Ion Sensitive GO-Si Based Metal-Semiconductor Junction Resistor Gas Sensor
Abstract
:1. Introduction
2. Experiment
2.1. Structure of Ion Sensitive GO-Si Based Metal-Semiconductor Junction Resistor Gas Sensor
2.2. Fabrication Process of Ion Sensitive GO-Si Based Metal-Semiconductor Junction Resistor Gas Sensor
3. Results and Discussion
3.1. Gas Sensor Test System
3.2. Sensing Performance of Ion Sensitive GO-Si Based Metal-Semiconductor Junction Resistor Gas Sensor
3.3. Research on the Detection Limit of Ion Sensitive GO-Si Based Metal-Semiconductor Junction Resistor Gas Sensor for Low Concentration of Ammonia
3.4. Selectivity and Stability of Ion Sensitive GO-Si Based Metal-Semiconductor Junction Resistor Gas Sensor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, U.; Kim, T.H.; Ryu, H.; Seung, W.; Kim, S.W. Graphene tribotronics for electronic skin and touch screen applications. Adv. Mater. 2017, 19, 1603544. [Google Scholar] [CrossRef]
- Gunther, D.; LeBlanc, G.; Prasai, D.; Zhang, J.R.; Cliffel, D.E.; Bolotin, K.I.; Jennings, G.K. Photosystem I on graphene as a highly transparent, photoactive electrode. Langmuir 2013, 29, 4177–4180. [Google Scholar] [CrossRef]
- Luo, J.; Jang, H.D. Huang effect of sheet morphology on the scalability of graphene-based ultracapacitors. ACS Nano 2013, 7, 1464–1471. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Kim, J.; Zhu, Y.; Yang, J.; Lee, G.H.; Lee SLiu, G.; Pei, R.; Yu, J.; Lin, Q. An aptameric graphene Nano sensor for label-free detection of small-molecule bomarkers. Biosens. Bioelectron. 2015, 71, 222–229. [Google Scholar] [CrossRef] [Green Version]
- Bae, S.H.; Lee, Y.; Sharma, B.K.; Lee, H.J.; Kim, J.H.; Ahn, J.H. Graphene-based transparent strain sensor. Carbon 2013, 51, 236–242. [Google Scholar] [CrossRef]
- Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.W.; Blake, P.; Katsnelson, M.I.; Novoselov, K.S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655. [Google Scholar] [CrossRef]
- Wang, S.; Jiang, Y.; Liu, B.; Duan, Z.; Pan, H.; Yuan, Z.; Xie, J.; Wang, J.; Fang, Z.; Tai, H. Ultrathin Nb2CTx nanosheets-supported polyaniline nanocomposite: Enabling ultrasensitive NH3 detection. Sens. Actuators B Chem. 2021, 343, 130069. [Google Scholar] [CrossRef]
- Nagai, T.; Tamura, S.; Imanaka, N. Solid electrolyte type NH3 gas sensor applicable in a humid atmosphere. Electrochemistry 2010, 78, 126–128. [Google Scholar] [CrossRef] [Green Version]
- Hijazi, M.; Stambouli, V.; Rieu, M.; Tournier, G.; Pijolat, C.; Viricelle, J.-P. Sensitive and selective ammonia gas sensor based on molecularly modified SnO2. Proceedings 2017, 1, 399. [Google Scholar] [CrossRef] [Green Version]
- Qiu, H.F.; Zhao, D.; Teng, J.Q.; Jia, T.H.; Lei, S.C.; Wang, C.; WANG, X. A construction method and gas sensitive characteristics of graphene oxide sensors. J. Xi’an Jiaotong Univ. 2018, 52, 95–101. [Google Scholar]
- Yang, C.M.; Chen, T.C.; Yang, Y.C.; Hsiao, M.C.; Meyyappan, M.; Lai, C.S. Ultraviolet illumination effect on monolayer graphene-based resistive sensor for acetone detection. Vacuum 2017, 140, 89–95. [Google Scholar] [CrossRef]
- Sun, H.; Chen, D.; Wu, Y.; Yuan, Q.; Guo, L.; Dai, D.; Lin, C.T. High quality graphene films with a clean surface prepared by an UV/Ozone assisted transfer process. J. Mater. Chem. C 2017, 5, 1880–1884. [Google Scholar] [CrossRef]
- Hou, S.; Hu, Z.; Guan, F.; Li, C.; Xie, H. Effect of ozone treatment on gas-sensitity of graphene-based NO2 gas sensor. Transducer Microsyst. Technol. 2014, 33, 15–17. [Google Scholar]
- Bai, S.; Zhao, Y.; Sun, J.; Tian, Y.; Luo, R.; Li, D.; Chen, A. Ultrasensitive room temperature NH3 sensor based on a graphene–polyaniline hybrid loaded on pet thin film. Chem. Commun. 2015, 51, 7524–7527. [Google Scholar] [CrossRef]
- Mortazavi Zanjani, S.M.; Sadeghi, M.M.; Holt, M.; Chowdhury, S.F.; Tao, L.; Akinwande, D. Enhanced sensitivity of graphene ammonia gas sensors using molecular doping. Appl. Phys. Lett. 2016, 108, 666. [Google Scholar] [CrossRef]
- Toda, K.; Furue, R.; Hayami, S. Recent progress in application of graphene oxide for gas sensing: A review. Anal. Chim. Acta 2015, 878, 43–53. [Google Scholar] [CrossRef]
- Wu, J.; Tao, K.; Miao, J.; Norford, L.K. Improved selectivity and sensitivity of gas sensing using a 3D reduced graphene oxide hydrogel with an integrated microheater. ACS Appl. Mater. Interfaces 2015, 7, 27502–27510. [Google Scholar] [CrossRef]
- Yoo, S.; Li, X.; Wu, Y.; Liu, W.; Wang, X.; Yi, W. Ammonia gas detection by tannic acid functionalized and reduced graphene oxide at room temperature. J. Nanomater. 2014, 7, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wu, Y.; Song, H.; Yoo, S.; Liu, W.; Wang, X. Controllable decoration of CVD-grown graphene with Au NP as a promising ammonia sensing platform. J. Mater. Sci. Mater. Electron. 2014, 26, 1500–1506. [Google Scholar] [CrossRef]
- Wang, X.; Sun, X.; Hu, P.A.; Zhang, J.; Wang, L.; Feng, W. Colorimetric sensor based on self-assembled polydiacetylene/graphene-stacked composite film for vapor-phase volatile organic compounds. Adv. Funct. Mater. 2013, 23, 6044–6050. [Google Scholar] [CrossRef]
- Muñoz, R.; Gómez-Aleixandre, C. Review of CVD synthesis of graphene. Chem. Vap. Depos. 2013, 19, 297–322. [Google Scholar] [CrossRef] [Green Version]
- Nagelli, E.; Naik, R.; Xue, Y.; Gao, Y.; Zhang, M.; Dai, L. Sensor arrays from multicomponent micropatterned nanoparticles and graphene. Nanotechnology 2013, 24, 444010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, G.; Li, Y.; Rana, R.K.; Zhu, J.J. Pt-Au/nitrogen-doped graphene nanocomposites for enhanced electrochemical activities. J. Mater. Chem. A 2013, 1, 1754–1762. [Google Scholar] [CrossRef]
- Yu, L.; Song, H.; Tang, Y.; Zhang, L. Controllable deposition of ZnO-doped SnO2 nanowires on Au/graphene and their application in cataluminescence sensing for alcohols and ketones. Sens. Actuators B Chem. 2014, 203, 726–735. [Google Scholar] [CrossRef]
- Leong, W.S.; Nai, C.T.; Thong, J.T. What does annealing do to metal-graphene contacts. Nano Lett. 2014, 14, 3840–3847. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Li, X.; Lee, Y.K.; Zhang, A. Direct label-free protein detection in high ionic strength solution and human plasma using dual-gate nanoribbon-based ion-sensitive field-effect transistor biosensor. Biosens. Bioelectron. 2018, 117, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Lei, S.; Li, X.; Guo, S.; Cui, P.; Wei, X.; Liu, W.; Liu, H. A Reduced GO-Graphene Hybrid Gas Sensor for Ultra-Low Concentration Ammonia Detection. Sensors 2018, 18, 3147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Jiang, Y.D.; Xie, T.; Tai, H.L.; Xie, G.Z. A novel sensing mechanism for resistive gas sensors based on layered reduced graphene oxide thin films at room temperature. Sens. Actuators B Chem. 2014, 203, 135–142. [Google Scholar] [CrossRef]
- Srivastava, S.; Jain, K.; Singh, V.N.; Singh, S.; Vijayan, N.; Dilawar, N.; Gupta, G.; Senguttuvan, T.D. Faster response of NO2 sensing in graphene-WO3 nanocomposites. Nanotechnology 2012, 23, 205501. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Yang, H.; Wei, Z.; Xue, Y.; Sun, Y.; Zhang, W.; Li, P.; Gong, W.; Zhuiykov, S.; Hu, J. NH3 sensor based on 3D hierarchical flower-shaped n-ZnO/p-NiO heterostructures yields outstanding sensing capabilities at ppb level. Sensors 2020, 20, 4754. [Google Scholar] [CrossRef]
- Fan, X.; Deng, S.; Wei, Z.; Wang, F.; Tan, C.; Meng, H. Ammonia gas sensor based on graphene oxide-coated mach-zehnder interferometer with hybrid fiber structure. Sensors 2021, 21, 3886. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Singh, B.; Park, J.-H.; Rathi, S.; Lee, I.; Maeng, S.; Joh, H.-I.; Lee, C.-H.; Kim, G.-H. Die-lectrophoresis of graphene oxide nanostructures for hydrogen gas sensor at room temperature. Sens. Actuators B Chem. 2014, 194, 296–302. [Google Scholar] [CrossRef]
NH3 Concentration | Initial Value of S/% | S after 10 days/% | Retention Rate/% |
---|---|---|---|
50 ppm | 16.649 | 13.212 | 79.36 |
100 ppm | 21.008 | 15.916 | 75.76 |
250 ppm | 29.777 | 26.176 | 87.91 |
500 ppm | 41.603 | 41.330 | 99.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Zhao, D.; Ma, Z.; Li, G.; Zhao, D.; Li, X. Ion Sensitive GO-Si Based Metal-Semiconductor Junction Resistor Gas Sensor. Coatings 2021, 11, 1310. https://doi.org/10.3390/coatings11111310
Zhao Y, Zhao D, Ma Z, Li G, Zhao D, Li X. Ion Sensitive GO-Si Based Metal-Semiconductor Junction Resistor Gas Sensor. Coatings. 2021; 11(11):1310. https://doi.org/10.3390/coatings11111310
Chicago/Turabian StyleZhao, Yi, Deyin Zhao, Zhenzhen Ma, Gong Li, Dan Zhao, and Xin Li. 2021. "Ion Sensitive GO-Si Based Metal-Semiconductor Junction Resistor Gas Sensor" Coatings 11, no. 11: 1310. https://doi.org/10.3390/coatings11111310
APA StyleZhao, Y., Zhao, D., Ma, Z., Li, G., Zhao, D., & Li, X. (2021). Ion Sensitive GO-Si Based Metal-Semiconductor Junction Resistor Gas Sensor. Coatings, 11(11), 1310. https://doi.org/10.3390/coatings11111310