Prophage in Phage Manufacturing: Is the Risk Overrated Compared to Other Therapies or Food?
Abstract
:1. Introduction
2. Opinion
- For Staphylococcus aureus under strong antibiotic selection [36];
- For multidrug-resistant Stenotrophomonas maltophilia in response to ciprofloxacin stress [37];
- For Clostridium difficile under pressure of profloxacin, moxifloxacin, levofloxacin, or mitomycin C [38];
- For enterohemorrhagic Escherichia coli O157:H7 by [39];
- For four isolates of fibrosis epidemic strain of Pseudomonas aeruginosa in cystic fibrosis induced by norfloxacin, tobramycin, colistin, ceftazidime, meropenem, or ciprofloxacin [40] at various levels depending on the antibiotic.
3. Discussion
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Twort, F. An Investigation on the nature of the ultra-microscopic Viruses. Lancet 1915, 186, 1241–1243. [Google Scholar] [CrossRef] [Green Version]
- D’Hérelle, F. On an invisible microbe antagonistic toward dysenteric bacilli: Brief note by Mr. F. D’Herelle, presented by Mr. Roux. Res. Microbiol. 1917, 158, 553–554. [Google Scholar]
- Jones, A.W. Early Drug Discovery and the Rise of Pharmaceutical Chemistry. Drug. Test. Anal. 2011, 3, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Regulski, K.; Champion-Arnaud, P.; Gabard, J. Bacteriophage Manufacturing: From Early Twentieth-Century Processes to Current GMP. In Bacteriophages; Harper, D.R., Abedon, S.T., Burrowes, B.J., McConville, M.L., Eds.; Springer: Cham, Switzerland, 2018; pp. 1–31. [Google Scholar]
- Wittebole, X.; De Rock, S.; Opal, S.M. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence 2014, 5, 226–235. [Google Scholar] [CrossRef]
- Ribeiro da Cunha, B.; Fonseca, L.P.; Calado, C.R.C. Antibiotic Discovery: Where Have We Come from, Where Do We Go? Antibiotics 2019, 8, 45. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.K.H. The history of monoclonal antibody development–Progress, remaining challenges and future innovations. Ann. Med. Surg. 2014, 3, 113–116. [Google Scholar] [CrossRef]
- Hill, R.G.; Rang, H.P. Drug Discovery and Development. In Technology in Transition, 2nd ed.; Hill, R.G., Rang, H.P., Eds.; Churchill Livingston Elsevier: London, UK, 2013; pp. 293–297. [Google Scholar]
- Vulto, A.G.; Jaquez, O.A. The process defines the product: What really matters in biosimilar design and production? Rheumatology (Oxford) 2017, 56, 14–29. [Google Scholar] [CrossRef] [Green Version]
- Howard-Varona, C.; Hargreaves, K.R.; Abedon, S.T.; Sullivan, M.B. Lysogeny in nature: Mechanisms, impact and ecology of temperate phages. The ISME J. 2017, 11, 1511–1520. [Google Scholar] [CrossRef] [Green Version]
- Goerke, C.; Köller, J.; Wolz, C. Ciprofloxacin and Trimethoprim Cause Phage Induction and Virulence Modulation in Staphylococcus aureus. Antimicrob. Agents Chemother. 2006, 50, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Rooney, J.F.; Straus, S.E.; Mannix, M.L.; Wohlenberg, C.R.; Banks, S.; Jagannath, S.; Brauer, J.E.; Notkins, A.L. UV Light-Induced Reactivation of Herpes Simplex Virus Type 2 and Prevention by Acyclovir. J. Infect. Dis. 1992, 166, 500–506. [Google Scholar] [CrossRef]
- Gabard, J.; Jault, P. How to Achieve a Good Phage Therapy Clinical Trial? In Phage Therapy: A Practical Approach; Springer: Berlin, Germany, 2019; pp. 147–168. [Google Scholar]
- Pirnay, J.-P.; Blasdel, B.G.; Bretaudeau, L.; Buckling, A.; Chanishvili, N.; Clark, J.R.; Corte-Real, S.; Debarbieux, L.; Dublanchet, A.; Vos, D.D.; et al. Quality and Safety Requirements for Sustainable Phage Therapy Products. Pharm. Res. 2015, 32, 2173–2179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lombard, M.; Pastoret, P.P.; Moulin, A.M. A Brief History of Vaccines and Vaccination. Rev. Sci. Tech. 2007, 26, 29–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petricciani, J.; Sheets, R.; Griffiths, E.; Knezevic, I. Adventitious agents in viral vaccines: Lessons learned from 4 case studies. Biologicals. 2014, 42, 223–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markmann, C.F.; Barker, J.F. Historical Overview of Transplantation. Cold Spring Harb. Perspect. Med. 2013, 3, 1–18. [Google Scholar]
- Forgionea, G.; Sampognaa, S.Y.; Gurayab, A. Regenerative medicine: Historical roots and potential strategies in modern medicine. J. Microsc. Ultrastruct. 2015, 3, 101–106. [Google Scholar]
- EMA. Committee For Medicinal Products For Human Use. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/draft-guideline-clinical-investigation-immunosuppressants-solid-organ-transplantation_en.pdf. (accessed on 19 July 2007).
- Debbie, L.; Seem, R.N.; Ingi, L.; Craig, A.; Umscheid, M.D.; Matthew, J.; Kuehnert, M.D. PHS Guideline for Reducing Human Immunodeficiency Virus, Hepatitis B Virus, and Hepatitis C Virus Transmission Through Organ Transplantation. Public Health Rep. 2013, 128, 247–342. [Google Scholar]
- White, S.L.; Rawlinson, W.; Boan, P.; Sheppeard, V.; Wong, G.; Waller, K.; Opdam, H.; Kaldor, J.; Fink, M.; Verran, D.; et al. Infectious disease transmission in solid organ transplantation: Donor evaluation, recipient risk, and outcomes of transmission. Transplant Direct. 2019, 5, e416. [Google Scholar] [CrossRef]
- Claeys, E.; Vermeire, K. Immunosuppressive drugs in organ transplantation to prevent allograft rejection: Mode of action and side effects. J. Immunol. Sci. 2019, 3, 14–21. [Google Scholar] [CrossRef]
- Lee, C.H.; Steiner, T.; Petrof, E.O.; Smieja, M.; Roscoe, D.; Nematallah, A.; Weese, J.S.; Collins, S.; Moayyedi, P.; Crowther, M.; et al. Frozen vs fresh fecal microbiota transplantation and clinical resolution of diarrhea in patients with Recurrent Clostridium difficile Infection: A Randomized clinical trial. JAMA 2016, 315, 142–149. [Google Scholar]
- Fortier, L.C. Bacteriophages contribute to shaping clostridioides (clostridium) difficile species. Front. Microbiol. 2018, 9, 2033. [Google Scholar] [CrossRef] [Green Version]
- Ooijevaar, R.E.; Terveer, E.M.; Verspaget, H.W.; Kuijper, E.J.; Keller, J.J. Clinical application and potential of fecal microbiota transplantation. Annu. Rev. Med. 2019, 70, 335–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCune, V.L.; Quraishi, M.N.; Manzoor, S.; Moran, C.E.; Banavathi, K.; Steed, H.; Massey, D.C.O.; Trafford, G.R.; Iqbal, T.H.; Hawkey, P.M. Results from the first English stool bank using faecal microbiotatransplant as a medicinal product for the treatment of Clostridioides difficile infection. EclinicalMedicine 2020, 20, 100301. [Google Scholar] [CrossRef] [PubMed]
- DeFilipp, Z.; Bloom, P.P.; Torres Soto, M.; Mansour, M.K.; Sater, M.R.A.; Huntley, M.H.; Turbett, S.; Chung, R.T.; Chen, Y.B.; Hohmann, E.L. Drug-Resistant E. coli Bacteremia Transmitted by Fecal Microbiota Transplant. N. Engl. J. Med. 2019, 381, 2043–2050. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canabi, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature 2014, 11, 506–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathur, S.; Singh, R. Antibiotic resistance in food lactic acid bacteria—a review. Int. J. Food Microbiol. 2005, 105, 281–295. [Google Scholar] [CrossRef]
- Briggiler, M.; Marcó, S.; Moineau, S.; Quiberoni, A. Bacteriophages and dairy fermentations. Bacteriophages. Bacteriophage 2012, 2, 149–158. [Google Scholar]
- Madera, C.; García, P.; Rodríguez, A.; Suárez, J.E.; Martínez, B. Prophage Induction in Lactococcus Lactis by the Bacteriocin Lactococcin 972. Int. J. Food Microbiol. 2009, 1, 99–102. [Google Scholar] [CrossRef] [Green Version]
- Pujato, S.A.; Quiberoni, A.; Mercanti, D.J. Bacteriophages on dairy foods. J. Appl. Microbiol. 2019, 126, 14–30. [Google Scholar]
- Dubberke, E.R.; Lee, C.H.; Orenstein, R.; Khanna, S.; Hecht, G.; Gerding, D.N. Results from a randomized, placebo-controlled clinical trial of a RBX2660—A microbiota-based drug for the prevention of recurrent Clostridium difficile infection. Clin. Infect. Dis. 2018, 67, 1198–1204. [Google Scholar] [CrossRef] [Green Version]
- EMA. Committee for Human Medicinal Products. Available online: https://www.ema.europa.eu/en/evaluation-medicinal-products-indicated-treatment-bacterial-infections. (accessed on 14 January 2019).
- De Kraker, M.E.A.; Sommer, H.; de Velde, F.; Gravestock, I.; Weiss, E.; McAleenan, A.; Nikolakopoulos, S.; Amit, O.; Ashton, T.; Beyersmann, J.; et al. Optimizing the design and analysis of clinical trials for antibacterials against multidrug-resistant organisms: A white paper from COMBACTE’s STAT-Net. Clin. Infect. Dis. 2018, 67, 1922–1931. [Google Scholar]
- Haaber, J.; Leisner, J.J.; Cohn, M.T.; Catalan-Moreno, A.; Nielsen, J.B.; Westh, H.; Penadés, J.R.; Ingmer, H. Bacterial viruses enable their host to acquire antibiotic resistance genes from neighbouring cells. Nat. Commun. 2016, 7, 13333. [Google Scholar] [CrossRef] [PubMed]
- Devos, S.; Van Putte, W.; Vitse, J.; Van Driessche, G.; Stremersch, S.; Van Den Broek, W.; Raemdonck, K.; Braeckmans, K.; Stahlberg, H.; Kudryashev, M.; et al. Membrane vesicle secretion and prophage induction in multidrug-resistant Stenotrophomonas Maltophilia in response to ciprofloxacin stress. Environ. Microbiol. 2017, 19, 3930–3937. [Google Scholar]
- Meessen-Pinard, M.; Sekulovic, O.; Fortier, L.C. Evidence of in vivo prophage induction during Clostridium difficile infection. Appl. Environ. Microbiol. 2012, 78, 7662–7670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsushiro, A.; Sato, K.; Miyamoto, H.; Yamamura, T.; Honda, T. Induction of prophages of enterohemorrhagic Escherichia coli O157:H7 with norfloxacin. J. Bacteriol. 1999, 181, 2257–2260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fothergill, J.L.; Mowat, E.; Walshaw, M.J.; Ledson, M.J.; James, C.E.; Winstanley, C. Effect of antibiotic treatment on bacteriophage production by a cystic fibrosis epidemic strain of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2011, 55, 426–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EMA. Committee For Medicinal Products For Human Use. Available online: https://www.ema.europa.eu/en/evaluation-medicinal-products-indicated-treatment-bacterial-infections (accessed on 19 December 2018).
- Victoria, J.G.; Wang, C.; Jones, M.S.; Jaing, C.; McLoughlin, K.; Gardner, S.; Delwart, E.L. Viral Nucleic Acids in Live-Attenuated Vaccines: Detection of Minority Variants and an Adventitious Virus. J. Virol. 2010, 84, 6033–6040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filipiak, M.; Łoś, J.M.; Łoś, M. Efficiency of induction of Shiga-toxin lambdoid prophages in Escherichia coli due to oxidative and antibiotic stress depends on the combination of prophage and the bacterial strain. J. Appl. Genetics 2020, 61, 131–140. [Google Scholar] [CrossRef] [Green Version]
- Ribet, D.; Cossart, P. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect. 2015, 17, 175–183. [Google Scholar] [CrossRef]
Biological Therapy Type | Production | Treatment |
---|---|---|
Cell Therapy | Human body | Modified human cells |
Fecal Matter Transfer (FMT) | Native Feces from donor | Screened feces to recipient |
Bacteria therapy | Microbiota | Intestinal Microbes |
Phage therapy | bacterial strain | Bacteriophage |
Case Type | Risk Level | |
---|---|---|
1 | Ideal | Prophage-free bacterial strain |
2 | Intermediate | Presence of prophage(s) carrying gene(s) that do not have code(s) for character(s), having an impact on the efficacy and/or safety of the treatment |
3 | Degraded | Contains a prophage carrying an impact on gene(s), but which is (are) not (or barely) expressed |
4 | Insufficient | Contains a prophage carrying an impact gene that is expressed |
5 | Unacceptable | Contains a non-eliminable lysogenic phage |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jérôme, G. Prophage in Phage Manufacturing: Is the Risk Overrated Compared to Other Therapies or Food? Antibiotics 2020, 9, 435. https://doi.org/10.3390/antibiotics9080435
Jérôme G. Prophage in Phage Manufacturing: Is the Risk Overrated Compared to Other Therapies or Food? Antibiotics. 2020; 9(8):435. https://doi.org/10.3390/antibiotics9080435
Chicago/Turabian StyleJérôme, Gabard. 2020. "Prophage in Phage Manufacturing: Is the Risk Overrated Compared to Other Therapies or Food?" Antibiotics 9, no. 8: 435. https://doi.org/10.3390/antibiotics9080435
APA StyleJérôme, G. (2020). Prophage in Phage Manufacturing: Is the Risk Overrated Compared to Other Therapies or Food? Antibiotics, 9(8), 435. https://doi.org/10.3390/antibiotics9080435