Comparison of Self-Assembled Monolayers on SiO2 and Porous SiOCH Dielectrics by Decyltrimethoxysilane Vapor Treatment
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Z.; Tian, Y.; Teng, C.; Cao, H. Recent Advances in Barrier Layer of Cu Interconnects. Materials 2020, 48, 5049. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Bravo, O.; Harmon, D.; Shinosky, M.; Aitken, J. Cu/low-k dielectric TDDB reliability issues for advanced CMOS technologies. Microelectron. Reliab. 2008, 48, 1375. [Google Scholar] [CrossRef]
- Fang, K.L.; Tsui, B.Y. Metal drift induced electrical instability of porous low dielectric constant film. J. Appl. Phys. 2003, 93, 5546. [Google Scholar] [CrossRef] [Green Version]
- Steinhogl, W.; Schindler, G.; Steinlesberger, G.; Traving, M.; Engelhardt, M. Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller. J. Appl. Phys. 2005, 97, 023706. [Google Scholar] [CrossRef]
- Hosseini, M.; Ando, D.; Sutou, Y.; Koike, J. Co and CoTix for contact plug and barrier layer in integrated circuits. Microelectron. Eng. 2018, 189, 78. [Google Scholar] [CrossRef]
- Hosseini, M.; Koike, J. Amorphous CoTix as a liner/diffusion barrier material for advanced copper metallization. J. Alloys Compd. 2017, 721, 134. [Google Scholar] [CrossRef]
- Bogan, J.; Lundy, R.; McCoy, A.P.; O’Connor, R.; Byrne, C.; Walsh, L.; Casey, P.; Hughes, G. In-situ surface and interface study of atomic oxygen modified carbon containing porous low-κ dielectric films for barrier layer applications. J. Appl. Phys. 2016, 120, 105305. [Google Scholar] [CrossRef] [Green Version]
- Caro, A.M.; Maes, G.; Borghs, G.; Whelan, C.M. Screening self-assembled monolayers as Cu diffusion barriers. Microelectron. Eng. 2008, 85, 2047. [Google Scholar]
- Brady-Boyd, A.; O’Connor, R.; Armini, S.; Selvaraju, V.; Hughes, G.; Bogan, J. On the use of (3-trimethoxysilylpropyl)diethylenetriamine self-assembled monolayers as seed layers for the growth of Mn based copper diffusion barrier layers. Appl. Surf. Sci. 2018, 427, 260. [Google Scholar] [CrossRef]
- Aldakov, D.; Bonnassieux, Y.; Geffroy, B.; Palacin, S. Selective electroless copper deposition on self-assembled dithiol monolayers. ACS Appl. Mater. Interfaces 2009, 1, 584. [Google Scholar] [CrossRef]
- Uedono, A.; Armini, S.; Zhang, Y.; Kakizaki, T.; Krause-Rehberg, R.; Anwand, W.; Wagner, A. Surface sealing using self-assembled monolayers and its effect on metal diffusion in porous low-K dielectrics studied using monoenergetic positron beams. Appl. Surf. Sci. 2016, 368, 272. [Google Scholar] [CrossRef]
- Sharma, S.; Kumar, M.; Rani, S.; Kumar, D. Deposition and characterization of 3-aminopropyltrimethoxysilane monolayer diffusion barrier for copper metallization. Metall. Mater. Trans. B 2014, 46, 928. [Google Scholar] [CrossRef]
- Ganesan, P.G.; Singh, A.P.; Ramanath, G. Diffusion barrier properties of carboxyland amine-terminated molecular nanolayers. Appl. Phys. Lett. 2004, 85, 579. [Google Scholar] [CrossRef]
- Caro, A.M.; Armini, S.; Richard, O.; Maes, G.; Borghs, G.; Whelan, C.M.; Travaly, Y. Bottom-up engineering of subnanometer copper diffusion barriers using NH2-derived self-assembled monolayers. Adv. Funct. Mater. 2010, 20, 1125. [Google Scholar] [CrossRef]
- Armini, S.; Prado, J.L.; Krishtab, M.; Swerts, J.; Verdonck, P.; Meersschaut, J.; Conard, T.; Blauw, M.; Struyf, H.; Baklanov, M.R. Pore sealing of k 2.0 dielectrics assisted by self-assembled monolayers deposited from vapor phase. Microelec. Eng. 2014, 120, 240. [Google Scholar] [CrossRef]
- Aviram, A.; Ratner, M.A. Molecular rectifiers. Chem. Phys. Lett. 1974, 29, 277. [Google Scholar] [CrossRef]
- Cheng, Y.L.; Huang, C.W.; Lee, C.Y.; Chen, G.S.; Fang, J.S. Self-Assembled Monolayers on Highly Porous Low-k Dielectrics by 3-Aminopropyltrimethoxysilane Treatment. Coatings 2019, 9, 246. [Google Scholar] [CrossRef] [Green Version]
- Armini, S.; Prado, J.L.; Swerts, J.; Sun, Y.; Krishtab, M.; Meersschaut, J.; Blauw, M.; Baklanov, M.; Verdonck, P. Pore sealing of porous ultralow-K dielectrics by self assembled monolayers combined with atomic layer deposition. ECS Solid State Lett. 2012, 1, P42. [Google Scholar] [CrossRef]
- Rezvanov, A.; Gornev, E.S.; de Marneffe, J.-F.; Armini, S. Area selective grafting of siloxane molecules on low-k dielectric with respectto copper surface. Appl. Surf. Sci. 2019, 476, 317. [Google Scholar] [CrossRef]
- Bogan, J.; Brady-Boyd, A.; Armini, S.; Lundy, R.; Selvaraju, V.; O’Connor, R. Nucleation and adhesion of ultra-thin copper films on amino-terminated self-assembled monolayers. Appl. Surf. Sci. 2018, 462, 38. [Google Scholar] [CrossRef]
- Cheng, Y.L.; Lee, C.Y.; Huang, J.W.; Chen, G.S.; Fang, J.S. Comparison of Various Low Dielectric Constant Materials. Thin Solid Films 2018, 660, 871. [Google Scholar] [CrossRef]
- Cheng, Y.L.; Lin, B.H.; Huang, S.W. Effect of O2 Plasma Treatment on Physical, Electrical, and Reliability Characteristics of Low Dielectric Constant Materials. Thin Solid Films 2014, 572, 44. [Google Scholar] [CrossRef]
- Baklanov, M.R.; de Marneffe, J.-F.; Shamiryan, D.; Urbanowicz, A.M.; Shi, H.; Rakhimova, T.V.; Huang, H.; Ho, P.S. Plasma processing of low-k dielectrics. J. Appl. Phys. 2013, 113, 041101-1. [Google Scholar] [CrossRef]
- Shi, H.; Huang, H.; Bao, J.; Liu, J.; Ho, P.S. Roles of ions, photons, and radicals in inducing plasma damage to ultra low-k dielectrics. J. Vac. Sci. Technol. B 2012, 30, 011206-1. [Google Scholar] [CrossRef]
- Grill, A. Plasma enhanced chemical vapor deposited SiCOH dielectrics: From low-k to extreme low-k interconnect materials. J. Appl. Phys. 2003, 93, 1785. [Google Scholar] [CrossRef]
- Maex, K.; Baklanov, M.R.; Iacopi, F.; Brongersma, S.H.; Yanovitskaya, Z.S. Low dielectric constant materials for microelectronics. J. Appl. Phys. 2003, 93, 8793. [Google Scholar] [CrossRef]
- Kim, J.J.; Park, H.H.; Hyun, S.H. The evolution of microstructure and surface bonding in SiO2 areogel film after plasma treatment using O2, N2, and H2 gases. Thin Solid Films 2001, 384, 236. [Google Scholar] [CrossRef]
- Grill, A.; Gates, S.M.; Ryan, T.E.; Nguyen, S.V.; Priyadarshini, D. Progress in the development and understanding of advanced low k and ultralow k dielectrics for very large-scale integrated interconnects—State of the art. Appl. Phys. Rev. 2014, 1, 011306. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Lu, T.-M. Metal-Dielectric Interfaces in Gigascale Electronics: Thermal and Electrical Stability; Springer Series in Materials Science: Berlin/Heidelberg, Germany, 2011; Volume 157. [Google Scholar]
- Shoeb, J.; Kushner, M.J. Mechanisms for sealing of porous low-k SiOCH by combined He and NH3 plasma treatment. J. Vac. Sci. Technol. A 2011, 29, 051305. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, D.; Kobayashi, A.; Nakano, A.; Kimura, Y.; Matsushita, K.; Kobayashi, N.; Ditmer, G.; Kiermasz, A. Plasma-enhanced atomic layer deposition sealing property on extreme low-k film with k = 2.0 quantified by mass metrology. Jpn. J. Appl. Phys. 2013, 52, 05FG01. [Google Scholar] [CrossRef]
Dielectric Film | As-Deposited | Without O2 Plasma Irradiation & With DTMOS Vapor Treatment | With O2 Plasma Irradiation & With DTMOS Vapor Treatment |
---|---|---|---|
SiO2 | 45/80 (56.3%) | 46/80 (57.5%) | 0/80 (0%) |
p-SiOCH | 58/80 (72.5%) | 56/80 (70.0%) | 0/80 (0%) |
Note: Failure/Test samples (Failure rate) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.-L.; Peng, W.-F.; Lee, C.-Y.; Chen, G.-S.; Fang, J.-S. Comparison of Self-Assembled Monolayers on SiO2 and Porous SiOCH Dielectrics by Decyltrimethoxysilane Vapor Treatment. Coatings 2022, 12, 926. https://doi.org/10.3390/coatings12070926
Cheng Y-L, Peng W-F, Lee C-Y, Chen G-S, Fang J-S. Comparison of Self-Assembled Monolayers on SiO2 and Porous SiOCH Dielectrics by Decyltrimethoxysilane Vapor Treatment. Coatings. 2022; 12(7):926. https://doi.org/10.3390/coatings12070926
Chicago/Turabian StyleCheng, Yi-Lung, Wei-Fan Peng, Chih-Yen Lee, Giin-Shan Chen, and Jau-Shiung Fang. 2022. "Comparison of Self-Assembled Monolayers on SiO2 and Porous SiOCH Dielectrics by Decyltrimethoxysilane Vapor Treatment" Coatings 12, no. 7: 926. https://doi.org/10.3390/coatings12070926
APA StyleCheng, Y.-L., Peng, W.-F., Lee, C.-Y., Chen, G.-S., & Fang, J.-S. (2022). Comparison of Self-Assembled Monolayers on SiO2 and Porous SiOCH Dielectrics by Decyltrimethoxysilane Vapor Treatment. Coatings, 12(7), 926. https://doi.org/10.3390/coatings12070926