Nanoindentation Hardness and Practical Scratch Resistance in Mechanically Tunable Anti-Reflection Coatings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coating Design and Fabrication
2.2. Optical and Nanoindentation Measurements
2.3. Scratch Resistance Tests
3. Results
3.1. Field Analysis of Real-World Scratch Events
3.2. Single-Layer Hardness Profiles vs. Scratch Depth
3.3. Mechanically Tunable Multilayer Anti-Reflective Hardcoatings (AR-HCs)
3.3.1. Nanoindentation Hardness Profile Modeling of AR-HCs
3.3.2. Scratch Resistance Testing of AR-HCs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Macleod, H.A. Thin-Film Optical Filters, 5th ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Baumeister, P.W. Methods of altering the characteristics of a multilayer stack. J. Opt. Soc. Am. A 1962, 52, 1149–1152. [Google Scholar] [CrossRef]
- Southwell, W.H. Coating design using very thin high-and low-index layers. Appl. Opt. 1985, 24, 457–460. [Google Scholar] [CrossRef]
- Raut, H.K.; Ganesh, V.A.; Nair, A.S.; Ramakrishna, S. Antireflective coatings: A critical, in-depth review. Energy Environ. Sci. 2011, 4, 3779–3804. [Google Scholar] [CrossRef]
- Aiken, D.J. High performance anti-reflection coatings for broadband multi-junction solar cells. Sol. Energy Mater. Sol. Cells 2000, 64, 393–404. [Google Scholar] [CrossRef] [Green Version]
- Fink, Y.; Winn, J.N.; Fan, S.; Chen, C.; Michel, J.; Joannopoulos, J.D.; Thomas, E.L. A dielectric omnidirectional reflector. Science 1998, 282, 1679–1682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szipöcs, R.; Spielmann, C.; Krausz, F.; Ferencz, K. Chirped multilayer coatings for broadband dispersion control in femtosecond lasers. Opt. Lett. 1994, 19, 201–203. [Google Scholar] [CrossRef] [Green Version]
- Weber, M.F.; Stover, C.A.; Gilbert, L.R.; Nevitt, T.J.; Ouderkirk, A.J. Giant birefringent optics in multilayer polymer mirrors. Science 2000, 287, 2451–2456. [Google Scholar] [CrossRef] [Green Version]
- Beauchamp, W.T.; Tuttle-Hart, T. UV/IR Reflecting Solar Cell Cover. U.S. Patent 5,449,413, 9 December 1995. [Google Scholar]
- Lequime, M. Tunable thin film filters: Review and perspectives. In Proceedings of the SPIE-Optical Systems Design, St. Etienne, France, 30 September 2003; Advances in Optical Thin Films; International Society for Optics and Photonics: Bellingham, WA, USA, 2004; Volume 5250, pp. 302–311. [Google Scholar]
- Williams, C.; Hong, N.; Julian, M.; Borg, S.; Kim, H.J. Tunable mid-wave infrared Fabry-Perot bandpass filters using phase-change GeSbTe. Opt. Express 2020, 28, 10583–10594. [Google Scholar] [CrossRef]
- Scobey, M.A.; Stupik, P.D. Stable ultranarrow bandpass filters. In Proceedings of the SPIE’s International Symposium on Optics, Imaging, and Instrumentation, San Diego, CA, USA, 7 September 1994; Optical Thin Films IV: New Developments; International Society for Optics and Photonics: Bellingham, WA, USA, 1994; Volume 2262, pp. 37–46. [Google Scholar]
- Serényi, M.; Rácz, M.; Lohner, T. Refractive index of sputtered silicon oxynitride layers for antireflection coating. Vacuum 2001, 61, 245–249. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, X.; Lin, Z.; Zhang, C.; Zhang, F. Optimization of PECVD silicon oxynitride films for anti-reflection coating. Vacuum 2003, 72, 345–349. [Google Scholar] [CrossRef]
- Hart, S.D.; Koch, K.W.; Paulson, C.A.; Price, J.J. Durable and Scratch-Resistant Anti-Reflective Articles. U.S. Patent 9,335,444, 10 May 2016. [Google Scholar]
- Paulson, C.A.; Price, J.J.; Koch, K.W.; Kim, C.-G.; Oh, J.-H.; Lin, L.; Subramanian, A.N.; Zhang, B.; Amin, J.; Mayolet, A.; et al. Industrial-grade anti-reflection coatings with extreme scratch resistance. Opt. Lett. 2019, 44, 5977–5980. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Bouchard, J.P.; Hart, G.A.; Oudard, J.F.; Paulson, C.A.; Sachenik, P.A.; Price, J.J. Silicon oxynitride based scratch resistant antireflective coatings. In Proceedings of the SPIE Defense + Security, Orlando, FL, USA, 8 May 2018; Advanced Optics for Defense Applications: UV through LWIR III; International Society for Optics and Photonics: Bellingham, WA, USA, 2018; Volume 10627, p. 106270G. [Google Scholar]
- Paulson, C.A. Scratch-Resistant and Optically Transparent Materials and Articles. U.S. Patent 10,603,870, 31 March 2020. [Google Scholar]
- Musil, J.; Baroch, P.; Vlček, J.; Nam, K.H.; Han, J.G. Reactive magnetron sputtering of thin films: Present status and trends. Thin Solid Films 2005, 475, 208–218. [Google Scholar] [CrossRef]
- Rademacher, D.; Zickenrott, T.; Vergöhl, M. Sputtering of dielectric single layers by metallic mode reactive sputtering and conventional reactive sputtering from cylindrical cathodes in a sputter-up configuration. Thin Solid Films 2013, 532, 98–105. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004, 19, 3–20. [Google Scholar] [CrossRef]
- Lucas, B.N.; Oliver, W.C.; Swindeman, J.E. The dynamics of depth-sensing, frequency-specific indentation testing. Mat. Res. Soc. Symp. Proc. 1998, 3, 14. [Google Scholar] [CrossRef]
- Irland, M.J.; Schermer, E.B. A method for evaluating the abrasion resistance of optical surfaces and thin films. Appl. Opt. 1964, 3, 751–754. [Google Scholar] [CrossRef]
- Evans, D.; Zuber, K.; Hall, C.; Griesser, H.J.; Murphy, P. Abrasion resistance of thin film coatings as measured by diffuse optical scattering. Surf. Coat. Technol. 2011, 206, 312–317. [Google Scholar] [CrossRef]
- Schneider, J.; Schula, S.; Weinhold, W.P. Characterisation of the scratch resistance of annealed and tempered architectural glass. Thin Solid Films 2012, 520, 4190–4198. [Google Scholar] [CrossRef]
- Sun, Y.; Bloyce, A.; Bell, T. Finite element analysis of plastic deformation of various TiN coating/substrate systems under normal contact with a rigid sphere. Thin Solid Films 1995, 271, 122–131. [Google Scholar] [CrossRef]
- Care, G.; Fischer-Cripps, A.C. Elastic-plastic indentation stress fields using the finite-element method. J. Mater. Sci. 1997, 32, 5653–5659. [Google Scholar] [CrossRef]
- Koch, K.W.; Lin, L.; Price, J.J.; Kim, C.-G.; Moon, D.-G.; Oh, S.-Y.; Oh, J.-K.; Oh, J.-H.; Paulson, C.A.; Zhang, B.; et al. Wavelength-Selective Coatings on Glass with High Hardness and Damage Resistance. Coatings 2020, 10, 1247. [Google Scholar] [CrossRef]
Material | Young’s Modulus (GPa) | Poisson’s Ratio | Yield Stress (GPa) |
---|---|---|---|
SiOxNy | 230 | 0.22 | 12.4 |
SiO2 | 70 | 0.22 | 4.0 |
Glass (CS layer) | 78 | 0.22 | 4.8 |
Glass (bulk) | 72 | 0.22 | 4.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Price, J.J.; Xu, T.; Zhang, B.; Lin, L.; Koch, K.W.; Null, E.L.; Reiman, K.B.; Paulson, C.A.; Kim, C.-G.; Oh, S.-Y.; et al. Nanoindentation Hardness and Practical Scratch Resistance in Mechanically Tunable Anti-Reflection Coatings. Coatings 2021, 11, 213. https://doi.org/10.3390/coatings11020213
Price JJ, Xu T, Zhang B, Lin L, Koch KW, Null EL, Reiman KB, Paulson CA, Kim C-G, Oh S-Y, et al. Nanoindentation Hardness and Practical Scratch Resistance in Mechanically Tunable Anti-Reflection Coatings. Coatings. 2021; 11(2):213. https://doi.org/10.3390/coatings11020213
Chicago/Turabian StylePrice, James J., Tingge Xu, Binwei Zhang, Lin Lin, Karl W. Koch, Eric L. Null, Kevin B. Reiman, Charles A. Paulson, Chang-Gyu Kim, Sang-Yoon Oh, and et al. 2021. "Nanoindentation Hardness and Practical Scratch Resistance in Mechanically Tunable Anti-Reflection Coatings" Coatings 11, no. 2: 213. https://doi.org/10.3390/coatings11020213
APA StylePrice, J. J., Xu, T., Zhang, B., Lin, L., Koch, K. W., Null, E. L., Reiman, K. B., Paulson, C. A., Kim, C.-G., Oh, S.-Y., Oh, J.-K., Moon, D.-G., Oh, J.-H., Mayolet, A., Williams, C. K., & Hart, S. D. (2021). Nanoindentation Hardness and Practical Scratch Resistance in Mechanically Tunable Anti-Reflection Coatings. Coatings, 11(2), 213. https://doi.org/10.3390/coatings11020213