Effect of Coarse Recycled Aggregate on Failure Strength for Asphalt Mixture Using Experimental and DEM Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mixture Design
2.3. Experimental Methods
2.3.1. Uniaxial Compression Test
2.3.2. Direct Tensile Test
2.3.3. Time Temperature Equivalence Principle
2.3.4. Mohr-Coulomb Theory
2.4. Numerical Simulation
3. Results
3.1. Experimental Investigations
3.1.1. Uniaxial Compression Test
3.1.2. Direct Tensile Test
3.1.3. Mohr-Coulomb Strength
3.2. Numerical Investigations
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wu, Z.; Ann, T.; Shen, L.; Liu, G. Quantifying construction and demolition waste: An analytical review. Waste Manag. 2014, 34, 1683–1692. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Wu, H.; Zhang, H.; Duan, H.; Wang, J.; Jiang, W.; Dong, B.; Liu, G.; Zuo, J.; Song, Q. Characterizing the generation and flows of construction and demolition waste in China. Constr. Build. Mater. 2017, 136, 405–413. [Google Scholar] [CrossRef] [Green Version]
- Aslam, M.S.; Huang, B.; Cui, L. Review of construction and demolition waste management in China and USA. J. Environ. Manag. 2020, 264, 110445. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zhong, J.; Zhu, J.; Wang, D. Influence of demolition waste used as recycled aggregate on performance of asphalt mixture. Road Mater. Pavement Des. 2013, 14, 679–688. [Google Scholar] [CrossRef]
- Cho, Y.-H.; Yun, T.; Kim, I.T.; Choi, N.R. The application of recycled concrete aggregate (RCA) for hot mix asphalt (HMA) base layer aggregate. KSCE J. Civ. Eng. 2011, 15, 473–478. [Google Scholar] [CrossRef]
- Martinho, F.; Picado-Santos, L.; Capitão, S. Feasibility assessment of the use of recycled aggregates for asphalt mixtures. Sustainability 2018, 10, 1737. [Google Scholar] [CrossRef] [Green Version]
- Fatemi, S.; Imaninasab, R. Performance evaluation of recycled asphalt mixtures by construction and demolition waste materials. Constr. Build. Mater. 2016, 120, 450–456. [Google Scholar] [CrossRef]
- Arabani, M.; Moghadas Nejad, F.; Azarhoosh, A. Laboratory evaluation of recycled waste concrete into asphalt mixtures. Int. J. Pavement Eng. 2013, 14, 531–539. [Google Scholar] [CrossRef]
- Song, W.; Xu, Z.; Xu, F.; Wu, H.; Yin, J. Fracture investigation of asphalt mixtures containing reclaimed asphalt pavement using an equivalent energy approach. Eng. Fract. Mech. 2021, 253, 107892. [Google Scholar] [CrossRef]
- Behnia, B.; Dave, E.V.; Ahmed, S.; Buttlar, W.G.; Reis, H. Effects of recycled asphalt pavement amounts on low-temperature cracking performance of asphalt mixtures using acoustic emissions. Transp. Res. Rec. 2011, 2208, 64–71. [Google Scholar] [CrossRef]
- Huang, Q.; Qian, Z.; Hu, J.; Zheng, D.; Chen, L.; Zhang, M.; Yu, J. Investigation on the properties of aggregate-mastic interfacial transition zones (ITZs) in asphalt mixture containing recycled concrete aggregate. Constr. Build. Mater. 2021, 269, 121257. [Google Scholar] [CrossRef]
- Guo, Q.; Chen, Z.; Liu, P.; Li, Y.; Hu, J.; Gao, Y.; Li, X. Influence of basalt fiber on mode I and II fracture properties of asphalt mixture at medium and low temperatures. Theor. Appl. Fract. Mech. 2021, 112, 102884. [Google Scholar] [CrossRef]
- Wei, H.; Li, J.; Wang, F.; Zheng, J.; Tao, Y.; Zhang, Y. Numerical investigation on fracture evolution of asphalt mixture compared with acoustic emission. Int. J. Pavement Eng. 2021, 1–11. [Google Scholar] [CrossRef]
- Lu, D.X.; Nguyen, N.H.; Saleh, M.; Bui, H.H. Experimental and numerical investigations of non-standardised semi-circular bending test for asphalt concrete mixtures. Int. J. Pavement Eng. 2021, 22, 960–972. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, H.; Gao, Y.; Jiao, Y.; Liu, F.; Dong, Z. Investigation of the low-temperature properties and cracking resistance of fiber-reinforced asphalt concrete using the DIC technique. Eng. Fract. Mech. 2020, 229, 106951. [Google Scholar] [CrossRef]
- Liu, C.; Lv, S.; Jin, D.; Qu, F. Laboratory investigation for the road performance of asphalt mixtures modified by rock asphalt–styrene butadiene rubber. J. Mater. Civ. Eng. 2021, 33, 04020504. [Google Scholar] [CrossRef]
- Qin, X.; Ma, L.; Wang, H. Comparison analysis of dynamic modulus of asphalt mixture: Indirect tension and uniaxial compression test. Transp. A: Transp. Sci. 2019, 15, 165–178. [Google Scholar] [CrossRef]
- Cerni, G.; Bocci, E.; Cardone, F.; Corradini, A. Correlation between asphalt mixture stiffness determined through static and dynamic indirect tensile tests. Arab. J. Sci. Eng. 2017, 42, 1295–1303. [Google Scholar] [CrossRef]
- Lv, S.; Liu, C.; Chen, D.; Zheng, J.; You, Z.; You, L. Normalization of fatigue characteristics for asphalt mixtures under different stress states. Constr. Build. Mater. 2018, 177, 33–42. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.; Yao, Y.; Zheng, J.; Gu, F. Geometric anisotropy modeling and shear behavior evaluation of graded crushed rocks. Constr. Build. Mater. 2018, 183, 346–355. [Google Scholar] [CrossRef]
- Qian, G.; Hu, K.; Li, J.; Bai, X.; Li, N. Compaction process tracking for asphalt mixture using discrete element method. Constr. Build. Mater. 2020, 235, 117478. [Google Scholar] [CrossRef]
- Shaheen, M.; Al-Mayah, A.; Tighe, S. A novel method for evaluating hot mix asphalt fatigue damage: X-ray computed tomography. Constr. Build. Mater. 2016, 113, 121–133. [Google Scholar] [CrossRef]
- Chen, J.; Huang, B.; Shu, X. Air-void distribution analysis of asphalt mixture using discrete element method. J. Mater. Civ. Eng. 2013, 25, 1375–1385. [Google Scholar] [CrossRef]
- Ma, T.; Zhang, D.; Zhang, Y.; Wang, S.; Huang, X. Simulation of wheel tracking test for asphalt mixture using discrete element modelling. Road Mater. Pavement Des. 2018, 19, 367–384. [Google Scholar] [CrossRef]
- Zelelew, H.M.; Papagiannakis, A.T. Micromechanical modeling of asphalt concrete uniaxial creep using the discrete element method. Road Mater. Pavement Des. 2010, 11, 613–632. [Google Scholar] [CrossRef]
- Chen, M.; Wong, Y. Evaluation of the development of aggregate packing in porous asphalt mixture using discrete element method simulation. Road Mater. Pavement Des. 2017, 18, 64–85. [Google Scholar] [CrossRef]
- Al Khateeb, L.; Anupam, K.; Erkens, S.; Scarpas, T. Micromechanical simulation of porous asphalt mixture compaction using discrete element method (DEM). Constr. Build. Mater. 2021, 301, 124305. [Google Scholar] [CrossRef]
- Song, W.; Xu, F.; Wu, H.; Xu, Z. Investigating the skeleton behaviors of open-graded friction course using discrete element method. Powder Technol. 2021, 385, 528–536. [Google Scholar] [CrossRef]
- Feng, H.; Pettinari, M.; Stang, H. Study of normal and shear material properties for viscoelastic model of asphalt mixture by discrete element method. Constr. Build. Mater. 2015, 98, 366–375. [Google Scholar] [CrossRef]
- Rafi, M.M.; Qadir, A.; Ali, S.; Siddiqui, S.H. Performance of hot mix asphalt mixtures made of recycled aggregates. J. Test. Eval. 2014, 42, 357–367. [Google Scholar] [CrossRef]
- Code of China. Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering; JTG E20—2011; Code of China: Beijing, China, 2011. [Google Scholar]
- Jin, J.; Gao, Y.; Wu, Y.; Li, R.; Liu, R.; Wei, H.; Qian, G.; Zheng, J. Performance evaluation of surface-organic grafting on the palygorskite nanofiber for the modification of asphalt. Constr. Build. Mater. 2021, 268, 121072. [Google Scholar] [CrossRef]
- Jin, J.; Gao, Y.; Wu, Y.; Liu, S.; Liu, R.; Wei, H.; Qian, G.; Zheng, J. Rheological and adhesion properties of nano-organic palygorskite and linear SBS on the composite modified asphalt. Powder Technol. 2021, 377, 212–221. [Google Scholar] [CrossRef]
- Yao, Y.; Ni, J.; Li, J. Stress-dependent water retention of granite residual soil and its implications for ground settlement. Comput. Geotech. 2021, 129, 103835. [Google Scholar] [CrossRef]
- Li, J.; Zhang, J.; Qian, G.; Zheng, J.; Zhang, Y. Three-dimensional simulation of aggregate and asphalt mixture using parameterized shape and size gradation. J. Mater. Civ. Eng. 2019, 31, 04019004. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Jiang, X.; Ding, Z.; Zhao, J.; Shen, M. Analysis of viscosity and composition properties for crumb rubber modified asphalt. Constr. Build. Mater. 2018, 169, 638–647. [Google Scholar] [CrossRef]
- Wang, X.; Nie, Z.; Gong, J.; Liang, Z. Random generation of convex aggregates for DEM study of particle shape effect. Constr. Build. Mater. 2021, 268, 121468. [Google Scholar] [CrossRef]
- Li, P.; Su, J.; Ma, S.; Dong, H. Effect of aggregate contact condition on skeleton stability in asphalt mixture. Int. J. Pavement Eng. 2020, 21, 196–202. [Google Scholar] [CrossRef]
- Yu, H.; Yang, M.; Qian, G.; Cai, J.; Zhou, H.; Fu, X. Gradation segregation characteristic and its impact on performance of asphalt mixture. J. Mater. Civ. Eng. 2021, 33, 04020478. [Google Scholar] [CrossRef]
- Yao, Y.; Li, J.; Ni, J.; Liang, C.; Zhang, A. Effects of gravel content and shape on shear behaviour of soil-rock mixture: Experiment and DEM modelling. Comput. Geotech. 2022, 141, 104476. [Google Scholar]
CaO | SiO2 | Al2O3 | Fe2O3 | Other |
---|---|---|---|---|
57.85 | 24.03 | 4.37 | 1.19 | 12.56 |
Properties | Fresh Aggregates | Secondary Aggregates | Standard ASTM | Requirements |
---|---|---|---|---|
Coarse aggregate | ||||
Bulk specific gravity | 1.68 | 1.47 | C127 | — |
Apparent specific gravity | 2.73 | 2.59 | C127 | — |
Los Angeles abrasion (%) | 17.4 | 27.3 | C131 | ≤25 |
Percentage of fractured particles | 93 | 87 | D5821 | ≥90 |
Water absorption (%) | 0.75 | 5.80 | C127 | ≤2.5 |
Fine aggregate | ||||
Bulk specific gravity | 1.59 | — | C128 | — |
Apparent specific gravity | 2.71 | — | C128 | — |
Sand equivalent (SE) | 69 | — | D2419 | ≥50 |
Water absorption (%) | 1.90 | — | C128 | ≤2.5 |
Properties | Values | Standard ASTM | Requirements |
---|---|---|---|
Density at 15 °C (gr/cm3) | 1.032 | D7076 | — |
Softening point (R&B °C) | 47 | C3676 | ≥46 |
Penetration at 25 °C (0.1 mm) | 70 | D573 | 60~80 |
Ductility at 15 °C (cm) | 123 | D11379 | ≥100 |
Flash point (°C) | 275 | D9278 | ≥260 |
Dynamic viscosity at 60 °C (Pa·s) | 216 | D2171 | ≥180 |
Properties | Values |
---|---|
Linear model for aggregates | |
Effective modulus (Pa) | 6.0 × 107 |
Stiffness ratio | 2.4 |
Friction coefficient | 0.17 |
Burgers model for asphalt mastic | |
Stiffness of Kelvin (Pa) | 3.5 × 106 |
Viscosity of Kelvin (Pa·s) | 4.3 × 104 |
Stiffness of Maxwell (Pa) | 6.3 × 106 |
Viscosity of Maxwell (Pa·s) | 5.4 × 105 |
Bond strength (Pa) | 1.2 × 106 |
Stiffness ratio | 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Y.; Li, J.; Liang, C.; Hu, X. Effect of Coarse Recycled Aggregate on Failure Strength for Asphalt Mixture Using Experimental and DEM Method. Coatings 2021, 11, 1234. https://doi.org/10.3390/coatings11101234
Yao Y, Li J, Liang C, Hu X. Effect of Coarse Recycled Aggregate on Failure Strength for Asphalt Mixture Using Experimental and DEM Method. Coatings. 2021; 11(10):1234. https://doi.org/10.3390/coatings11101234
Chicago/Turabian StyleYao, Yongsheng, Jue Li, Chenghao Liang, and Xin Hu. 2021. "Effect of Coarse Recycled Aggregate on Failure Strength for Asphalt Mixture Using Experimental and DEM Method" Coatings 11, no. 10: 1234. https://doi.org/10.3390/coatings11101234
APA StyleYao, Y., Li, J., Liang, C., & Hu, X. (2021). Effect of Coarse Recycled Aggregate on Failure Strength for Asphalt Mixture Using Experimental and DEM Method. Coatings, 11(10), 1234. https://doi.org/10.3390/coatings11101234