Alloyed High-k-Based Resistive Switching Memory in Contact Hole Structures
Abstract
1. Introduction
2. Experiments
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Frank, D.; Dennard, R.; Nowak, E.; Solomon, P.; Taur, Y.; Wong, H. Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 2001, 89, 259–288. [Google Scholar] [CrossRef]
- Maffitt, T.; DeBrosse, J.; Gabric, J.; Gow, E.; Lamorey, M.; Parenteau, J.; Willmott, D.; Wood, M.; Gallagher, W. Design consideration for MRAM. IBM J. Res. Dev. 2006, 50, 25. [Google Scholar] [CrossRef]
- Liu, T.; Zhao, Y.; Xue, C.; Li, M. Power-aware varialbe partitioning for DSPs with hybrid PRAM and DRAM main memory. IEEE Trans. Signal Proc. 2013, 61, 3509. [Google Scholar] [CrossRef]
- Li, T.; Long, S.; Liu, Q.; Lu, H.; Liu, S.; Liu, M. An overview of resistive random access memory devices. Chin. Sci. Bull. 2011, 56, 3072. [Google Scholar] [CrossRef]
- Kim, S.; Kim, H.; Hwang, S.; Kim, M.; Chang, Y.; Park, B. Analog synaptic behavior of a silicon nitride memristor. ACS Appl. Mater. Interfaces 2017, 9, 46. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Chang, Y.; Park, B. Understanding rectifying and nonlinear bipolar resistive switching characteristics in Ni/SiNx/p-Si memory devices. RSC Adv. 2017, 7, 17882. [Google Scholar] [CrossRef]
- Maestro, M.; Martin-Martinez, J.; Diaz, J.; Crespo-Yepes, A.; Gonzalez, M.; Rodriguez, R.; Campabadal, F.; Nafria, M.; Aymerich, X. Analysis of set and reset mechanisms in Ni/HfO2-based RRAM with fast ramped voltages. Microelectron. Eng. 2015, 147, 176. [Google Scholar] [CrossRef][Green Version]
- Akihito, S. Resistive switching in transition metal oxides. Mater. Today 2008, 11, 28. [Google Scholar]
- Wong, H.; Lee, H.; Yu, S.; Chen, Y.; Wu, Y.; Chen, P.; Lee, B.; Chen, F.; Tsai, M. Metal-oxide RRAM. Proc. IEEE. 2012, 100, 1951–1970. [Google Scholar] [CrossRef]
- Chang, T.; Chang, K.; Tsai, T.; Chu, T.; Sze, S.M. Resistance random access memory. Mater. Today 2016, 19, 254–264. [Google Scholar] [CrossRef]
- Zhu, L.; Zhou, J.; Guo, Z.; Sun, Z. An overview of materials issues in resistive random access memory. J. Mater. 2015, 1, 285. [Google Scholar] [CrossRef]
- Liu, J.; Hsu, C.; Wang, I.; Hou, T. Categorization of multilevel-cell storage-class memory: An RRAM example. IEEE Trans. Electron Devices 2015, 62, 2510. [Google Scholar]
- Wu, W.; Wu, H.; Gao, B.; Deng, N.; Yu, S.; Qian, H. Improving analog switching in HfOx-based resistive memory with a thermal enhanced layer. IEEE Electron Dev. Lett. 2017, 38, 1019. [Google Scholar] [CrossRef]
- Wang, R.; Shi, T.; Zhang, X.; Wang, W.; Wei, J.; Lu, J.; Zhao, X.; Wu, Z.; Cao, R.; Long, S.; et al. Bipolar analog memristors as artificial synapses for neuromorphic computing. Materials 2018, 11, 2102. [Google Scholar] [CrossRef] [PubMed]
- Moon, K.; Lim, S.; Park, J.; Sung, C.; Oh, S.; Woo, J.; Lee, J.; Hwang, H. RRAM-based synapse device for neuromorphic systems. Faraday Discuss. 2019, 213, 421. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Zhao, C.; Qi, Y.; Xu, W.; Liu, Y.; Mitrovic, I.; Yang, L.; Zhao, C. Advances of RRAM devices: Resistive switching mechanisms, materials and bionic synaptic application. Nanomaterials 2020, 10, 1437. [Google Scholar] [CrossRef] [PubMed]
- Zahoor, F.; Zulkifli, T.; Khanday, F. Resistive random access memory (RRAM): An overview of materials, switching mechanism, performance, multilevel cell (MLC) storage, modeling, and applications. Nanoscale Res. Lett. 2020, 15, 90. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yan, X. Overview of resistive random access memory (RRAM): Materials, filament mechanisms, performance optimization, and prospects. Phys. Status Solidi RRL 2019, 13, 1900073. [Google Scholar] [CrossRef]
- Wu, M.; Ting, Y.; Chen, J.; Wu, W. Low power consumption nanofilamentary ECM and VCM cells in a single sidewall of high-density VRRAM arrays. Adv. Sci. 2019, 6, 1902363. [Google Scholar] [CrossRef]
- Choi, H.; Paik, S.; Kim, Y.; Kim, M.; Kang, Y.; Lee, S.; Jho, J.; Park, J. Facilitation of the thermochemical mechanism in NiO-based resistive switching memories via tip-enhanced electric fields. J. Ind. Eng. Chem. 2021, 94, 233. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Chen, Y.; Kim, M.; Kim, H.; Kwon, M.; Hwang, S.; Ismail, M.; Li, Y.; Miao, X.; et al. Neuronal dynamics in HfOx/AlOy-based homeothermic synaptic memristors with low-power and homogeneous resistive switching. Nanoscale 2019, 11, 237. [Google Scholar]
- Park, J.; Biju, K.; Jung, S.; Lee, W.; Lee, J.; Kim, S.; Park, S.; Shin, J.; Hwang, H. Multibit operation of TiOx-based ReRAM by Schottky barrier height engineering. IEEE Electron Device Lett. 2011, 32, 476. [Google Scholar] [CrossRef]
- Wang, Y.; Kang, K.; Kim, M.; Lee, H.; Waser, R.; Wouters, D.; Dittmann, R.; Yang, J.; Park, H. Mott-transition-based RRAM. Mater. Today 2019, 28, 63. [Google Scholar] [CrossRef]
- Khan, S.; Kim, S. Comparison of diverse resistive switching characteristics and demonstration of transitions among them in Al-incorporated HfO2-based resistive switching memory for neuromorphic applications. RSC Adv. 2020, 10, 31342. [Google Scholar] [CrossRef]
- Pavan, P.; Puglisi, F.; Zanotti, T. Smart logic-in-memory architecture for low-power non von Neumann computing. IEEE J. Electron Devices Soc. 2020, 8, 757. [Google Scholar]
- Zhao, L.; Clima, S.; Magyari-kope, B.; Jurczak, M.; Nishi, Y. Ab initio modeling of oxygen-vacancy formation in doped-HfOx RRAM: Effects of oxide phases, stoichiometry, and dopant concentrations. Appl. Phys. Lett. 2015, 107, 13504. [Google Scholar] [CrossRef]
- Zhou, H.; Wei, X.; Wei, W.; Ye, C.; Zhang, R.; Zhang, L.; Xia, Q.; Huang, H.; Wang, B. On the origin of enhanced resistive switching behaviors of Ti-doped HfO2 film with nitrogen annealing atmosphere. Surf. Coat. Technol. 2019, 359, 150–154. [Google Scholar] [CrossRef]
- Perez, E.; Grossi, A.; Zambelli, C.; Olivo, P.; Roelofs, R.; Wenger, C. Reduction of the cell-to-cell variability in Hf1−xAlxOy based RRAM arrays by using program algorithms. IEEE Electron Device Lett. 2017, 38, 175–178. [Google Scholar] [CrossRef]
- Traore, B.; Blaise, P.; Vianello, E.; Grampeix, H.; Jeannot, S.; Perniola, L.; De Salvo, B.; Nishi, Y. On the origin of low-resistance state retention failure in HfO2-based RRAM and impact of doping/alloying. IEEE Trans. Electron Device 2015, 62, 4029–4036. [Google Scholar] [CrossRef]
- Mahata, C.; Kim, S. Modified resistive switching performance by increasing Al concentration in HfO2 on transparent indium tin oxide electrode. Ceram. Int. 2021, 47, 1199. [Google Scholar] [CrossRef]
- Kim, S.; Cho, S.; Park, B.G. Fully Si compatible SiN resistive switching memory with large-rectification ratio. AIP Adv. 2016, 6, 015021. [Google Scholar] [CrossRef]
- Wu, Y.H.; Wu, J.R.; Hou, C.Y.; Lin, C.C.; Wu, M.L.; Chen, L.L. ZrTiOx-based resistive memory with MIS structure formed on Ge layer. IEEE Electron Device Lett. 2012, 33, 435–437. [Google Scholar] [CrossRef]
- Ielmini, D.; Nardi, F.; Cagli, C. Physical models of size-dependent nanofilament formation and rupture in NiO resistive switching memories. Nanotechnology 2011, 22, 254022. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.F.; Fowler, B.; Chen, Y.C.; Chen, Y.T.; Wang, Y.; Xue, F.; Zhou, F.; Lee, J.C. Intrinsic SiOx-based unipolar resistive switching memory. II. Thermal effects on charge transport and characterization of multilevel programing. J. Appl. Phys. 2014, 116, 043709. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, B.; Mahata, C.; Ryu, H.; Ismail, M.; Yang, B.-D.; Kim, S. Alloyed High-k-Based Resistive Switching Memory in Contact Hole Structures. Coatings 2021, 11, 451. https://doi.org/10.3390/coatings11040451
Kim B, Mahata C, Ryu H, Ismail M, Yang B-D, Kim S. Alloyed High-k-Based Resistive Switching Memory in Contact Hole Structures. Coatings. 2021; 11(4):451. https://doi.org/10.3390/coatings11040451
Chicago/Turabian StyleKim, Byeongjeong, Chandreswar Mahata, Hojeong Ryu, Muhammad Ismail, Byung-Do Yang, and Sungjun Kim. 2021. "Alloyed High-k-Based Resistive Switching Memory in Contact Hole Structures" Coatings 11, no. 4: 451. https://doi.org/10.3390/coatings11040451
APA StyleKim, B., Mahata, C., Ryu, H., Ismail, M., Yang, B.-D., & Kim, S. (2021). Alloyed High-k-Based Resistive Switching Memory in Contact Hole Structures. Coatings, 11(4), 451. https://doi.org/10.3390/coatings11040451