Structure and Properties of Ti3AlC2-SiC and Ti3AlC2-TiC Materials Obtained by Powder Injection Molding Technology
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Melt Flow Index of the Feedstocks
3.2. Microstructure
3.3. Sintering of SiC-TiAlC
3.4. Sintering of TiC-TiAlC
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Węglowski, M.S.; Błacha, S.; Phillips, A. Electron beam welding–techniques and trends–review. Vacuum 2016, 130, 72–92. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, Y. Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics: A review. J. Mater. Sci. Technol. 2010, 26, 385–416. [Google Scholar] [CrossRef]
- Barsoum, M.W.; El-Raghy, T. The MAX phases: Unique new carbide and nitride materials: Ternary ceramics turn out to be surprisingly soft and machinable, yet also heat-tolerant, strong and lightweight. Am. Sci. 2001, 89, 334–343. [Google Scholar] [CrossRef]
- Barsoum, M.W.; Radovic, M. Elastic and mechanical properties of the MAX phases. Annu. Rev. Mater. Res. 2011, 41, 195–227. [Google Scholar] [CrossRef]
- Tang, Q.; Zhou, Z.; Shen, P. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J. Am. Chem. Soc. 2012, 134, 16909–16916. [Google Scholar] [CrossRef]
- Shein, I.; Ivanovskii, A. Graphene-like titanium carbides and nitrides Tin+ 1Cn, Tin+ 1Nn (n = 1, 2, and 3) from de-intercalated MAX phases: First-principles probing of their structural, electronic properties and relative stability. Comput. Mater. Sci. 2012, 65, 104–114. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, Y. Oxidation behavior of Ti3AlC2 at 1000–1400 °C in air. Corros. Sci. 2003, 45, 891–907. [Google Scholar] [CrossRef]
- Ge, Z.; Chen, K.; Guo, J.; Zhou, H.; Ferreira, J.M. Combustion synthesis of ternary carbide Ti3AlC2 in Ti–Al–C system. J. Eur. Ceram. Soc. 2003, 23, 567–574. [Google Scholar] [CrossRef]
- Akhlaghi, M.; Tayebifard, S.A.; Salahi, E.; Asl, M.S.; Schmidt, G. Self-propagating high-temperature synthesis of Ti3AlC2 MAX phase from mechanically-activated Ti/Al/graphite powder mixture. Ceram. Int. 2018, 44, 9671–9678. [Google Scholar] [CrossRef]
- Zhou, A.; Wang, C.A.; Ge, Z.; Wu, L. Preparation of Ti3AlC2 and Ti2AlC by self-propagating high-temperature synthesis. J. Mater. Sci. Lett. 2001, 20, 1971–1973. [Google Scholar]
- Zhou, A.; Wang, C.A.; Hunag, Y. Synthesis and mechanical properties of Ti3AlC2 by spark plasma sintering. J. Mater. Sci. 2003, 38, 3111–3115. [Google Scholar] [CrossRef]
- Zhou, W.; Mei, B.; Zhu, J.; Hong, X. Synthesis of high-purity Ti3SiC2 and Ti3AlC2 by spark plasma sintering (SPS) technique. J. Mater. Sci. 2005, 40, 2099–2100. [Google Scholar] [CrossRef]
- Yang, C.; Jin, S.; Liang, B.; Jia, S. Low-temperature synthesis of high-purity Ti3AlC2 by MA-SPS technique. J. Eur. Ceram. Soc. 2009, 29, 181–185. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, Y. Microstructure and properties of Ti3AlC2 prepared by the solid–liquid reaction synthesis and simultaneous in-situ hot pressing process. Acta Mater. 2002, 50, 3143–3151. [Google Scholar] [CrossRef]
- Ai, T.; Yu, N.; Feng, X.; Xie, N.; Li, W.; Xia, P. Low-temperature synthesis and characterization of Ti2AlC/TiAl in situ composites via a reaction hot-pressing process in the Ti3AlC2-Ti-Al system. Met. Mater. Int. 2015, 21, 179–184. [Google Scholar] [CrossRef]
- Ai, T.; Wang, F.; Feng, X.; Ruan, M. Microstructural and mechanical properties of dual Ti3AlC2–Ti2AlC reinforced TiAl composites fabricated by reaction hot pressing. Ceram. Int. 2014, 40, 9947–9953. [Google Scholar] [CrossRef]
- Ruan, M.M.; Feng, X.M.; Ai, T.T.; Yu, N.; Hua, K. Microstructure and mechanical properties of TiC/Ti3AlC2 in situ composites prepared by hot pressing method. In Materials Science Forum; Trans Tech Publ: Baech, Switzerland, 2015; Volume 816, pp. 200–204. [Google Scholar]
- Akhlaghi, M.; Tayebifard, S.A.; Salahi, E.; Asl, M.S. Spark plasma sintering of TiAl–Ti3AlC2 composite. Ceram. Int. 2018, 44, 21759–21764. [Google Scholar] [CrossRef]
- Huang, X.; Feng, Y.; Qian, G.; Zhao, H.; Zhang, J.; Zhang, X. Physical, mechanical, and ablation properties of Cu–Ti3AlC2 composites with various Ti3AlC2 contents. Mater. Sci. Technol. 2018, 34, 757–762. [Google Scholar] [CrossRef]
- Liu, M.; Chen, J.; Cui, H.; Sun, X.; Liu, S.; Xie, M. Ag/Ti3AlC2 composites with high hardness, high strength and high conductivity. Mater. Lett. 2018, 213, 269–273. [Google Scholar] [CrossRef]
- Hu, W.; Huang, Z.; Cai, L.; Lei, C.; Zhai, H.; Hao, S.; Yu, W.; Zhou, Y. Preparation and mechanical properties of TiCx-Ni3(Al, Ti)/Ni composites synthesized from Ni alloy and Ti3AlC2 powders. Mater. Sci. Eng. A 2017, 697, 48–54. [Google Scholar] [CrossRef]
- Hu, W.; Huang, Z.; Cai, L.; Lei, C.; Zhai, H.; Wo, S.; Li, X. In-situ TiC and γ′-Ni3 (Al, Ti) triggered microstructural modification and strengthening of Ni matrix composite by reactive hot-press sintering pure Ni and Ti2AlC precursor. J. Alloys Compd. 2018, 747, 1043–1052. [Google Scholar] [CrossRef]
- Guo, S.; Hu, C.; Gao, H.; Tanaka, Y.; Kagawa, Y. SiC (SCS-6) fiber-reinforced Ti3AlC2 matrix composites: Interfacial characterization and mechanical behavior. J. Eur. Ceram. Soc. 2015, 35, 1375–1384. [Google Scholar] [CrossRef]
- Zhou, W.; Li, K.; Zhu, J.; Li, R. In situ synthesis, mechanical and cyclic oxidation properties of Ti3AlC2/Al2O3 composites. Adv. Appl. Ceram. 2018, 117, 340–346. [Google Scholar] [CrossRef]
- Hausnerova, B.; Mukund, B.N.; Sanetrnik, D. Rheological properties of gas and water atomized 17-4PH stainless steel MIM feedstocks: Effect of powder shape and size. Powder Technol. 2017, 312, 152–158. [Google Scholar] [CrossRef]
- Islam, S.T.; Samanta, S.K.; Nagahanumaniah; Roy, H.; Lohar, A.K.; Das, S.; Bandyopadhyay, A. Rheological behavior of 316L stainless steel feedstock for μ-MIM. Mater. Today Proc. 2018, 5, 8152–8158. [Google Scholar] [CrossRef]
- Singh, G.; Missiaen, J.M.; Bouvard, D.; Chaix, J.M. Copper additive manufacturing using MIM feedstock: Adjustment of printing, debinding, and sintering parameters for processing dense and defectless parts. Int. J. Adv. Manuf. Technol. 2021, 115, 449–462. [Google Scholar] [CrossRef]
- Berges, C.; Gallego, A.; Naranjo, J.A.; Herranz, G. Manufacturing porcelain components by CIM: Viability of processing different ceramic powders. Boletín Sociedad Española Cerámica Vidrio 2021, 60, 307–317. [Google Scholar] [CrossRef]
- McNamara, S.L.; McCarthy, E.M.; Schmidt, D.F.; Johnston, S.P.; Kaplan, D.L. Rheological characterization, compression, and injection molding of hydroxyapatite-silk fibroin composites. Biomaterials 2021, 269, 120643. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, J.H.; Hwang, K.T.; Hwang, H.J.; Han, K.S. Digital inkjet printing in three dimensions with multiple ceramic compositions. J. Eur. Ceram. Soc. 2021, 41, 1490–1497. [Google Scholar] [CrossRef]
- Afornu, B.; Lider, A.; Ismail, O.; Agyekum, E. Sintered Silicon Carbide composites deposited on zirconium alloy substrates in air and Ar atmosphere—Part I: Evaluation of scratch adhesion and tribology properties. Mater. Lett. 2022, 306, 130963. [Google Scholar] [CrossRef]
- Krinitcyn, M. Thermal stability of TiC–Ti3AlC2 and TiC–Ti3AlC composites during selective laser treatment. Adv. Appl. Ceram. 2022, 121, 138–142. [Google Scholar] [CrossRef]
- Askari, A.; Momeni, V. Rheological investigation and injection optimization of Fe–2Ni–2Cu feedstock for metal injection molding process. Mater. Chem. Phys. 2021, 271, 124926. [Google Scholar] [CrossRef]
- Krinitcyn, M.; Toropkov, N.; Pervikov, A.; Glazkova, E.; Lerner, M. Characterization of nano/micro bimodal 316L SS powder obtained by electrical explosion of wire for feedstock application in powder injection molding. Powder Technol. 2021, 394, 225–233. [Google Scholar] [CrossRef]
- Tao, X.; Jiazheng, Z.; Kang, X. The ball-bearing effect of diamond nanoparticles as an oil additive. J. Phys. Appl. Phys. 1996, 29, 2932. [Google Scholar] [CrossRef]
- Ng, W.H.; Gnanakumar, E.S.; Batyrev, E.; Sharma, S.K.; Pujari, P.K.; Greer, H.F.; Zhou, W.; Sakidja, R.; Rothenberg, G.; Barsoum, M.W.; et al. The Ti3AlC2 MAX Phase as an Efficient Catalyst for Oxidative Dehydrogenation of n-Butane. Angew. Chem. 2018, 130, 1501–1506. [Google Scholar] [CrossRef]
- Wang, K.; Du, H.; Wang, Z.; Gao, M.; Pan, H.; Liu, Y. Novel MAX-phase Ti3AlC2 catalyst for improving the reversible hydrogen storage properties of MgH2. Int. J. Hydrog. Energy 2017, 42, 4244–4251. [Google Scholar] [CrossRef]
- She, J.; Ueno, K. Densification behavior and mechanical properties of pressureless-sintered silicon carbide ceramics with alumina and yttria additions. Mater. Chem. Phys. 1999, 59, 139–142. [Google Scholar] [CrossRef]
- Ihle, J.; Herrmann, M.; Adler, J. Phase formation in porous liquid phase sintered silicon carbide: Part III: Interaction between Al2O3–Y2O3 and SiC. J. Eur. Ceram. Soc. 2005, 25, 1005–1013. [Google Scholar] [CrossRef]
- Bentzel, G.; Ghidiu, M.; Anasori, B.; Barsoum, M. On the interactions of Ti2AlC, Ti3AlC2, Ti3SiC2 and Cr2AlC with silicon carbide and pyrolytic carbon at 1300 °C. J. Eur. Ceram. Soc. 2015, 35, 4107–4114. [Google Scholar] [CrossRef]
- Pang, W.K.; Low, I.M.; Sun, Z.M. In situ high-temperature diffraction study of the thermal dissociation of Ti3AlC2 in vacuum. J. Am. Ceram. Soc. 2010, 93, 2871–2876. [Google Scholar] [CrossRef]
- Perevislov, S.; Sokolova, T.; Stolyarova, V. The Ti3SiC2 max phases as promising materials for high temperature applications: Formation under various synthesis conditions. Mater. Chem. Phys. 2021, 267, 124625. [Google Scholar] [CrossRef]
- Mingxing, A.; Hongxiang, Z.; Yang, Z.; Zhaoyun, T.; Zhenying, H.; Zhili, Z.; Shibo, L. Synthesis of Ti3AlC2 powders using Sn as an additive. J. Am. Ceram. Soc. 2006, 89, 1114–1117. [Google Scholar] [CrossRef]
- Galashov, E.; Atuchin, V.; Gavrilova, T.; Korolkov, I.; Mandrik, Y.; Yelisseyev, A.; Xia, Z. Synthesis of Y3Al5O12: Ce3+ phosphor in the Y2O3–Al metal–CeO2 ternary system. J. Mater. Sci. 2017, 52, 13033–13039. [Google Scholar] [CrossRef]
- Barzilai, S.; Aizenshtein, M.; Froumin, N.; Frage, N. Interface phenomena in the Y2O3/(Al–Cu) system. Mater. Sci. Eng. A 2006, 420, 291–295. [Google Scholar] [CrossRef]
- Yoon, S.; Manthiram, A. Nanoengineered Sn–TiC–C composite anode for lithium ion batteries. J. Mater. Chem. 2010, 20, 236–239. [Google Scholar] [CrossRef]
- Tabares, E.; Kitzmantel, M.; Neubauer, E.; Jimenez-Morales, A.; Tsipas, S.A. Sinterability, Mechanical Properties and Wear Behavior of Ti3SiC2 and Cr2AlC MAX Phases. Ceramics 2022, 5, 55–74. [Google Scholar] [CrossRef]
- Cai, K.; McLachlan, D.; Axen, N.; Manyatsa, R. Preparation, microstructures and properties of Al2O3–TiC composites. Ceram. Int. 2002, 28, 217–222. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krinitcyn, M.; Sharafeev, S.; Afanasyev, A. Structure and Properties of Ti3AlC2-SiC and Ti3AlC2-TiC Materials Obtained by Powder Injection Molding Technology. Coatings 2023, 13, 1013. https://doi.org/10.3390/coatings13061013
Krinitcyn M, Sharafeev S, Afanasyev A. Structure and Properties of Ti3AlC2-SiC and Ti3AlC2-TiC Materials Obtained by Powder Injection Molding Technology. Coatings. 2023; 13(6):1013. https://doi.org/10.3390/coatings13061013
Chicago/Turabian StyleKrinitcyn, Maksim, Sharif Sharafeev, and Alexandr Afanasyev. 2023. "Structure and Properties of Ti3AlC2-SiC and Ti3AlC2-TiC Materials Obtained by Powder Injection Molding Technology" Coatings 13, no. 6: 1013. https://doi.org/10.3390/coatings13061013
APA StyleKrinitcyn, M., Sharafeev, S., & Afanasyev, A. (2023). Structure and Properties of Ti3AlC2-SiC and Ti3AlC2-TiC Materials Obtained by Powder Injection Molding Technology. Coatings, 13(6), 1013. https://doi.org/10.3390/coatings13061013