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Abstract: Highly porous low-dielectric-constant (low-k) dielectric materials with a dielectric constant
(k) less than 2.50 are needed for 32 nm and beyond technological nodes. In this study, a highly porous
low-k dielectric film with a k value of 2.25, open porosity of 32.0%, and pore diameter of 1.15 nm were
treated by 3-Aminopropyltrimethoxysilane (APTMS) in wet solution in order to form self-assembled
monolayers (SAMs) onto it. The effects of the formation SAMs on the electrical characteristics and
reliability of highly porous low-k dielectric films were characterized. As SAMs were formed onto
the highly porous low-k dielectric film by APTMS treatment, the dielectric breakdown field and the
failure time were significantly improved, but at the expense of the increases in the dielectric constant
and leakage current. Moreover, the formation SAMs enhanced the Cu barrier performance for highly
porous low-k dielectric films. Therefore, the SAMs derived from APTMS treatment are promising for
highly porous low-k dielectric films to ensure better integrity.

Keywords: low-dielectric-constant; porous dielectric; self-assembled monolayers; Cu barrier;
reliability; time-dependent-dielectric-breakdown

1. Introduction

To improve the operation performance of integrated circuits (ICs), the dimensions of electronic
devices are continuously being scaled-down to the deep submicron level. At this time, however, the
interconnects-induced resistance-capacitance (RC) time delay is rapidly increasing, being a limiting
factor for ICs performance [1–3]. To reduce RC time delay, Cu metal and a low-dielectric-constant
(low-k) material are being used to replace the conventional Al metal and SiO2 film in the back-end-of-line
(BEOL) interconnects. Compared to Al metal (~2.82 µΩ-cm), Cu metal (~1.70 µΩ-cm) can provide
a lower resistivity by approximately 35% [4]. Low-k materials with the dielectric constant (k) lower
than 3.9 (k of SiO2) can reduce the parasitic capacitance between metal lines [5,6]. Low-k materials can
be achieved by the introduction of lower polarization chemical bonds to replace Si–O bonds, but the
reachable minimum k-value is limited for this type of low-k material, being 2.8. Therefore, to further
reduce k-value of low-k materials, reducing the film’s density by introducing nanometer pores into
the matrix of the existed low-k material is another strategy. This is because air in the pore provides
a minimum k value (~1.0). The produced low-k materials are porous, well-known as porous low-k
dielectrics [6,7]. Owing to the presence of pores, the porous low-k dielectrics are mechanically and
electrically weak, resulting in more challenges as they are integrated into BEOL interconnects [8,9].
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Increasing porosity in the porous low-k dielectrics favors to decrease k-values, however, as
the porosity reaches a critical value, the pores are open to the surface and connected internally.
This provides a fast penetration pathway for gases, liquids, or other deposition precursors to enter the
dielectric film, causing electrical characteristics and reliability of the porous low-k dielectrics [10,11].
As a result, for the successful integration of highly porous low-k dielectrics into the BEOL interconnects,
pore-stuffing or pore-sealing processing is required as ways of plasma treatment, dielectric capping,
or self-assembled monolayers (SAMs) [12–15].

Cu diffusing into the highly porous low-k dielectric is an increasingly important issue. The barriers
therefore are needed to confine Cu wires. Traditionally, the used metal barriers are Ti(N), Ta(N),
or Ru(N) with a relatively high resistivity compared to Cu, thereby increasing line resistance for Cu
metallization [16,17]. This situation is getting worse with scaling of BEOL interconnects because a large
fraction of the line-width is occupied by the metal barrier. Decreasing the metal barrier thickness is
a straightforward strategy to avoid a huge increase in the line resistance, but the loss of Cu barrier
performance is a concern to be pay attention.

It therefore necessitates the development of a thin layer formed at the surface of highly porous
low-k dielectrics for sealing the pores and stopping Cu diffusion. The requirement of the formation
layer is to minimize the increase of k-value for highly porous low-k dielectrics. SAMs have been
proposed as a promising processing with sealing the pores and stopping Cu diffusion for highly porous
low-k dielectrics [15]. With a very thin thickness (~<3 nm), SAMs have high compatibility with BEOL
fabrication processes [15,18].

This study, therefore, proposes a process to form SAMs at the surface of highly porous low-k
dielectrics (k = 2.25) by 3-Aminopropyltrimethoxysilane (APTMS; C6H17NO3Si) treatment in aqueous
phase. The effects of the formation SAMs on the electrical characteristics and reliability of highly
porous low-k dielectrics are evaluated. The barrier against Cu diffusion for the formation SAMs is
investigated as well.

2. Experimental

The used highly porous low-k materials in this study are SiOCH films with a k value of 2.25,
deposited on 300 mm p-type silicon wafers using plasma-enhanced chemical vapor deposition (PECVD,
Applied Materials, Santa Clara, CA, USA) method [19]. The average pore size and porosity of
the resulting highly porous low-k films are around 1.15 nm and 32.0%, respectively, which were
determined from the isotherm of ethanol adsorption and desorption using ellipsometric porosimetry.
The deposition thickness was controlled at 300± 10.0 nm, which was determined using an optical-probe
system with an ellipsometer (Film TekTM 3000SE, High Point, NC, USA).

Then, the wafer was cleaved in 3 × 3 cm2 coupons and a thermal anneal at 200 ◦C for 1 min was
performed to remove the adsorption moisture from the sample. The samples were immersed into
a 85 ◦C SC-1 solution [deionized water: NH4OH (29%): H2O2 (28%) = 5:1:1], in an attempt to create
active surface silanol functional groups. After immersion, the samples were rinsed thoroughly with
deionized water and blown dry with a stream nitrogen gas. Following, the samples were immersed
into the wet solution containing anhydrous toluene and 3-Aminopropyltrimethoxysilane (2.8 wt.%)
for 1 h and 3 h at 70 ◦C in order to form SAMs at the surface of highly porous low-k dielectrics.
Finally, a thermal anneal at 200 ◦C for 3 min was performed on the samples to remove the residues
and moisture.

After the formation of SAMs on the highly porous low-k dielectrics, Cu film was deposited onto
it to fabricate metal-insulator-silicon (MIS) capacitors for electrical characteristics and reliability
measurements. Cu electrode in the MIS capacitor was prepared using a thermal evaporation
method through a shadow mask. The formation thickness and area of Cu electrode were
~100 nm and 9.0 × 10−4 cm2, respectively. Capacitance–voltage (C–V), current–voltage (I–V),
and time-dependent-dielectric-breakdown (TDDB) were characterized. C–V measurement was
operated at the frequency of 1 MHz using a semiconductor parameter analyzer (HP4280A, Agilent
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technologies, Santa Clara, CA, USA). I–V measurement was made by sweeping the voltage and the
response leakage current was monitored. TDDB measurement was tested in a fixed electric-field
to record the failure time, in which the monitored leakage current suddenly increases by at least
three-orders of magnitude. The I–V and TDDB measurements were performed using an electrometer
(Keithley, 6517A, Austin, TX, USA). All measurements were performed at room temperature (25 ◦C).

In addition to electrical characterization, surface analyses were performed on the SAMs-formed
samples. Water contact angle (WCA; Reme Hardt, Mode-100-00-230) was determined as the average of
five measurements. Atomic force microscopy (AFM) was used to measure the surface morphology and
root-mean-square (RMS) values. X-ray photoelectron spectroscopy (XPS; PHI 500, ULVAC-PHI, Inc.,
Chigasaki, Japanese), equipped with a monochromatized X-ray source of Al-Kα radiation (1486.6 eV),
was used to analyze the changes in the surface structure of the porous low-k dielectrics before and after
APTMS treatment.

3. Results and Discussion

The k value of a dielectric film can be determined by means of the measured accumulation
capacitance obtained from C–V measurement, used in the expression of k = Cd/ε0A. Here, C is measured
capacitance, d is film thickness, and A is the area of the device. Figure 1 shows the determined k values
of the studied highly porous low-k dielectrics before and after APTMS treatment. The results presented
here are from 5 measurements on different MIS samples for each condition. The k value of pristine
highly porous low-k dielectrics [donated as STD] was determined to be 2.25 ± 0.03. After APTMS
treatment, the k value increased and the increasing magnitude was amplified with the treatment time.
The k value of highly porous low-k dielectrics with APTMS treatment for 3 h [donated as AMTMS_3H]
reached 2.96 ± 0.04. An increased k value can be attributed to the formation of SAMs on the surface of
highly porous low-k dielectrics.
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Figure 1. Dielectric constant of highly porous low-k dielectrics without and with AMTMS treatment.

Figure 2 shows I–E plots of highly porous low-k dielectrics before and after APTMS treatment.
By sweeping the voltage, the leakage current is monitored until breakdown. The breakdown is
defined as the monitored leakage current suddenly increases at least three orders of magnitude.
The electric-field was calculated by dividing the applied voltage by the thickness of highly porous
low-k dielectrics. The behavior of the leakage current versus the applied electric field of highly
porous low-k dielectrics was changed by APTMS treatment. The highly porous low-k dielectrics with
APTMS treatment displayed a faster increase in the leakage current than the samples without APTMS
treatment. Additionally, a higher leakage current was detected as the highly porous low-k dielectrics
were immersed in APTMS solution with a longer immersion time. An increase in the leakage current for
the APTMS solution-treated low-k dielectrics is attributed to the top modification layer or the formation
of SAMs, which is suspected to be a fast path for electron conduction due to the interface-dominated.
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Figure 2. Comparison of I–E characteristics of highly porous low-k dielectrics without and with
AMTMS treatment.

In contrast, the highly porous low-k dielectrics after APTMS treatment exhibited an enhanced
dielectric breakdown field. This enhancement was magnified with increasing the immersion time in
APTMS solution, as shown in Figure 3. The results were collected from ten samples for each condition.
The average value and 3δ variation (error bar) were shown. The average breakdown field of highly
porous low-k dielectrics with APTMS treatment for 3 h was improved from 3.36 MV/cm (the breakdown
field of the pristine sample) to 4.56 MV/cm. The opposite trend in the leakage current and breakdown
field suggests that the leakage current is not a necessary condition to trigger the dielectric breakdown.
A similar result was reported by Chen and Shinosky [20]. Their data showed that the leakage
current of Cu liner-free samples was much lower than that of with-Cu liner samples. However, the
breakdown voltages of Cu liner-free samples were considerably lower than that of with-Cu liner
samples. The unique electrical characteristics for APTMS-treated highly porous low-k dielectrics may
be attributed to Cu barrier and pore-sealing effects due to the formation SAMs [21]. For the highly
porous low-k dielectrics without APTMS treatment, the diffused Cu ions during the deposition of Cu
electrode can trap electrons to reduce the leakage current, however, they would accumulate to form a
conduction path to accelerate the breakdown. Therefore, the formation SAMs on the highly porous
low-k dielectrics by APTMS treatment blocks Cu diffusion. Moreover, the opened-pores at the surface
of the highly porous low-k dielectrics are sealed, thus retarding the dielectric breakdown.
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Figure 3. Breakdown field of highly porous low-k dielectrics without and with AMTMS treatment.

A long-term reliability of a dielectric is evaluated using a Time-Dependent Dielectric Breakdown
(TDDB) test. In a TDDB test, a constant voltage (field) is applied on the MIS capacitor and the leakage
current is monitored until breakdown. The breakdown is defined as the leakage current suddenly
increases at least three orders of magnitude and the reached stressing time is recorded as the time-to-fail
(TTF). Three different voltages (fields) were applied on the studied highly porous low-k dielectrics
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to evaluate the electric-field dependence TTF. Figure 4 compares the plots of the leakage current
versus the stressing time for highly porous low-k dielectrics without or with APTMS treatment for
3 h. The highly porous low-k dielectrics after APTMS treatment exhibited a different behavior in the
leakage current versus stressing time. For the pristine highly porous low-k dielectrics, the leakage
current remained unchanged before breakdown during TDDB tests. In the case of APTMS-treated
highly porous low-k dielectrics, the monitored leakage current remained constant in the first stressing
period, and then decreased before breakdown. A decreasing leakage current can be attributed to the
naturalization effect. As the highly porous low-k dielectric was treated by APTMS in wet solution,
positive charges in the form of NH3

+ bonds were generated at the film’s surface during the formation
of SAMs (Evidenced as shown below). During a TDDB test, the injected electrons naturalize these
positive charges, causing a decreasing leakage current.
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Figure 4. Comparison of leakage current versus stressing time plot under TDDB tests for highly porous
low-k dielectrics without and with AMTMS treatment.

Figure 5 plots the measured media TTFs as a function of the applied electric-field for highly
porous low-k dielectrics without (full symbols) or with (open symbols) APTMS treatment for 3 h.
Ten samples were measured for each condition. The measured TTFs decreased with the applied
electric-field, indicating that the electric-field plays an important role in controlling the dielectric
breakdown. Comparing with the measured TTFs of the pristine and APTMS-treated highly porous
low-k dielectrics, the latter sample had larger TTFs, indicating that the breakdown reliability of the
highly porous low-k dielectrics was enhanced by APTMS treatment due to the formation of SAMs.
The pores in the dielectric film are considered to be defective sites and accelerate the dielectric
breakdown [22]. For the highly porous low-k dielectrics with porosity larger than 30%, the neighboring
pores are connected or interlinked to form opened-pores, causing more serious degradation in the
dielectric breakdown. The SAMs on the highly porous low-k dielectrics derived from APTMS treatment
help to seal and isolate nanosized pores, retarding the formation of the connecting conductive path
during a TDDB test. As shown in Figure 5, the logarithm of the measured TTFs for both highly porous
low-k dielectrics without and with APTMS treatment displayed a linear relationship with the applied
electric-field, implying that the breakdown mechanism can be described by the E model. In the E
model, the breakdown mechanism is field-assisted bonding breaking and the expression is assumed to
be TTF∼exp(-γE) [23]. In this equation, γ is a field acceleration factor. The γ values were determined to
be 1.38 and 1.41 for highly porous low-k dielectrics without and with APTMS treatment. An increased
γ value for APTMS-treated highly porous low-k dielectrics helps further increase the dielectric failure
time in a low operation field. In a field of 1.1 MV/cm, the failure time of APTMS-treated highly porous
low-k dielectric is calculated to be 1064 times larger than that of the pristine sample. This indicates
a highly reliable dielectric breakdown for highly porous low-k dielectrics is achieved by AMTMS
treatment in aqueous phase in this study.
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Figure 5. TTFs as a function of the electric-field of highly porous low-k dielectrics without and with
AMTMS treatment.

Cu easily penetrates into porous low-k dielectrics under thermal or electrical stress. The drifted Cu
ion can induce permanent bond displacement and catalyze the bond breakage reaction in the dielectric
film, resulting in degraded electrical characteristics and reliability [24,25]. The formation SAMs on
the highly porous low-k dielectrics by APTMS treatment was stressed at different electric-fields at
25 ◦C for various times to evaluate its Cu barrier efficiency. After subjected to an electric stress at
different intervals, C–V characteristics were measured to determine the shift of flat-band voltage (Vfb).
For both highly porous low-k dielectrics without and with APTMS treatment after electric stress,
their flat-band voltage shifted toward negative voltage, representing the diffusion of Cu ions into the
dielectric film [26,27]. Figure 6 compares the shift magnitude of flat-band voltage under an electric
stress at 1.0 or 2.0 MV/cm as a function of stressing time for highly porous low-k dielectrics without
and with APTMS treatment. In cases of both highly porous low-k dielectrics without and with APTMS
treatment, an electric stress at a larger field yielded a larger flat-band voltage shift, indicating for
faster Cu ion injection at a larger electric field. Moreover, the shift continuously increased toward
negative voltage with stressing time, meaning for continuously Cu ions injection into the dielectrics
with stressing time. The shift was strong after relatively short periods of stressing time and then
saturated for a longer stressing time. The decreasing Cu ion concentration gradient is responsible for
this feature. Compared with the results of the highly porous low-k dielectrics without and with APTMS
treatment, the APTMS-treated highly porous low-k dielectric displayed a smaller flat-band voltage
shift, indicating for less Cu ions injection into this material. Therefore, Cu barrier capacity of the highly
porous low-k dielectrics is strengthened by APTMS treatment. This also implies that the formation
SAMs at the film’s surface by means of APTMS treatment has the function of blocking Cu ion diffusion.

The thermal stability of APTMS-treated highly porous low-k dielectrics was evaluated by a
thermal stress at 450 ◦C for 30~120 min in an N2 ambient. After annealing, C–V and I–V characteristics
were measured. Figure 7a–c plot the changes in the dielectric constant, leakage current at 2 MV/cm,
and dielectric breakdown filed, respectively, with annealing time for highly porous low-k dielectrics
without and with APTMS treatment. For the pristine highly porous low-k dielectrics without APTMS
treatment, the measured electrical characteristics degraded with annealing time under an annealing at
450 ◦C. For the highly porous low-k dielectrics with APTMS treatment, a reduced dielectric breakdown
field was detected, although, the decreasing magnitude was not as large as that of the pristine sample.
Thermal annealing easily drives Cu atoms to diffuse into the porous dielectric, thus degrading the
dielectric breakdown field. A lower degradation in the highly porous low-k dielectrics with APTMS
treatment indicates again that the formation SAMs derived from APTMS treatment slowed down
the thermal diffusion of Cu atoms. Bizarrely, for the highly porous low-k dielectrics with APTMS
treatment, the dielectric constant decreased and the leakage current at 2 MV/cm slightly decreased with
annealing time under an annealing at 450 ◦C. Therefore, a thermal annealing on the APTMS-treated
highly porous low-k dielectric is required to optimize the electrical characteristics.
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Figure 6. Flat-band voltage shift of highly porous low-k dielectrics without and with AMTMS treatment
under electric stresses at 1.0 and 2 MV/cm as a function of stressing time.
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Figure 7. Changes of (a) dielectric constant, (b) leakage current at 2 MV/cm, and (c) breakdown
field; of highly porous low-k dielectrics without and with AMTMS treatment with annealing time at
450 ◦C annealing.

This study indicated that the formation SAMs by APTMS treatment improved Cu barrier ability
and dielectric reliability for highly porous low-k dielectrics. The formation mechanism of SAMs
derived from AMTMS treatment in aqueous solution was characterized by WCA, AFM, and XPS
analyses. The water contact angle of the highly porous low-k dielectrics was 71◦, then decreased to
17◦ after hydroxylation process, representing for the formation of hydrophilic Si–OH bonds at the
film’s surface. By AMTMS treatment, the contact angle returned back to 69◦. Therefore, the surface
hydrophilic Si-OH bonds were replaced by hydrophobic groups from AMTMS. Moreover, the surface
morphology of the highly porous low-k dielectrics was observed to be changed after APTMS treatment
from AFM analysis, indicating that the film’s surface was modified (or SAMs formation). Additionally,
the measured RMS values remained unchanged (~0.225 nm), implying that the formation SAMs at the
surface of the highly porous low-k dielectrics is uniform.

Figure 8a,b display O 1s and N 1s XPS spectrum, respectively, of the highly porous low-k dielectrics
after hydroxylation and APTMS treatment. The hydroxylated sample exhibited an O 1s main peak
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at a binding energy of 532.7 eV from bulk oxygen atoms (Si–O–Si, i.e., Si–O4) [27,28], along with a
minor peak centered at 531.1 eV from surface silanol (Si–OH) groups [28]. After APTMS treatment,
the peak of Si–OH groups obviously decreased, indicating that the transformed Si–OH groups were
replaced. Moreover, the binding energy of Si–O–Si group shifted to 531.7 eV, corresponding to Si–O3

linkages [29]. For N 1s signal, no any peak was observed in the highly porous low-k dielectrics before
and after hydroxylation. However, N 1s spectra appeared in the APTMS-treated highly porous low-k
dielectric, confirming the formation of a highly oriented SAMs from APTMS. Deconvoluting N 1s peak
can result in two peaks at binding energies of 399.3 eV and 401.2 eV, attributed to primary (–NH2) and
protonated (–NH3

+) amino groups, respectively [30,31]. Moreover, the higher the percentage of –NH2

groups (~82%) implies that the formation SAMs are highly oriented [31]. These N-related groups in
the SAMs are benefit for Cu barrier [32].
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4. Conclusions

In this study, SAMs were formed on the highly porous low-k dielectrics by APTMS treatment in
aqueous phase. The breakdown field and dielectric failure time of the highly porous low-k dielectrics
can be significantly improved by means of the formed SAMs. Moreover, such SAMs have also
demonstrated to be served as a barrier against Cu penetration. The formation SAMs improved the
breakdown field and dielectric failure time for the highly porous low-k dielectrics. Moreover, it also
has been demonstrated to be served as a Cu barrier. The expenses are the increases in the dielectric
constant and leakage current. Therefore, the SAMs derived from APTMS treatment are promising for
highly porous low-k dielectric films to ensure better integrity.
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