38 µm | 6.34 | 6.62 | ~98.95% | Compaction pressure 400 MPa, first-run, sintering temp. 500 °C for 4 h, vacuum, rate of heating 8 °C/min., rate of cooling 2.5 °C/min, furnace cooled. |
Pro-Sb First-run | 5.56 | 6.12 | ~91.47% | |
Pro-Sint-Sb Second-run | 6.28 | 6.64 | ~99.3% | Compaction pressure 400 MPa, second-run, sintering temp. 500 °C for 2 h, same sintering conditions as above. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AlShamaileh, E.; Lahlouh, B.; AL-Masri, A.N.; Moosa, I.S. Synthesis of Nanoscale Antimony Powder Using Aluminum as a Reducing Agent: Characterization and Sintering Microstructure. Coatings 2025, 15, 1118. https://doi.org/10.3390/coatings15101118
AlShamaileh E, Lahlouh B, AL-Masri AN, Moosa IS. Synthesis of Nanoscale Antimony Powder Using Aluminum as a Reducing Agent: Characterization and Sintering Microstructure. Coatings. 2025; 15(10):1118. https://doi.org/10.3390/coatings15101118
Chicago/Turabian StyleAlShamaileh, Ehab, Bashar Lahlouh, Ahmed N. AL-Masri, and Iessa Sabbe Moosa. 2025. "Synthesis of Nanoscale Antimony Powder Using Aluminum as a Reducing Agent: Characterization and Sintering Microstructure" Coatings 15, no. 10: 1118. https://doi.org/10.3390/coatings15101118
APA StyleAlShamaileh, E., Lahlouh, B., AL-Masri, A. N., & Moosa, I. S. (2025). Synthesis of Nanoscale Antimony Powder Using Aluminum as a Reducing Agent: Characterization and Sintering Microstructure. Coatings, 15(10), 1118. https://doi.org/10.3390/coatings15101118