Etching Characteristics and Changes in Surface Properties of IGZO Thin Films by O2 Addition in CF4/Ar Plasma
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wager, J.F.; Hoffman, R. Thin, fast, and flexible. IEEE Spectr. 2011, 48, 42–56. [Google Scholar] [CrossRef]
- Troughton, J.G.; Downs, P.; Price, R.; Atkinson, D. Densification of a-IGZO with low-temperature annealing for flexible electronics applications. Appl. Phys. Lett. 2017, 110, 011903. [Google Scholar] [CrossRef]
- Sheng, J.; Hong, T.; Lee, H.M.; Kim, K.; Sasase, M.; Kim, J.; Hosono, H.; Park, J.S. Amorphous IGZO TFT with high mobility of similar to 70 cm2/(V s) via vertical dimension control using PEALD. ACS Appl. Mater. Interfaces 2019, 11, 40300–40309. [Google Scholar] [CrossRef]
- Choi, I.M.; Kim, M.J.; On, N.; Song, A.; Chung, K.B.; Jeong, H.; Park, J.K.; Jeong, J.K. Achieving high mobility and excellent stability in amorphous In–Ga–Zn–Sn–O thin-film transistors. IEEE Trans. Electron Devices 2020, 67, 1014–1020. [Google Scholar] [CrossRef]
- Kim, J.; Park, J.; Yoon, G.; Khushabu, A.; Kim, J.-S.; Pae, S.; Cho, E.-C.; Yi, J. Effect of IGZO thin films fabricated by Pulsed-DC and RF sputtering on TFT characteristics. Mater. Sci. Semicond. Process. 2020, 120, 105264. [Google Scholar] [CrossRef]
- Alford, T.L.; Gadre, M.J.; Vemuri, R.N.P. Improved mobility and transmittance of room-temperature-deposited amorphous indium gallium zinc oxide (a-IGZO) films with low-temperature postfabrication anneals. JOM 2013, 65, 519–524. [Google Scholar] [CrossRef]
- Lee, E.G.; Park, J.; Lee, S.-E.; Na, H.-J.; Cho, N.-K.; Im, C.; Cho, Y.H.; Kim, Y.S. Oxygen radical control via atmospheric pressure plasma treatment for highly stable IGZO thin-film transistors. IEEE Trans. Electron Devices 2020, 67, 3135–3140. [Google Scholar] [CrossRef]
- Hoshino, K.; Hong, D.; Chiang, H.Q.; Wager, J.F. Constant-voltage-bias stress testing of a-IGZO thin-film transistors. IEEE Trans. Electron Devices 2009, 56, 1365–1370. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, D.H.; Yang, D.J.; Hong, S.Y.; Yoon, K.S.; Hong, P.S.; Jeong, C.O.; Park, H.S.; Kim, S.Y.; Lim, S.K.; et al. World’s largest (15-inch) XGA AMLCD panel using IGZO oxide TFT. SID Int. Symp. Dig. Tech. 2008, 39, 625–628. [Google Scholar] [CrossRef]
- Nomura, K.; Aoki, T.; Nakamura, K.; Kamiya, T.; Nakanishi, T.; Hasegawa, T.; Kimura, M.; Kawase, T.; Hirano, M.; Hosono, H. Three-dimensionally stacked flexible integrated circuit: Amorphous oxide/polymer hybrid complementary inverter using n-type a-In-Ga-Zn-O and p-type poly-(9,9-dioctylfluorene-co-bithiophene) thin-film transistors. Appl. Phys. Lett. 2010, 96, 263509. [Google Scholar] [CrossRef]
- Oian, Z.; Ruan, C.; Xia, G.; Gong, H.; Wang, S. Low-temperature solution-processed InGaZnO thin film transistors by using lightwave-derived annealing. Thin Solid Film. 2021, 723, 138594. [Google Scholar]
- Benwadih, M.; Coppard, R.; Bonrad, K.; Klyszcz, A.; Vuillaume, D. High mobility flexible amorphous IGZO thin-film transistors with a low thermal budget ultra-violet pulsed light process. ACS Appl. Mater. Interfaces 2016, 8, 34513–34519. [Google Scholar] [CrossRef]
- Knobelspies, S.; Takabayashi, A.; Daus, A.; Cantarella, G.; Munzenrieder, N.; Troster, G. Improvement of contact resistance in flexible a-IGZO thin-film transistors by CF4/O2 plasma treatment. Solid State Electron. 2018, 150, 23–27. [Google Scholar] [CrossRef]
- Wei, S.; Wang, F.; Zou, X.; Wang, L.; Liu, C.; Liu, X.; Hu, W.; Fan, Z.; Ho, J.C.; Liao, L. Flexible quasi-2D perovskite/IGZO phototransistors for ultrasensitive and broadband photodetection. Adv. Mater. 2019, 32, e1907527. [Google Scholar] [CrossRef]
- Lee, S.; Song, Y.; Park, H.; Zaslavsky, A.; Paine, D.C. Channel scaling and field-effect mobility extraction in amorphous InZnO thin film transistors. Solid State Electron. 2017, 135, 94–99. [Google Scholar] [CrossRef]
- Cho, E.N.; Kang, J.H.; Yun, I. Contact resistance dependent scaling-down behavior of amorphous InGaZnO thin-film transistors. Curr. Appl. Phys. 2011, 11, 1015–1019. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, G.; Wang, W.; Li, X.; Jiang, Z. Dry Etching characteristics of amorphous indium-gallium-zinc-oxide thin films. Plasma Sci. Technol. 2012, 14, 915–918. [Google Scholar] [CrossRef]
- Kim, K.; Efremov, A.; Lee, J.; Kwon, K.H.; Yeom, G.Y. Etching mechanisms of (In, Ga, Zn)O thin films in CF4/Ar/O2 inductively coupled plasma. J. Vac. Sci. Technol. A 2015, 33, 031601. [Google Scholar] [CrossRef]
- Park, W.; Whang, K.W.; Yoon, Y.G.; Kim, J.H.; Rha, S.H.; Hwang, C.S. High rate dry etching of InGaZnO by BCl3/O2 plasma. Appl. Phys. Lett. 2011, 99, 062110. [Google Scholar] [CrossRef]
- Park, J.C.; Jeong, O.G.; Kim, J.K.; Yun, Y.H.; Pearton, S.J.; Cho, H. Comparison of chlorine- and fluorine-based inductively coupled plasmas for dry etching of InGaZnO4 films. Thin Solid Film. 2013, 546, 136–140. [Google Scholar] [CrossRef]
- Joo, Y.H.; Jin, M.J.; Kim, S.K.; Um, D.S.; Kim, C.I. BCl3/Ar plasma etching for the performance enhancement of Al-doped ZnO thin films. Appl. Surf. Sci. 2021, 516, 149957. [Google Scholar] [CrossRef]
- Lin, D.; Su, W.C.; Chang, T.C.; Chen, H.C.; Tu, Y.F.; Zhou, K.J.; Hung, Y.H.; Yang, J.; Nu, I.N.; Tsai, T.M.; et al. Degradation behavior of etch-stopper-layer structured a-InGaZnO thin-film transistors under hot-carrier stress and illumination. IEEE Trans. Electron Devices 2021, 68, 556–559. [Google Scholar] [CrossRef]
- Ravi, S.K.; Sun, W.X.; Nandakumar, D.K.; Zhang, Y.X.; Tan, S.C. Optical manipulation of work function contrasts on metal thin films. Sci. Adv. 2018, 4, eaao6050. [Google Scholar] [CrossRef]
- Joo, Y.H.; Wi, J.H.; Lee, W.J.; Chung, Y.D.; Cho, D.H.; Kang, S.; Um, D.S.; Kim, C.I. Work function tuning of zinc-tin oxide thin films using high-density O2 plasma treatment. Coatings 2020, 10, 1026. [Google Scholar] [CrossRef]
- Wandelt, K. The local work function: Concept and implications. Appl. Surf. Sci. 1997, 111, 1–10. [Google Scholar] [CrossRef]
- Kim, M.; Jeong, J.H.; Lee, H.J.; Ahn, T.K.; Shin, H.S.; Park, J.S.; Jeong, J.K.; Mo, Y.G.; Kim, H.D. High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper. Appl. Phys. Lett. 2007, 90, 212114. [Google Scholar] [CrossRef]
- Joo, Y.H.; Kim, C.I. High-density plasma etching characteristics of indium-gallium-zinc oxide thin films in CF4/Ar plasma. Thin Solid Film. 2015, 583, 40–45. [Google Scholar] [CrossRef]
- Na, J.H.; Kitamura, M.; Arakawa, Y. High field-effect mobility amorphous InGaZnO transistors with aluminum electrodes. Appl. Phys. Lett. 2008, 93, 063501. [Google Scholar] [CrossRef]
- Lee, J.S.; Chang, S.; Koo, S.M.; Lee, S.Y. High-performance a-IGZO TFT with ZrO2 gate dielectric fabricated at room temperature. IEEE Electron. Device Lett. 2010, 31, 225–227. [Google Scholar]
- Akatsuka, H. Optical Emission Spectroscopic (OES) analysis for diagnostics of electron density and temperature in non-equilibrium argon plasma based on collisional-radiative mode. Adv. Phys. X 2019, 4, 1592707. [Google Scholar] [CrossRef]
- Lim, N.; Efremov, A.; Yeom, G.Y.; Kwon, K.H. On the etching characteristics and mechanisms of HfO2 thin films in CF4/O2/Ar and CHF3/O2/Ar plasma for nano-devices. J. Nanosci. Nanotechnol. 2014, 14, 9670–9679. [Google Scholar] [CrossRef][Green Version]
- Nantel-Valiquette, M.; Kabouzi, Y.; Castanos-Martinez, E.; Makasheva, K.; Moisan, M.; Rostaing, J.C. Reduction of perfluorinated compound emissions using atmospheric pressure microwave plasmas: Mechanisms and energy efficiency. Pure Appl. Chem. 2006, 78, 1173–1185. [Google Scholar] [CrossRef]
- Kawamoto, Y.; Ogura, K.; Shojiya, M.; Takahashi, M.; Kadono, K. F-1s XPS of fluoride glasses and related fluoride crystals. J. Fluor. Chem. 1999, 96, 135–139. [Google Scholar] [CrossRef]
- Cebulla, R.; Wendt, R.; Ellmer, K. Al-doped zinc oxide films deposited by simultaneous rf and dc excitation of a magnetron plasma: Relationships between plasma parameters and structural and electrical film properties. J. Appl. Phys. 1998, 83, 1087–1095. [Google Scholar] [CrossRef]
- Coppa, B.J.; Davis, R.F.; Nemanich, R.J. Gold Schottky contacts on oxygen plasma-treated, n-type ZnO(000over-bar). Appl. Phys. Lett. 2003, 82, 400–402. [Google Scholar] [CrossRef]
- Wang, Z.G.; Zu, X.T.; Zhu, S.; Wang, L.M. Green luminescence originates from surface defects in ZnO nanoparticles. Physica E 2006, 35, 199–202. [Google Scholar] [CrossRef]
- Islam, M.N.; Ghosh, T.B.; Chopra, K.L.; Acharya, H.N. XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films. Thin Solid Film. 1996, 280, 20–25. [Google Scholar] [CrossRef]
- Dupin, J.C.; Gonbeau, D.; Vinatier, P.; Levasseur, A. Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys. Chem. Chem. Phys. 2000, 2, 1319–1324. [Google Scholar] [CrossRef]
- Greiner, M.T.; Chai, L.; Helander, M.G.; Tang, W.M.; Lu, Z.H. Transition metal oxide work functions: The influence of cation oxidation state and oxygen vacancies. Adv. Funct. Mater. 2012, 22, 4557–4568. [Google Scholar] [CrossRef]
- Yoon, Y.S.; Jee, S.H.; Kakati, N.; Maiti, J.; Kim, D.J.; Lee, S.H.; Yoon, H.H. Work function effects of ZnO thin film for acetone gas detection. Ceram. Int. 2012, 38, S653–S656. [Google Scholar] [CrossRef]
- Wang, W.Y.; Feng, Q.Y.; Jiang, K.M.; Huang, J.H.; Zhang, X.P.; Song, W.J.; Tan, R.Q. Dependence of aluminum-doped zinc oxide work function on surface cleaning method as studied by ultraviolet and X-ray photoelectron spectroscopies. Appl. Surf. Sci. 2011, 257, 3884–3887. [Google Scholar] [CrossRef]
- Jeong, J.H.; Yang, H.W.; Park, J.S.; Jeong, J.K.; Mo, Y.G.; Kim, H.D.; Song, J.; Hwang, C.S. Origin of subthreshold swing improvement in amorphous indium gallium zinc oxide transistors. Solid State Electrochem. 2008, 11, H157–H159. [Google Scholar] [CrossRef]
- Cho, Y.C.; Cha, S.Y.; Shin, J.M.; Park, J.H.; Park, S.E.; Cho, C.R.; Park, S.; Pak, H.K.; Jeong, S.Y.; Lim, A.R. The conversion of wettability in transparent conducting Al-doped ZnO thin film. Solid State Commun. 2009, 149, 609–611. [Google Scholar] [CrossRef]
- Chan, A.B.Y.; Nguyen, C.T.; Ko, P.K.; Chan, S.T.H.; Wong, S.S. Polished TFT’s: Surface roughness reduction and its correlation to device performance improvement. IEEE Trans. Electron. Devices 1997, 44, 455–463. [Google Scholar] [CrossRef]
Electron-Impact Reaction | Gas-Phase Reaction |
---|---|
- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-Y.; Joo, Y.-H.; Kim, M.P.; Um, D.-S.; Kim, C.-I. Etching Characteristics and Changes in Surface Properties of IGZO Thin Films by O2 Addition in CF4/Ar Plasma. Coatings 2021, 11, 906. https://doi.org/10.3390/coatings11080906
Lee C-Y, Joo Y-H, Kim MP, Um D-S, Kim C-I. Etching Characteristics and Changes in Surface Properties of IGZO Thin Films by O2 Addition in CF4/Ar Plasma. Coatings. 2021; 11(8):906. https://doi.org/10.3390/coatings11080906
Chicago/Turabian StyleLee, Chea-Young, Young-Hee Joo, Minsoo P. Kim, Doo-Seung Um, and Chang-Il Kim. 2021. "Etching Characteristics and Changes in Surface Properties of IGZO Thin Films by O2 Addition in CF4/Ar Plasma" Coatings 11, no. 8: 906. https://doi.org/10.3390/coatings11080906
APA StyleLee, C.-Y., Joo, Y.-H., Kim, M. P., Um, D.-S., & Kim, C.-I. (2021). Etching Characteristics and Changes in Surface Properties of IGZO Thin Films by O2 Addition in CF4/Ar Plasma. Coatings, 11(8), 906. https://doi.org/10.3390/coatings11080906