The Development of Cement-Based, Intumescent and Geopolymer Fire-Retardation Coatings for Metal Structures: A Review
Abstract
:1. Introduction
2. The Conventional Coating on Metal Structure
2.1. Passive Coatings
2.2. Reactive Materials
3. The Potential of Geopolymer Coating on Metal Structure
3.1. Adhesion Strength
3.2. Fire Resistance
3.3. Chemical Resistance
3.4. Shrinkage
4. The Comparison between the Conventional Coating and Geopolymer Coating
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaczmarski, K.; Pławecka, K.; Kozub, B.; Bazan, P.; Łach, M. Preliminary investigation of geopolymer foams as coating materials. Appl. Sci. 2022, 12, 11205. [Google Scholar] [CrossRef]
- Zhang, Z.; Yao, X.; Zhu, H. Potential application of geopolymers as protection coatings for marine concrete I. Basic properties. Appl. Clay Sci. 2010, 49, 7–12. [Google Scholar] [CrossRef]
- Andrea, L.; Cristian, M. Intumescent coatings used for the fire-safe design of steel structure A review. J. Constr. Steel Res. 2019, 162, 105712. [Google Scholar] [CrossRef]
- Soong, L.S.; Liu, M.Y.J.; Yap, S.P.; Mo, K.H.; Jumaat, M.Z.; Goh, Y. The potential of geopolymer in development of green coating materials: A review. Arab. J. Sci. Eng. 2022, 47, 12289–12299. [Google Scholar] [CrossRef]
- Puri, R.G.; Khanna, A.S. Intumescent coatings A review on recent progress. J.Coat.Technol.Res. 2017, 14, 1–20. [Google Scholar] [CrossRef]
- Vishal, M.; Satyanarayanan, K.S. A review on research of fire-induced progressive collapse on structures. J. Struct. Fire Eng. 2021, 12, 410–425. [Google Scholar] [CrossRef]
- Network, C.R.E. Statistical Analysis of Fire Collapse Accidents of Large Span and Large Space Buildings. Available online: http://www.chinajyzb.com.cn/news_detail-5-4175.html (accessed on 10 February 2023).
- Lu, X.; Li, Y.; Guan, H.; Ying, M. Progressive collapse analysis of a typical super-tall reinforced concrete frame-core tube building exposed to extreme fires. Fire Technol. 2016, 53, 107–133. [Google Scholar] [CrossRef]
- de Silva, D.; Nuzzo, I.; Nigro, E.; Occhiuzzi, A. Intumescent coatings for fire resistance of steel structures: Current approaches for qualification and design. Coatings 2022, 12, 696. [Google Scholar] [CrossRef]
- Dowbysz, A.; Samsonowicz, M.; Kukfisz, B. Recent advances in bio-based additive flame retardants for thermosetting resins. Int. J. Env. Res. Public Health 2022, 19, 4828. [Google Scholar] [CrossRef]
- Beh, J.H.; Yew, M.K.; Yew, M.C.; Saw, L.H. Characterization and fire protection properties of rubberwood biomass ash formulated intumescent coatings for steel. J. Mater. Res. Technol. 2021, 14, 2096–2106. [Google Scholar] [CrossRef]
- Beh, J.H.; Yew, M.C.; Saw, L.H.; Yew, M.K. Fire resistance and mechanical properties of intumescent coating using novel bioAsh for steel. Coatings 2020, 10, 1117. [Google Scholar] [CrossRef]
- Venezia, V.; Matta, S.; Lehner, S.; Vitiello, G.; Costantini, A.; Gaan, S.; Malucelli, G.; Branda, F.; Luciani, G.; Bifulco, A. Detailed Thermal, Fire, and Mechanical Study of Silicon-Modified Epoxy Resin Containing Humic Acid and Other Additives. ACS Appl. Polym. Mater. 2021, 3, 5969–5981. [Google Scholar] [CrossRef]
- Wang, C.; Huo, S.; Liu, S.; Hu, Q.; Zhang, Q.; Liu, Z. Recycle of magnesium alloy scrap for improving fire resistance, thermal stability, and water tolerance of intumescent fire-retardant coatings. J. Coat. Technol. Res. 2020, 18, 447–458. [Google Scholar] [CrossRef]
- Jimenez, M.; Bellayer, S.; Naik, A.; Bachelet, P.; Duquesne, S.; Bourbigot, S. Topcoats versus Durability of an Intumescent Coating. Ind. Eng. Chem. Res. 2016, 55, 9625–9632. [Google Scholar] [CrossRef]
- Yang, N.; Das, C.S.; Xue, X.; Li, W.; Dai, J.-G. Geopolymer coating modified with reduced graphene oxide for improving steel corrosion resistance. Constr. Build. Mater. 2022, 342, 127942. [Google Scholar] [CrossRef]
- Tian, Q.; Wang, S.; Sui, Y.; Lv, Z. Alkali-activated materials as coatings deposited on various substrates: A review. Int. J. Adhes. Adhes. 2021, 110, 102934. [Google Scholar] [CrossRef]
- Wei, Q.; Liu, Y.; Le, H. Mechanical and thermal properties of phosphoric acid activated geopolymer materials reinforced with mullite fibers. Materials 2022, 15, 4185. [Google Scholar] [CrossRef]
- Łach, M.; Mierzwiński, D.; Korniejenko, K.; Mikuła, J.; Walczak, A.; Polańczyk, A. Geopolymer foam as a passive fire protection. MATEC Web Conf. 2018, 247, 00031. [Google Scholar] [CrossRef] [Green Version]
- Sitarz, M.; Figiela, B.; Łach, M.; Korniejenko, K.; Mróz, K.; Castro-Gomes, J.; Hager, I. Mechanical response of geopolymer foams to heating—Managing coal gangue in fire-resistant materials technology. Energies 2022, 15, 3363. [Google Scholar] [CrossRef]
- Le, V.S.; Nguyen, V.V.; Sharko, A.; Ercoli, R.; Nguyen, T.X.; Tran, D.H.; Los, P.; Buczkowska, K.E.; Mitura, S.; Spirek, T.; et al. Fire Resistance of Geopolymer Foams Layered on Polystyrene Boards. Polymers 2022, 14, 1945. [Google Scholar] [CrossRef]
- Fang, Y.; Wang, A.; He, K.; Pan, H.; Liao, J.; Ding, Z.; Xing, F.; Le, H.; Wang, X. Property evolution of geopolymer composites with SiC whiskers loaded with BN coating at elevated temperatures. Constr. Build. Mater. 2021, 309, 125130. [Google Scholar] [CrossRef]
- Turner, L.K.; Collins, F.G. Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Constr. Build. Mater. 2013, 43, 125–130. [Google Scholar] [CrossRef]
- Xu, J.; Zhou, Y.; Tang, X. Study on the solidication of heavy metals by fly ash based geopolymers. Jianzhu Cailiao Xuebao J. Build. Mater. 2006, 9, 341–346. [Google Scholar]
- Zainal, F.F.; Fazill, M.F.; Hussin, K.; Rahmat, A.; Abdullah, M.M.A.B.; Wazien, W. Effect of geopolymer coating on mild steel. Solid State Phenom. 2018, 273, 175–180. [Google Scholar] [CrossRef]
- Lyon, R.E.; Balaguru, P.N.; Foden, A.; Sorathia, U.; Davidovits, J.; Davidovics, M. Fire-resistant aluminosilicate composites. Fire Mater. 1997, 21, 67–73. [Google Scholar] [CrossRef]
- Ma, X.; Pan, J.; Cai, J.; Zhang, Z.; Han, J. A review on cement-based materials used in steel structures as fireproof coating. Constr. Build. Mater. 2022, 315, 125623. [Google Scholar] [CrossRef]
- Yin, B.; Wu, C.; Hou, D.; Li, S.; Jin, Z.; Wang, M.; Wang, X. Research and application progress of nano-modified coating in improving the durability of cement-based materials. Prog. Org. Coat. 2021, 161, 106529. [Google Scholar] [CrossRef]
- Blanco, F.; García, P.; Mateos, P.; Ayala, J. Characteristics and properties of lightweight concrete manufactured with cenospheres. Cem. Concr. Res. 2000, 30, 1715–1722. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, J.-Y.; Monteiro, P.J.M.; Zhang, M.-H. Development of ultra-lightweight cement composites with low thermal conductivity and high specific strength for energy efficient buildings. Constr. Build. Mater. 2015, 87, 100–112. [Google Scholar] [CrossRef]
- Rheinheimer, V.; Wu, Y.; Wu, T.; Celik, K.; Wang, J.; De Lorenzis, L.; Wriggers, P.; Zhang, M.-H.; Monteiro, P.J.M. Multi-scale study of high-strength low-thermal-conductivity cement composites containing cenospheres. Cem. Concr. Compos. 2017, 80, 91–103. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Ranade, R.; Zhang, Q.; Ni, W.; Li, V.C. Mechanical and thermal properties of green lightweight engineered cementitious composites. Constr. Build. Mater. 2013, 48, 954–960. [Google Scholar] [CrossRef]
- Hanif, A.; Lu, Z.; Diao, S.; Zeng, X.; Li, Z. Properties investigation of fiber reinforced cement-based composites incorporating cenosphere fillers. Constr. Build. Mater. 2017, 140, 139–149. [Google Scholar] [CrossRef]
- Hu, C.; Li, H.; Liu, Z.; Wang, Q. Research on properties of foamed concrete reinforced with small sized glazed hollow beads. Adv. Mater. Sci. Eng. 2016, 2016, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Pancar, E.B.; Akpınar, M.V. Temperature reduction of concrete pavement using glass bead materials. Int. J. Concr. Struct. Mater. 2016, 10, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Yun, T.S.; Jeong, Y.J.; Han, T.-S.; Youm, K.-S. Evaluation of thermal conductivity for thermally insulated concretes. Energy Build. 2013, 61, 125–132. [Google Scholar] [CrossRef]
- Chung, S.-Y.; Han, T.-S.; Kim, S.-Y.; Jay Kim, J.-H.; Youm, K.S.; Lim, J.-H. Evaluation of effect of glass beads on thermal conductivity of insulating concrete using micro CT images and probability functions. Cem. Concr. Compos. 2016, 65, 150–162. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, J.; Wang, D.; Liu, Y.; Zhao, Z.; Liu, J. Experimental investigation on thermal conductivity of aerogel-incorporated concrete under various hygrothermal environment. Energy 2019, 188, 115999. [Google Scholar] [CrossRef]
- Gao, T.; Jelle, B.P.; Gustavsen, A.; Jacobsen, S. Aerogel-incorporated concrete: An experimental study. Constr. Build. Mater. 2014, 52, 130–136. [Google Scholar] [CrossRef]
- Kim, S.; Seo, J.; Cha, J.; Kim, S. Chemical retreating for gel-typed aerogel and insulation performance of cement containing aerogel. Constr. Build. Mater. 2013, 40, 501–505. [Google Scholar] [CrossRef]
- Hunger, M.; Entrop, A.G.; Mandilaras, I.; Brouwers, H.J.H.; Founti, M. The behavior of self-compacting concrete containing micro-encapsulated Phase Change Materials. Cem. Concr. Compos. 2009, 31, 731–743. [Google Scholar] [CrossRef]
- Eddhahak-Ouni, A.; Drissi, S.; Colin, J.; Neji, J.; Care, S. Experimental and multi-scale analysis of the thermal properties of Portland cement concretes embedded with microencapsulated Phase Change Materials (PCMs). Appl. Therm. Eng. 2014, 64, 32–39. [Google Scholar] [CrossRef]
- Zhang, Z.; Shi, G.; Wang, S.; Fang, X.; Liu, X. Thermal energy storage cement mortar containing n-octadecane/expanded graphite composite phase change material. Renew. Energy 2013, 50, 670–675. [Google Scholar] [CrossRef]
- Zhang, H.; Xing, F.; Cui, H.-Z.; Chen, D.-Z.; Ouyang, X.; Xu, S.-Z.; Wang, J.-X.; Huang, Y.-T.; Zuo, J.-D.; Tang, J.-N. A novel phase-change cement composite for thermal energy storage: Fabrication, thermal and mechanical properties. Appl. Energy 2016, 170, 130–139. [Google Scholar] [CrossRef]
- Noumowe, A. Mechanical properties and microstructure of high strength concrete containing polypropylene fibres exposed to temperatures up to 200 °C. Cem. Concr. Res. 2005, 35, 2192–2198. [Google Scholar] [CrossRef]
- Sarvaranta, L.; Mikkola, E. Fibre mortar composites in fire conditions. Fire Mater. 1994, 18, 45–50. [Google Scholar] [CrossRef]
- Pierre, K.; Gre´goire, C.n.; Christophe, G. High-temperature behaviour of HPC with polypropylene fibres From spalling to microstructure. Cem. Concr. Res. 2001, 31, 1487–1499. [Google Scholar]
- Fan, J.; Li, G.; Deng, S.; Wang, Z. Mechanical properties and microstructure of polyvinyl alcohol (PVA) modified cement mortar. Appl. Sci. 2019, 9, 2178. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Sohn, Y.S.; Lee, S.H. Fire resistance of hybrid fibre-reinforced, ultra-high-strength concrete columns with compressive strength from 120 to 200 MPa. Mag. Concr. Res. 2012, 64, 539–550. [Google Scholar] [CrossRef]
- Abbas, Y.M.; Iqbal Khan, M. Fiber–matrix interactions in fiber-reinforced concrete: A Review. Arab. J. Sci. Eng. 2016, 41, 1183–1198. [Google Scholar] [CrossRef]
- Bashir, S.T.; Yang, L.; Liggat, J.J.; Thomason, J.L. Kinetics of dissolution of glass fibre in hot alkaline solution. J. Mater. Sci. 2017, 53, 1710–1722. [Google Scholar] [CrossRef] [Green Version]
- Sebaibi, N.; Benzerzour, M.; Abriak, N.E.; Binetruy, C. Mechanical properties of concrete-reinforced fibres and powders with crushed thermoset composites: The influence of fibre/matrix interaction. Constr. Build. Mater. 2012, 29, 332–338. [Google Scholar] [CrossRef]
- Sedan, D.; Pagnoux, C.; Smith, A.; Chotard, T. Mechanical properties of hemp fibre reinforced cement: Influence of the fibre/matrix interaction. J. Eur. Ceram. Soc. 2008, 28, 183–192. [Google Scholar] [CrossRef]
- Mariappan, T. Recent developments of intumescent fire protection coatings for structural steel: A review. J. Fire Sci. 2016, 34, 120–163. [Google Scholar] [CrossRef]
- Wang, L.; Dong, Y.; Zhang, C.; Zhang, D. Experimental study of heat transfer in intumescent coatings exposed to non-standard furnace curves. Fire Technol. 2015, 51, 627–643. [Google Scholar] [CrossRef]
- He, W.L.; Huang, Y.T.; Gu, L.; Shen, J.C.; Cheng, X.W.; Guan, J.P. Fabrication of P/N/B-based intumescent flame-retardant coating for polyester/cotton blend fabric. Materials 2022, 15, 6420. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Huang, Y.; Tang, W.; Zhang, Y.; Qian, L. Synergistic effect between piperazine pyrophosphate and melamine polyphosphate in flame retardant coatings for structural steel. Polymers 2022, 14, 3722. [Google Scholar] [CrossRef]
- Piperopoulos, E.; Grifò, G.; Scionti, G.; Atria, M.; Calabrese, L.; Consolo, G.; Proverbio, E. Study of intumescent coatings growth for fire retardant systems in naval applications: Experimental test and mathematical model. Coatings 2022, 12, 1180. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, Y.; Li, M. Research on thermal response behavior of the intumescent coating at high temperature: An experimental and numerical study. Buildings 2022, 12, 1014. [Google Scholar] [CrossRef]
- He, Y.; Wu, Y.; Qu, W.; Zhang, J. Crack-resistant amino resin flame-retardant coatings using waterborne polyurethane as a co-binder resin. Materials 2022, 15, 4122. [Google Scholar] [CrossRef]
- Abdullah, M.N.; Mustapha, F.; Ahmad, K.A.; Mustapha, M.; Khan, T.; Singh, B.; Sebaey, T.A. Effect of different pre-treatment on the microstructure and intumescent properties of rice husk ash-based geopolymer hybrid coating. Polymers 2022, 14, 2252. [Google Scholar] [CrossRef]
- Wang, F.; Liu, H.; Yan, L. Fabrication of polypyrrole-decorated tungsten tailing particles for reinforcing flame retardancy and ageing resistance of intumescent fire-resistant coatings. Polymers 2022, 14, 1540. [Google Scholar] [CrossRef] [PubMed]
- Anees, S.M.; Dasari, A. A review on the environmental durability of intumescent coatings for steels. J. Mater. Sci. 2017, 53, 124–145. [Google Scholar] [CrossRef]
- Hao, J.; Chow, W.K. A brief review of intumescent fire retardant coatings. Archit. Sci. Rev. 2003, 46, 89–95. [Google Scholar] [CrossRef]
- Weil, E.D.; Choudhary, V. Flame-retarding plastics and elastomers with melamine. J. Fire Sci. 1995, 13, 104–126. [Google Scholar] [CrossRef]
- Réti, C.; Casetta, M.; Duquesne, S.; Bourbigot, S.; Delobel, R. Flammability properties of intumescent PLA including starch and lignin. Polym. Adv. Technol. 2008, 19, 628–635. [Google Scholar] [CrossRef]
- Yasir, M.; Ahmad, F.; Yusoff, P.S.M.M.; Ullah, S.; Jimenez, M. Latest trends for structural steel protection by using intumescent fire protective coatings: A review. Surf. Eng. 2019, 36, 334–363. [Google Scholar] [CrossRef]
- Puri, R.G.; Khanna, A.S. Influence of heat-stable filler on the thermal shielding performance of water-based intumescent fire-resistive coating for structural steel applications. J. Coat. Technol. Res. 2016, 14, 323–331. [Google Scholar] [CrossRef]
- Han, Z.; Fina, A.; Malucelli, G. Thermal shielding performances of nano-structured intumescent coatings containing organo-modified layered double hydroxides. Prog. Org. Coat. 2015, 78, 504–510. [Google Scholar] [CrossRef]
- Meissner, E. Secondary batteries-lead-acid systems automotive batteries: Conventional. In Encyclopedia of Electrochemical Power Sources; Garche, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 829–850. [Google Scholar] [CrossRef]
- Yew, M.C.; Ramli Sulong, N.H.; Yew, M.K.; Amalina, M.A.; Johan, M.R. Influences of flame-retardant fillers on fire protection and mechanical properties of intumescent coatings. Prog. Org. Coat. 2015, 78, 59–66. [Google Scholar] [CrossRef]
- Samuel, G. Intumescent Fire-Retardant Composition for High Temperature and Long Duration Protection. US5723515A, 3 March 1998. [Google Scholar]
- Joseph, H.K.; Peter, S.N.; Fan-Bill, C. Effect of high temperature additives in fire resistant materials. Fire Sci. 1997, 15, 427–504. [Google Scholar]
- Du, B.; Fang, Z. Effects of carbon nanotubes on the thermal stability and flame retardancy of intumescent flame-retarded polypropylene. Polym. Degrad. Stab. 2011, 96, 1725–1731. [Google Scholar] [CrossRef]
- Permax. Differences between Cellulosic and Hydrocarbon Fires. Available online: https://permax.com.au/ (accessed on 10 February 2023).
- Chris, H. The 5 Classes of Fire Explained (A to E). Available online: https://firefightergarage.com/classes-of-fire/ (accessed on 10 February 2023).
- Zhang, F.; Chen, P.; Wang, Y.; Li, S. Smoke suppression and synergistic flame retardancy properties of zinc borate and diantimony trioxide in epoxy-based intumescent fire-retardant coating. J. Therm. Anal. Calorim. 2015, 123, 1319–1327. [Google Scholar] [CrossRef]
- Wang, K. Novel Development of Eco-Friendly Porous Thermal Insulation Materials and the Application. Ph.D. Thesis, University of Strathclyde, Glasgow, UK, 2022. [Google Scholar]
- Jiang, C.; Wang, A.; Bao, X.; Ni, T.; Ling, J. A review on geopolymer in potential coating application: Materials, preparation and basic properties. J. Build. Eng. 2020, 32, 101734. [Google Scholar] [CrossRef]
- Temuujin, J.; Minjigmaa, A.; Rickard, W.; Lee, M.; Williams, I.; van Riessen, A. Preparation of metakaolin based geopolymer coatings on metal substrates as thermal barriers. Appl. Clay Sci. 2009, 46, 265–270. [Google Scholar] [CrossRef]
- Zhang, Z.; Yao, X.; Wang, H. Potential application of geopolymers as protection coatings for marine concrete III. Field experiment. Appl. Clay Sci. 2012, 67–68, 57–60. [Google Scholar] [CrossRef]
- Lu, B.; Zhu, W.; Weng, Y.; Liu, Z.; Yang, E.-H.; Leong, K.F.; Tan, M.J.; Wong, T.N.; Qian, S. Study of MgO-activated slag as a cementless material for sustainable spray-based 3D printing. J. Clean. Prod. 2020, 258, 120671. [Google Scholar] [CrossRef]
- Kumud, D.; Richa, P.; Avneesh, A.; Archana, S.; Pooja, B.; Rainy, G.; Deepti, M.; Sudhir Sitaram, A. Studies on fly ash based geopolymeric material for coating on mild steel by paint brush technique. Int. J. Adhes. Adhes. 2017, 75, 139–144. [Google Scholar] [CrossRef]
- Liyana, J.; Kamarudin, H.; Al Bakri, A.M.; Binhussain, M.; Ruzaidi, C.M.; Izzat, A.M. Reviews on fly ash based geopolymer materials for protective coating field implementations. Aust. J. Basic Appl. Sci. 2013, 7, 182–186. [Google Scholar]
- Fahim Huseien, G.; Mirza, J.; Ismail, M.; Ghoshal, S.K.; Abdulameer Hussein, A. Geopolymer mortars as sustainable repair material: A comprehensive review. Renew. Sustain. Energy Rev. 2017, 80, 54–74. [Google Scholar] [CrossRef]
- Xiaoying, P.; Zhenguo, S.; Caijun, S.; Tung-Chai, L.; Ning, L.a. A review on concrete surface treatment Part I Types and mechanisms. Constr. Build. Mater. 2017, 132, 578–590. [Google Scholar] [CrossRef]
- Temuujin, J.; Minjigmaa, A.; Rickard, W.; Lee, M.; Williams, I.; van Riessen, A. Fly ash based geopolymer thin coatings on metal substrates and its thermal evaluation. J. Hazard Mater. 2010, 180, 748–752. [Google Scholar] [CrossRef] [PubMed]
- Irfan Khan, M.; Azizli, K.; Sufian, S.; Man, Z. Sodium silicate-free geopolymers as coating materials: Effects of Na/Al and water/solid ratios on adhesion strength. Ceram. Int. 2015, 41, 2794–2805. [Google Scholar] [CrossRef]
- Rong, X.; Wang, Z.; Xing, X.; Zhao, L. Review on the adhesion of geopolymer coatings. ACS Omega 2021, 6, 5108–5112. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Wang, K.; He, Y.; Cui, X. A green drying powder inorganic coating based on geopolymer technology. Constr. Build. Mater. 2019, 214, 441–448. [Google Scholar] [CrossRef]
- Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; van Deventer, J.S.J. Geopolymer technology: The current state of the art. J. Mater. Sci. 2006, 42, 2917–2933. [Google Scholar] [CrossRef]
- Salwa, M.S.; Al Bakri, A.M.; Kamarudin, H.; Ruzaidi, C.M.; Binhussain, M.; Zaliha, S.S. Review on current geopolymer as a coating material. Aust. J. Basic Appl. Sci. 2013, 5, 246–257. [Google Scholar]
- Tatlisu, G.C.; Aciksari, C.; Celebi, S.; Turan, S. Developing a hollow glass microsphere/geopolymer thermal insulation composite for hot metal surface coating. Ceram. Int. 2022, 48, 11924–11939. [Google Scholar] [CrossRef]
- Singh Tomar, A.; Gupta, R.; Singh, A.; Thankaraj Salammal, S.; Akram Khan, M.; Mishra, D. Evaluation of corrosion protective properties of fly ash-red mud based geopolymer coating material for mild steel. Mater. Today: Proc. 2022, 68, 181–186. [Google Scholar] [CrossRef]
- Yong, S.L.; Feng, D.W.; Lukey, G.C.; van Deventer, J.S.J. Chemical characterisation of the steel–geopolymeric gel interface. Colloids Surf. A: Physicochem. Eng. Asp. 2007, 302, 411–423. [Google Scholar] [CrossRef]
- Jonathan, B.; Matthew, G.; Waltraud, K. Use of Geopolymeric Cements as a Refractory Adhesive for Metal and Ceramic Joins; The American Ceramic Society: Franklin County, OH, USA, 2005; Volume 26. [Google Scholar]
- Latella, B.A.; Perera, D.S.; Escott, T.R.; Cassidy, D.J. Adhesion of glass to steel using a geopolymer. J. Mater. Sci. 2006, 41, 1261–1264. [Google Scholar] [CrossRef]
- De Barros, S.; De Souza, J.R.; Gomes, K.C.; Sampaio, E.M.; Barbosa, N.P.; Torres, S.M. Adhesion of geopolymer bonded joints considering surface treatments. J. Adhes. 2012, 88, 364–375. [Google Scholar] [CrossRef]
- Wang, Z.; Rong, X.; Zhao, L.; Xing, X.; Ma, H. Effects of substrate surface characteristics on the adhesion properties of geopolymer coatings. ACS Omega 2022, 7, 11988–11994. [Google Scholar] [CrossRef] [PubMed]
- Temuujin, J.; Rickard, W.; Lee, M.; van Riessen, A. Preparation and thermal properties of fire resistant metakaolin-based geopolymer-type coatings. J. Non-Cryst. Solids 2011, 357, 1399–1404. [Google Scholar] [CrossRef]
- Bakharev, T. Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing. Cem. Concr. Res. 2006, 36, 1134–1147. [Google Scholar] [CrossRef]
- Nicoară, A.I.; Bădănoiu, A.I.; Voicu, G.; Dinu, C.; Ionescu, A. Intumescent coatings based on alkali-activated borosilicate inorganic polymers. J. Coat. Technol. Res. 2019, 17, 681–692. [Google Scholar] [CrossRef]
- Sarazin, J.; Davy, C.A.; Bourbigot, S.; Tricot, G.; Hosdez, J.; Lambertin, D.; Fontaine, G. Flame resistance of geopolymer foam coatings for the fire protection of steel. Compos. Part B Eng. 2021, 222, 109045. [Google Scholar] [CrossRef]
- Zoey, S. Bromide ion toxicity, side effects, diseases and environmental impacts. Available online: https://naturalpedia.com/bromide-ion-toxicity-side-effects-diseases-and-environmental-impacts.html (accessed on 10 February 2023).
- Cui, Y.; Wang, D.; Zhao, J.; Li, D.; Ng, S.; Rui, Y. Effect of calcium stearate based foam stabilizer on pore characteristics and thermal conductivity of geopolymer foam material. J. Build. Eng. 2018, 20, 21–29. [Google Scholar] [CrossRef]
- Bhardwaj, P.; Gupta, R.; Mishra, D.; Sanghi, S.K.; Verma, S.; Amritphale, S.S. Corrosion and fire protective behavior of advanced phosphatic geopolymeric coating on mild steel substrate. Silicon 2019, 12, 487–500. [Google Scholar] [CrossRef]
- Goyal, A.; Pouya, H.S.; Ganjian, E.; Claisse, P. A review of corrosion and protection of steel in concrete. Arab. J. Sci. Eng. 2018, 43, 5035–5055. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, Z.; Liu, X. Comprehensive understanding of aluminosilicate phosphate geopolymers: A critical review. Materials 2022, 15, 5961. [Google Scholar] [CrossRef]
- Zhang, Z.; Yao, X.; Zhu, H. Potential application of geopolymers as protection coatings for marine concrete II. Microstructure and anticorrosion mechanism. Appl. Clay Sci. 2010, 49, 7–12. [Google Scholar] [CrossRef]
- Mao, Y.; Biasetto, L.; Colombo, P. Metakaolin-based geopolymer coatings on metals by airbrush spray deposition. J. Coat. Technol. Res. 2020, 17, 991–1002. [Google Scholar] [CrossRef]
- Jamaludin, L.; Razak, R.A.; Abdullah, M.M.A.B.; Vizureanu, P.; Bras, A.; Imjai, T.; Sandu, A.V.; Abd Rahim, S.Z.; Yong, H.C. The suitability of photocatalyst precursor materials in geopolymer coating applications: A Review. Coatings 2022, 12, 1348. [Google Scholar] [CrossRef]
- Phoo-ngernkham, T.; Maegawa, A.; Mishima, N.; Hatanaka, S.; Chindaprasirt, P. Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA–GBFS geopolymer. Constr. Build. Mater. 2015, 91, 1–8. [Google Scholar] [CrossRef]
- Lahoti, M.; Tan, K.H.; Yang, E.-H. A critical review of geopolymer properties for structural fire-resistance applications. Constr. Build. Mater. 2019, 221, 514–526. [Google Scholar] [CrossRef]
- Zhao, R.; Sanjayan, J.G. Geopolymer and Portland cement concretes in simulated fire. Mag. Concr. Res. 2011, 63, 163–173. [Google Scholar] [CrossRef]
- Nazari, A.; Bagheri, A.; Sanjayan, J.G.; Dao, M.; Mallawa, C.; Zannis, P.; Zumbo, S. Thermal shock reactions of Ordinary Portland cement and geopolymer concrete: Microstructural and mechanical investigation. Constr. Build. Mater. 2019, 196, 492–498. [Google Scholar] [CrossRef]
- Sarker, P.K.; Kelly, S.; Yao, Z. Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete. Mater. Des. 2014, 63, 584–592. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.; Fang, Y.; Zhou, Y.; Wang, C.; Dong, B.; Chen, C. Green protective geopolymer coatings: Interface characterization, modification and life-cycle analysis. Materials 2022, 15, 3767. [Google Scholar] [CrossRef]
Date of Event | Building Name | Place | No. of Deaths |
---|---|---|---|
8 December 2019 | Factory building | New Delhi, India | 43 |
14 June 2017 | Grenfell Tower | London, England | 72 |
8 March 2017 | Guatemala Orphanage | Guatemala, Mexico | 41 |
19 January 2017 | Plasco building | Tehran, Iran | 20 |
7 February 2016 | Goods warehouse | Jinan, China | 0 |
2 January 2015 | North Nanxun ceramics market | Harbin, China | 3 |
16 November 2014 | Longyuan food Ltd. | Shouguang, China | 18 |
9 December 2011 | AMRI Hospital | Kolkata, India | 89 |
15 November 2010 | High Rise Apartment | Shanghai, China | 58 |
17 July 2008 | Production factory | Shanghai, China | 3 |
2 August 2005 | Mengniu frozen warehouse | Maanshan, China | 3 |
5 October 2004 | LG electronics | Huizhou, China | 2 |
3 November 2003 | Hengzhou building | Hengyang, China | 20 |
11 September 2001 | World Trade Center | Manhattan, America | 2977 |
Porous Lightweight Filler | Performance of Cement-Based Composites | Advantages | Disadvantages | |
---|---|---|---|---|
Compressive Strength (MPa) | Thermal Conductivity (W/m·K) | |||
Fly ash cenospheres | 24–69 | 0.3–0.8 | Improve mechanical properties and toughness | low workability, inhomogeneity of matrix |
Hollow glass beads | 26–44 | 1.3–1.8 | Increase residual mechanical properties | moderate cost, reduce compressive strength |
Aerogel | 10–62 | 0.2–2 | Significant improvement of thermal insulation performance | High cost, ununiformly dispersion |
Phase change materials | 11–52 | 1.8–2.9 | Improve mechanical and thermal properties | Complexity, high cost, unstable performance |
Coating Method | Advantages | Disadvantages |
---|---|---|
Dipping | Ease of operation | Poor uniformity, thick coating |
Spraying | Low cost, efficient, accurate thickness control, strong adhesion | Requires flowable suspension, complexity |
Blading | Ease of operation | High shrinkage rate, cracks |
Brushing | Ease of operation | Poor uniformity, thick coating |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Le, H. The Development of Cement-Based, Intumescent and Geopolymer Fire-Retardation Coatings for Metal Structures: A Review. Coatings 2023, 13, 495. https://doi.org/10.3390/coatings13030495
Wang K, Le H. The Development of Cement-Based, Intumescent and Geopolymer Fire-Retardation Coatings for Metal Structures: A Review. Coatings. 2023; 13(3):495. https://doi.org/10.3390/coatings13030495
Chicago/Turabian StyleWang, Kaibao, and Huirong Le. 2023. "The Development of Cement-Based, Intumescent and Geopolymer Fire-Retardation Coatings for Metal Structures: A Review" Coatings 13, no. 3: 495. https://doi.org/10.3390/coatings13030495
APA StyleWang, K., & Le, H. (2023). The Development of Cement-Based, Intumescent and Geopolymer Fire-Retardation Coatings for Metal Structures: A Review. Coatings, 13(3), 495. https://doi.org/10.3390/coatings13030495