Reduced Operation Current of Oxygen-Doped ZrN Based Resistive Switching Memory Devices Fabricated by the Radio Frequency Sputtering Method
Abstract
1. Introduction
2. Experiments
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, J.J.; Pickett, M.D.; Li, X.; Ohlberg, D.A.; Stewart, D.R.; Williams, R.S. Memristive switching mechanism for met-al/oxide/metal nanodevices. Nat. Nanotech. 2008, 3, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Han, J.-W.; Ryu, S.-W.; Kim, C.-J.; Kim, S.; Im, M.; Choi, S.-J.; Kim, J.S.; Kim, K.H.; Lee, G.S.; Oh, J.S.; et al. Partially Depleted SONOS FinFET for Unified RAM (URAM)—Unified Function for High-Speed 1T DRAM and Nonvolatile Memory. IEEE Electron Device Lett. 2008, 29, 781–783. [Google Scholar] [CrossRef]
- Kim, S.-J.; Park, Y.-S.; Lyu, S.-H.; Lee, J.-S. Nonvolatile nano-floating gate memory devices based on pentacene semiconductors and organic tunneling insulator layers. Appl. Phys. Lett. 2010, 96, 33302. [Google Scholar] [CrossRef]
- Kim, J.; Cho, S.; Kim, T.; Park, J.J. Mimicking Synaptic Behaviors with Cross-Point Structured TiOx/TiOy-Based Filamentary RRAM for Neuromorphic Applications. J. Electr. Eng. Technol. 2019, 14, 869–875. [Google Scholar] [CrossRef]
- Yang, M.; Wang, H.; Ma, X.; Gao, H.; Wang, B. Effect of nitrogen-accommodation ability of electrodes in SiNx-based resistive switching devices. Appl. Phys. Lett. 2017, 111, 233510. [Google Scholar] [CrossRef]
- Saifeddine, C.; Karim, Z.; Lotfi, B.; Atef, K. Microstructure Characterization of an Aluminium Alloy Processed by Milling Followed by Spark Plasma Sintering. Cryst. Res. Technol. 2018, 53, 1700137. [Google Scholar]
- Kim, S.; Kim, H.; Jung, S.; Kim, M.-H.; Lee, S.-H.; Cho, S.; Park, B.-G. Tuning resistive switching parameters in Si3N4-based RRAM for three-dimensional vertical resistive memory applications. J. Alloys Compd. 2016, 663, 419–423. [Google Scholar] [CrossRef]
- Chen, C.; Yang, Y.C.; Zeng, F.; Pan, F. Bipolar resistive switching in Cu/AlN/Pt nonvolatile memory device. Appl. Phys. Lett. 2010, 97, 083502. [Google Scholar] [CrossRef]
- Kim, H.-D.; An, H.-M.; Kim, K.C.; Seo, Y.; Nam, K.-H.; Chung, H.-B.; Lee, E.B.; Kim, T.G. Large resistive-switching phenomena observed in Ag/Si3N4/Al memory cells. Semicond. Sci. Technol. 2010, 25, 065002. [Google Scholar] [CrossRef][Green Version]
- Kim, H.-D.; Yun, M.J.; Kim, T.G. Self-selection bipolar resistive switching phenomena observed in NbON/NbN bilayer for cross-bar array memory applications. Appl. Phys. Lett. 2014, 105, 213510. [Google Scholar] [CrossRef]
- Zheng, Q.; Mei, A.B.; Tuteja, M.; SanGiovanni, D.G.; Hultman, L.; Petrov, I.; Greene, J.E.; Cahill, D.G. Phonon and electron contributions to the thermal conductivity of VNx epitaxial layers. Phys. Rev. Mater. 2017, 1, 065002. [Google Scholar] [CrossRef]
- Kumar, D.; Chand, U.; Siang, L.W.; Tseng, T.-Y. ZrN-Based Flexible Resistive Switching Memory. IEEE Electron Device Lett. 2020, 41, 705. [Google Scholar] [CrossRef]
- Čyvienė, J.; Dudonis, J. Zr, ZrN and Zr/Al Thin Films Deposition Using Arc Evaporation and Annealing. Acta Phys. Pol. A 2008, 114, 769–777. [Google Scholar] [CrossRef]
- Kim, H.-D.; An, H.-M.; Sung, Y.-M.; Im, H.; Kim, T.G. Bipolar Resistive-Switching Phenomena and Resistive-Switching Mechanisms Observed in Zirconium Nitride-Based Resistive-Switching Memory Cells. IEEE Trans. Device Mater. Reliab. 2013, 13, 252–257. [Google Scholar] [CrossRef]
- Chiu, F.-C. A Review on Conduction Mechanisms in Dielectric Films. Adv. Mater. Sci. Eng. 2014, 2014, 1–18. [Google Scholar] [CrossRef]
- Lim, E.W.; Ismail, R. Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey. Electronics 2015, 4, 586–613. [Google Scholar] [CrossRef]
- Nath, R.; Perlman, M. Effect of crystallinity on charge storage in polypropylene and polyethylene. IEEE Trans. Electr. Insul. 1989, 24, 409–412. [Google Scholar] [CrossRef]
- Boukezzi, L.; Boubakeur, A.; Lallouani, M. Effect of artificial thermal aging on the crystallinity of XLPE insulation cables: X-ray study. In Proceedings of the 2007 Annual Report-Conference on Electrical Insulation and Dielectric Phenomena, Vancouver, BC, Canada, 14–17 October 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 65–68. [Google Scholar]
- Oh, S.-I.; Rani, J.R.; Hong, S.-M.; Jang, J.-H. Self-rectifying bipolar resistive switching memory based on an iron oxide and graphene oxide hybrid. Nanoscale 2017, 9, 15314–15322. [Google Scholar] [CrossRef]
- Bang, S.; Kim, M.-H.; Kim, T.-H.; Lee, D.K.; Kim, S.; Cho, S.; Park, B.-G. Gradual switching and self-rectifying characteristics of Cu/α-IGZO/p+-Si RRAM for synaptic device application. Solid-State Electron. 2018, 150, 60–65. [Google Scholar] [CrossRef]
- Kim, H.-D.; Kim, S.; Yun, M.J. Self-rectifying resistive switching behavior observed in Al2O3-based resistive switching memory devices with p-AlGaN semiconductor bottom electrode. J. Alloys Compd. 2018, 742, 822–827. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, B.; Fang, Z.; Wang, X.; Tang, Y.; Sohn, J.; Wong, H.-S.P.; Wong, S.S.; Lo, G.-Q. All-Metal-Nitride RRAM Devices. IEEE Electron Device Lett. 2014, 36, 29–31. [Google Scholar] [CrossRef]
- Fu, Y.; Huang, C.-C.; Wang, J.-C. Nonlinear resistive switching features of rapid-thermal-annealed aluminum nitride dielectrics with modified charge trapping behaviors. Microelectron. Eng. 2019, 216, 111033. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, J.; Bae, D.; Kim, S.; Kim, H.-D. Reduced Operation Current of Oxygen-Doped ZrN Based Resistive Switching Memory Devices Fabricated by the Radio Frequency Sputtering Method. Coatings 2021, 11, 197. https://doi.org/10.3390/coatings11020197
Jung J, Bae D, Kim S, Kim H-D. Reduced Operation Current of Oxygen-Doped ZrN Based Resistive Switching Memory Devices Fabricated by the Radio Frequency Sputtering Method. Coatings. 2021; 11(2):197. https://doi.org/10.3390/coatings11020197
Chicago/Turabian StyleJung, Jinsu, Dongjoo Bae, Sungho Kim, and Hee-Dong Kim. 2021. "Reduced Operation Current of Oxygen-Doped ZrN Based Resistive Switching Memory Devices Fabricated by the Radio Frequency Sputtering Method" Coatings 11, no. 2: 197. https://doi.org/10.3390/coatings11020197
APA StyleJung, J., Bae, D., Kim, S., & Kim, H.-D. (2021). Reduced Operation Current of Oxygen-Doped ZrN Based Resistive Switching Memory Devices Fabricated by the Radio Frequency Sputtering Method. Coatings, 11(2), 197. https://doi.org/10.3390/coatings11020197