Nonvolatile Ternary Resistive Memory Performance of a Benzothiadiazole-Based Donor–Acceptor Material on ITO-Coated Glass
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Synthesis and Characterization
3.2. Optical and Electrochemical Properties
3.3. Film Morphology and Nanostructural Order
3.4. Film Morphology and Nanostructural Order
3.5. Proposed Resistive Memory Mechanism
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Sun, L.; Wang, C.; Yang, F.; Ren, X.; Zhang, X.; Dong, H.; Hu, W. Organic crystalline materials in flexible electronics. Chem. Soc. Rev. 2019, 48, 1492–1530. [Google Scholar] [CrossRef]
- Li, Y.; Qian, Q.; Zhu, X.; Li, Y.; Zhang, M.; Li, J.; Ma, C.; Li, H.; Lu, J.; Zhang, Q. Recent advances in organic-based materials for resistive memory applications. InfoMat 2020, 2, 995–1033. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Q. Linearly Fused Azaacenes: Novel approaches and new applications beyond field-effect transistors (FETs). ACS Appl. Mater. Interfaces 2015, 7, 28049–28062. [Google Scholar] [CrossRef]
- Goswami, S.; Matula, A.-J.; Rath, S.-P.; Hedstrom, S.; Saha, S.; Annamalai, M.; Sengupta, D.; Patra, A.; Ghosh, S.; Jani, H.; et al. Robust resistive memory devices using solution-processable metal-coordinated azo aromatics. Nat. Mater. 2017, 16, 1216–1224. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, G.; Zhou, Y.; Long, G.; Gu, P.; Zhang, Q. Solvent accommodation: Functionalities can be tailored through co-crystallization based on 1:1 coronene-F4TCNQ charge-transfer complex. ACS Appl. Mater. Interfaces 2017, 9, 1183–1188. [Google Scholar] [CrossRef]
- Ren, Y.; Chang, C.-L.; Ting, L.-Y.; Zhou, L.; Mao, J.-Y.; Zhang, S.-R.; Chou, H.-H.; Yang, J.-Q.; Zhou, Y.; Han, S.-T. Flexible pyrene/phenanthro [9, 10-d]imidazole-based memristive devices for mimicking synaptic plasticity. Adv. Intell. Syst. 2019, 1, 1900008. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.; Ning, G.-H.; Su, J.; Zhong, G.; Tang, W.; Tian, B.; Su, C.; Yu, D.; Zu, L.; Yang, J.; et al. Reversible multi-electron redox chemistry of π-conjugated N-containing heteroaromatic molecule-based organic cathodes. Nat. Energy 2017, 2, 17074. [Google Scholar] [CrossRef]
- Leydecker, T.; Herder, M.; Pavlica, E.; Bratina, G.; Hecht, S.; Orgiu, E.; Samorì, P. Flexible non-volatile optical memory thin-film transistor device with over 256 distinct levels based on an organic bicomponent blend. Nat. Nanotechnol. 2016, 11, 769–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ju, S.-E.; Yoon, C.-G.; Kim, J. Hybrid electroluminescence devices with solution-processed mixed emitting layers of red quantum dots and blue small molecules. Coatings 2020, 10, 645. [Google Scholar] [CrossRef]
- Shin, D.; Choi, S.-H. Recent studies of semitransparent solar cells. Coatings 2018, 8, 329. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Yang, F.; Cao, L.; Li, B.; Yuan, K.; Lei, S.; Hu, W. A robust nonvolatile resistive memory device based on a freestanding ultrathin 2D imine polymer film. Adv. Mater. 2019, 31, 1902264. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhu, X.; Li, Y.; Zhang, M.; Ma, C.; Li, H.; Lu, J.; Zhang, Q. Highly robust organometallic small-molecule-based nonvolatile resistive memory controlled by a redox-gated switching mechanism. ACS Appl. Mater. Interfaces 2019, 11, 40332–40338. [Google Scholar] [CrossRef]
- Keene, S.-T.; Melianas, A.; van de Burgt, Y.; Salleo, A. Mechanisms for enhanced state retention and stability in redox-gated organic neuromorphic devices. Adv. Electron. Mater. 2019, 5, 1800686. [Google Scholar] [CrossRef]
- Zhao, K.; Yu, F.; Liu, W.; Huang, Y.; Said, A.-A.; Li, Y.; Zhang, Q. Unexpected synthesis, properties, and nonvolatile memory device application of imidazole-fused azaacenes. J. Org. Chem. 2020, 85, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Ohtsu, H.; Den, T.; Deekamwong, K.; Muneta, I.; Kawano, M. Control of anisotropy of a redox-active molecule-based film leads to non-volatile resistive switching memory. Chem. Sci. 2019, 10, 10888–10893. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhu, X.; Qian, Q.; Ma, C.; Zhang, M.; Shi, Z.; Kuai, J.; Zhang, Y.; Yan, Z.; Zhang, Q. Nonvolatile flexible memory based on a planar zigzag-type nitrogen-doped picene. Adv. Intell. Syst. 2020, 2, 2000155. [Google Scholar] [CrossRef]
- Zhao, J.; Li, H.; Li, H.; Zhao, Q.; Ling, H.; Li, J.; Lin, J.; Xie, L.; Lin, Z.; Yi, M.; et al. Synthesis, characterization and charge storage properties of π-biindolo[2,3-b]quinoxaline for solution-processing organic transistor memory. Dye. Pigment. 2019, 167, 255–261. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, C.; Li, Z.; Gu, P.; Wang, Z.; Li, H.; Lu, J.; Zhang, Q. Controlled deposition of large-area and highly-ordered thin films: Effect of dip-coating-induced morphological evolution on resistive memory performance. J. Mater. Chem. C 2019, 7, 3512–3521. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, X.; Wang, Z.; Xu, H.; Hu, J.; Ma, J.; Liu, Y. Biodegradable natural pectin-based flexible multilevel resistive switching memory for transient electronics. Small 2019, 15, 1803970. [Google Scholar] [CrossRef]
- Zhang, B.; Fan, F.; Xue, W.; Liu, G.; Fu, Y.; Zhuang, X.; Xu, X.H.; Gu, J.; Li, R.-W.; Chen, Y. Redox gated polymer memristive processing memory unit. Nat. Commun. 2019, 10, 736. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Zhang, C.; Gu, P.; Chen, W.; Li, H.; Lu, J.; Zhang, Q. Thiadizoloquinoxaline-based N-heteroacenes as active elements for high-density data-storage devic. ACS Appl. Mater. Interfaces 2018, 10, 15971–15979. [Google Scholar] [CrossRef]
- Chan, H.; Wong, H.-L.; Ng, M.; Poon, C.-T.; Yam, V.-W. Switching of resistive memory behavior from binary to ternary logic via alteration of substituent positioning on the subphthalocyanine core. J. Am. Chem. Soc. 2017, 139, 7256–7263. [Google Scholar] [CrossRef]
- Yi, X.; Yu, Z.; Niu, X.; Shang, J.; Mao, G.; Yin, T.; Yang, H.; Xue, W.; Dhanapal, P.; Qu, S.; et al. Intrinsically stretchable resistive switching memory enabled by combining a liquid metal-based soft electrode and a metal-organic framework insulator. Adv. Electron. Mater. 2019, 5, 1800655. [Google Scholar] [CrossRef]
- Tang, J.-H.; Sun, T.-G.; Shao, J.-Y.; Gong, Z.-L.; Zhong, Y.-W. Resistive memory devices based on a triphenylamine-decorated non-precious cobalt(ii) bis-terpyridine complex. Chem. Commun. 2017, 53, 11925–11928. [Google Scholar] [CrossRef]
- Hu, B.; Wang, C.; Wang, J.; Gao, J.; Wang, K.; Wu, J.; Zhang, G.; Cheng, W.; Venkateswarlu, B.; Wang, M.; et al. Inorganic–organic hybrid polymer with multiple redox for high-density data storage. Chem. Sci. 2014, 5, 3404–3408. [Google Scholar] [CrossRef]
- Zhang, C.; Li, H.; Lin, S.; Su, Y.; Zhang, Q.; Li, Y.; Wang, K.; Lu, J. Fabrication of one-dimensional organic nanofiber networks via electrophoretic deposition for a nonvolatile memory device. ACS Appl. Mater. Interfaces 2020, 12, 57254–57263. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Gu, P.; Hu, B.; Zhang, Q. Recent progress in organic resistance memory with small molecules and inorganic–organic hybrid polymers as active elements. J. Mater. Chem. C 2015, 3, 10055–10065. [Google Scholar] [CrossRef]
- Hu, B.; Zhu, X.; Chen, X.; Pan, L.; Peng, S.; Wu, Y.; Shang, J.; Liu, G.; Yan, Q.; Li, R.-W. A multilevel memory based on proton-doped polyazomethine with an excellent uniformity in resistive switching. J. Am. Chem. Soc. 2012, 134, 17408–17411. [Google Scholar] [CrossRef]
- Wu, Z.-H.; Sun, W.-J.; Tian, H.-H.; Yu, Z.-F.; Guo, R.-X.; Shao, X.; Zhang, H.-L. 9,10-Imide-pyrene-fused pyrazaacenes (IPPA) as n-type doping materials for high-performance nonvolatile organic field effect transistor memory devices. Adv. Electron. Mater. 2019, 5, 1800598. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Y.; Zhou, Y.; Zhang, Q.; Li, H.; Lu, J. Deriving highly oriented organic nanofibers and ternary memory performance via salification-induced effects. Chem. Commun. 2018, 54, 10610–10613. [Google Scholar] [CrossRef]
- Gao, S.; Yi, X.; Shang, J.; Liu, G.; Li, R.-W. Organic and hybrid resistive switching materials and devices. Chem. Soc. Rev. 2019, 48, 1531–1565. [Google Scholar] [CrossRef]
- Zhou, L.; Mao, J.; Ren, Y.; Han, S.-T.; Roy, V.-A.-L.; Zhou, Y. Recent advances of flexible data storage devices based on organic nanoscaled materials. Small 2018, 14, 1703126. [Google Scholar] [CrossRef]
- Zheng, Y.Q.; Lei, T.; Dou, J.-H.; Xia, X.; Wang, J.-Y.; Liu, C.-J.; Pei, J. Strong electron-deficient polymers lead to high electron mobility in air and their morphology-dependent transport behaviors. Adv. Mater. 2016, 28, 7213–7219. [Google Scholar] [CrossRef]
- Yi, Z.; Wang, S.; Liu, Y. Design of high-mobility diketopyrrolopyrrole-based π-conjugated copolymers for organic thin-film transistors. Adv. Mater. 2015, 27, 3589–3606. [Google Scholar] [CrossRef]
- Zhang, Q.; He, J.; Zhuang, H.; Li, H.; Li, N.; Xu, Q.; Chen, D.; Lu, J. Rational design of small molecules to implement organic quaternary memory devices. Adv. Funct. Mater. 2016, 26, 146–154. [Google Scholar] [CrossRef]
- Zhang, J.; Gu, P.; Long, G.; Ganguly, R.; Li, Y.; Aratani, N.; Yamada, H.; Zhang, Q. Switching charge-transfer characteristics from p-type to n-type through molecular “doping” (co-crystallization). Chem. Sci. 2016, 7, 3851–3856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nketia-Yawson, B.; Lee, H.-S.; Seo, D.; Yoon, Y.; Park, W.-T.; Kwak, K.; Son, H.-J.; Kim, B.; Noh, Y.-Y. A highly planar fluorinated benzothiadiazole-based conjugated polymer for high-performance organic thin-film transistors. Adv. Mater. 2015, 27, 3045–3052. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.-W.; Jo, W.-H. Low-bandgap small molecules as non-fullerene electron acceptors composed of benzothiadiazole and diketopyrrolopyrrole for all organic solar cells. Chem. Mater. 2015, 27, 6038–6043. [Google Scholar] [CrossRef]
- Zhao, Z.; Yin, Z.; Chen, H.; Zheng, L.; Zhu, C.; Zhang, L.; Tan, S.; Wang, H.; Guo, Y.; Tang, Q.; et al. High-performance, air-stable field-effect transistors based on heteroatom-substituted naphthalenediimide-benzothiadiazole copolymers exhibiting ultrahigh electron mobility up to 8.5 cm2 V−1 s−1. Adv. Mater. 2017, 29, 1602410. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Chen, H.-F.; Wan, Y.; Li, N.-J.; Xu, Q.-F.; He, J.-H.; Chen, D.-Y.; Wang, L.-H.; Lu, J.-M. Controlling crystallite orientation of diketopyrrolopyrrole-based small molecules in thin films for highly reproducible multilevel memory device: Role of furan substitution. Adv. Funct. Mater. 2015, 25, 4246–4254. [Google Scholar] [CrossRef]
- Wang, J.-T.; Takashima, S.; Wu, H.-C.; Chiu, Y.-C.; Chen, Y.; Isono, T.; Kakuchi, T.; Satoh, T.; Chen, W.-C. Donor-acceptor poly(3-hexylthiophene)-block-pendent poly(isoindigo) with dual roles of charge transporting and storage layer for high-performance transistor-type memory applications. Adv. Funct. Mater. 2016, 26, 2695–2705. [Google Scholar] [CrossRef]
- Zhang, C.; Li, H.; Su, Y.; Zhang, Q.; Li, Y.; Lu, J. Controllable and versatile electrophoretic deposition technology for monolithic organic memory devices. ACS Appl. Mater. Interfaces 2020, 12, 15482–15490. [Google Scholar] [CrossRef] [PubMed]
- Poon, C.-T.; Wu, D.; Yam, V.-W. Boron(III)-containing donor-acceptor compound with goldlike reflective behavior for organic resistive memory devices. Angew. Chem. Int. Ed. 2016, 55, 3647–3651. [Google Scholar] [CrossRef]
- Bao, Q.; Li, H.; Li, Y.; He, J.; Xu, Q.; Li, N.; Chen, D.; Wang, L.; Lu, J. Comparison of two strategies to improve organic ternary memory performance: 3-Hexylthiophene linkage and fluorine substitution. Dye. Pigment. 2016, 130, 306–313. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhang, C.; Shi, Z.; Li, J.; Qian, Q.; Ling, S.; Zhang, Y.; Zhu, X.; Wu, X.; Zhang, J.; et al. Nonvolatile Ternary Resistive Memory Performance of a Benzothiadiazole-Based Donor–Acceptor Material on ITO-Coated Glass. Coatings 2021, 11, 318. https://doi.org/10.3390/coatings11030318
Li Y, Zhang C, Shi Z, Li J, Qian Q, Ling S, Zhang Y, Zhu X, Wu X, Zhang J, et al. Nonvolatile Ternary Resistive Memory Performance of a Benzothiadiazole-Based Donor–Acceptor Material on ITO-Coated Glass. Coatings. 2021; 11(3):318. https://doi.org/10.3390/coatings11030318
Chicago/Turabian StyleLi, Yang, Cheng Zhang, Zhiming Shi, Jingni Li, Qingyun Qian, Songtao Ling, Yufen Zhang, Xiaolin Zhu, Xingzhi Wu, Jinlei Zhang, and et al. 2021. "Nonvolatile Ternary Resistive Memory Performance of a Benzothiadiazole-Based Donor–Acceptor Material on ITO-Coated Glass" Coatings 11, no. 3: 318. https://doi.org/10.3390/coatings11030318
APA StyleLi, Y., Zhang, C., Shi, Z., Li, J., Qian, Q., Ling, S., Zhang, Y., Zhu, X., Wu, X., Zhang, J., Zhao, R., Jiang, Y., Zhang, Q., & Ma, C. (2021). Nonvolatile Ternary Resistive Memory Performance of a Benzothiadiazole-Based Donor–Acceptor Material on ITO-Coated Glass. Coatings, 11(3), 318. https://doi.org/10.3390/coatings11030318