Synergistic Effect of Propolis and Antibiotics on Uropathogenic Escherichia coli
Abstract
:1. Introduction
2. Results
2.1. Determination of MICs
2.2. Time–Kill Curves of Propolis and Antibiotics Alone
2.3. Time–Kill Curves of a Combination of Propolis and Antibiotics
2.4. In Vitro Selection of Resistant Mutants
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains
4.2. Compounds
4.3. Determination of the Minimal Inhibitory Concentration (MIC)
4.4. Time–Kill Assays
4.5. In Vitro Selection of Resistant Mutants
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Silverman, J.A.; Schreiber, H.L., 4th; Hooton, T.M.; Hultgren, S.J. From Physiology to Pharmacy: Developments in the Pathogenesis and Treatment of Recurrent Urinary Tract Infections. Curr. Urol. Rep. 2013, 14, 448–456. [Google Scholar] [CrossRef] [Green Version]
- McLellan, L.K.; Hunstad, D.A. Urinary Tract Infection: Pathogenesis and Outlook. Trends. Mol. Med. 2016, 22, 946–957. [Google Scholar] [CrossRef] [Green Version]
- Foxman, B. Urinary Tract Infection Syndromes: Occurrence, Recurrence, Bacteriology, Risk Factors, and Disease Burden. Infect. Dis. Clin. N. Am. 2014, 28, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ikähelmo, R.; Siitonen, A.; Heiskanen, T.; Kärkkäinen, U.; Kuosmanen, P.; Lipponen, P.; Mäkelä, P.H. Recurrence of Urinary Tract Infection in a Primary Care Setting: Analysis of a I-Year Follow-up of 179 Women. Clin. Infect. Dis. 1996, 22, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Flores-Meireles, A.; Walker, J.; Caparon, M.; Hultgren, S. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 2015, 13, 269–284. [Google Scholar] [CrossRef] [PubMed]
- Albert, X.; Huertas, I.; Pereiro, I.; Sanfélix, J.; Gosalbes, V.; Perrotta, C. Antibiotics for preventing recurrent urinary tract infection in non-pregnant women. Cochrane Database Syst. Rev. 2004, 2004, CD001209. [Google Scholar] [CrossRef]
- Salomon, J.; Denys, P.; Merle, C.; Chartier-Kastler, E.; Perronne, C.; Gaillard, J.L.; Bernard, L. Prevention of urinary tract infection in spinal cord-injured patients: Safety and efficacy of a weekly oral cyclic antibiotic (WOCA) programme with a 2 year follow-up—An observational prospective study. J. Antimicrob. Chemother. 2006, 57, 784–788. [Google Scholar] [CrossRef] [Green Version]
- Dinh, A.; Hallouin-Bernard, M.C.; Davido, B.; Lemaignen, A.; Bouchand, F.; Duran, C.; Even, A.; Denys, P.; Perrouin-Verbe, B.; Sotto, A.; et al. Weekly sequential antibioprophylaxis for recurrent UTI among patients with neurogenic bladder: A randomized controlled trial. Clin. Infect. Dis. 2019. [Google Scholar] [CrossRef]
- Beerepoot, M.A.; ter Riet, G.; Nys, S.; van der Wal, W.M.; de Borgie, C.A.; de Reijke, T.M.; Prins, J.M.; Koeijers, J.; Verbon, A.; Stobberingh, E.; et al. Lactobacilli vs antibiotics to prevent urinary tract infections: A randomized, double-blind, noninferiority trial in postmenopausal women. Arch. Intern. Med. 2012, 172, 704–712. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control—Surveillance of antimicrobial resistance in Europe—Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net) 2017. Available online: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2018 (accessed on 21 September 2020).
- Nicolas-Chanoine, M.H.; Bertand, X.; Madec, J.Y. Escherichia coli ST131, an intriguing clonal group. Clin. Microbiol. Rev. 2014, 27, 543–574. [Google Scholar] [CrossRef] [Green Version]
- Peirano, G.; Pitout, J.D.D. Extended-spectrum β-lactamase-producing Enterobacteracieae: Update on molecular epidemiology and treatment options. Drugs 2019, 79, 1529–1541. [Google Scholar] [CrossRef]
- Mathers, A.J.; Peirano, G.; Pitout, J.D. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin. Microbiol. Rev. 2015, 28, 565–591. [Google Scholar] [CrossRef] [Green Version]
- Maysumura, Y.; Yamamoto, M.; Nagao, M.; Ito, Y.; Takakura, S.; Ichiyama, S.; Kyoto-Shiga Clinical Microbiology Study Group. Association of fluoroquinolone resistance, virulence genes, and IncF plasmids with extended-spectrum-β-lactamase-producing Escherichia coli sequence type 131 (ST131) and ST405 clonal groups. Antimicrob. Agents Chemother. 2013, 57, 4736–4742. [Google Scholar] [CrossRef] [Green Version]
- Loubet, P.; Ranfaing, J.; Dinh, A.; Dunyach-Remy, C.; Bernard, L.; Bruyère, F.; Lavigne, J.P.; Sotto, A. Alternative therapeutic options to antibiotics for the treatment of urinary tract infections. Front. Microbiol. 2020, 11, 1509. [Google Scholar] [CrossRef] [PubMed]
- Sforcin, J.M.; Bankova, V. Propolis: Is there a potential for the development of new drugs? J. Ethnopharmacol. 2011, 133, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Al-Waili, N.; Al-Ghamdi, A.; Ansari, M.J.; Al-Attal, Y.; Salom, K. Synergistic effects of honey and propolis toward drug multi-resistant Staphylococcus aureus, Escherichia coli and Candida albicans isolates in single and polymicrobial cultures. Int. J. Med. Sci. 2012, 9, 793–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boonsai, P.; Phuwapraisirisan, P.; Chanchao, C. Antibacterial activity of a cardanol from Thai Apis mellifera propolis. Int. J. Med. Sci. 2014, 11, 327–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Przybyłek, I.; Karpiński, T.M. Antibacterial properties of propolis. Molecules 2019, 24, 2047. [Google Scholar] [CrossRef] [Green Version]
- Ranfaing, J.; Dunyach-Remy, C.; Lavigne, J.-P.; Sotto, A. Propolis potentiates the effect of cranberry (Vaccinium macrocarpon) in reducing the motility and the biofilm formation of uropathogenic Escherichia coli. PLoS ONE 2018, 13, e0202609. [Google Scholar] [CrossRef] [PubMed]
- Ranfaing, J.; Dunyach-Remy, C.; Louis, L.; Lavigne, J.-P.; Sotto, A. Propolis potentiates the effect of cranberry (Vaccinium macrocarpon) against the virulence of uropathogenic Escherichia coli. Sci. Rep. 2018, 8, 10706. [Google Scholar] [CrossRef] [Green Version]
- Bruyère, F.; Azzouzi, A.R.; Lavigne, J.-P.; Droupy, S.; Coloby, P.; Game, X.; Karsenty, G.; Issartel, B.; Ruffion, A.; Misrai, V.; et al. A Multicenter, Randomized, Placebo-Controlled Study Evaluating the Efficacy of a Combination of Propolis and Cranberry (Vaccinium macrocarpon) (DUAB®) in Preventing Low Urinary Tract Infection Recurrence in Women Complaining of Recurrent Cystitis. Urol. Int. 2019, 103, 41–48. [Google Scholar]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 10.0. 2020. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_10.0_Breakpoint_Tables.pdf (accessed on 21 September 2020).
- Philipps, I.; The Antibiotic Susceptibility Testing of the European Society of Clinical Microbiology and Infectious Diseases Group. Methods for the determination of susceptibility of bacteria to antimicrobial agents. Terminology. Clin. Microbiol. Infect. 1998, 4, 291–296. [Google Scholar]
- Cebrero-Cangueiro, T.; Álvarez-Marín, R.; Labrador-Herrera, G.; Smani, Y.; Cordero-Matía, E.; Pachón, J.; Pachón-Ibáñez, M.E. In vitro Activity of Pentamidine Alone and in Combination with Aminoglycosides, Tigecycline, Rifampicin, and Doripenem Against Clinical Strains of Carbapenemase-Producing and/or Colistin-Resistant Enterobacteriaceae. Front. Cell. Infect. Microbiol. 2018, 8, 363. [Google Scholar] [CrossRef] [Green Version]
- Inui, S.; Hatano, A.; Yoshino, M.; Hosoya, T.; Shimamura, Y.; Masuda, S.; Ahn, M.R.; Tazawa, S.; Araki, Y.; Kumazawa, S. Identification of the phenolic compounds contributing to antibacterial activity in ethanol extracts of Brazilian red propolis. Nat. Prod. Res. 2014, 28, 1293–1296. [Google Scholar] [CrossRef] [PubMed]
- Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem. Rev. 2019, 18, 241–272. [Google Scholar] [CrossRef] [Green Version]
- Devequi-Nunes, D.; Machado, B.A.S.; Barreto, G.A.; Rebouças Silva, J.; da Silva, D.F.; da Rocha, J.L.C.; Brandão, H.N.; Borges, V.M.; Umsza-Guez, M.A. Chemical characterization and biological activity of six different extracts of propolis through conventional methods and supercritical extraction. PLoS ONE 2018, 13, e0207676. [Google Scholar] [CrossRef]
- Sforcin, J.M. Biological properties and therapeutic applications of propolis. Phytother. Res. 2016, 30, 894–905. [Google Scholar] [CrossRef]
- Liu, Y.; Black, M.A.; Caron, L.; Camesano, T.A. Role of cranberry juice on molecular-scale surface characteristics and adhesion behavior of Escherichia coli. Biotechnol. Bioeng. 2006, 93, 297–305. [Google Scholar] [CrossRef]
- European Association of Urology. Urological Infections. Available online: https://uroweb.org/guideline/urological-infections/ (accessed on 21 September 2020).
- Vardakas, K.Z.; Legakis, N.J.; Triarides, N.; Falagas, M.E. Susceptibility of contemporary isolates to fosfomycin: A systematic review of the literature. Int. J. Antimicrob. Agents. 2016, 47, 269–285. [Google Scholar] [CrossRef]
- Sorlozano-Puerto, A.; Lopez-Machado, I.; Albertuz-Crespo, M.; Martinez-Gonzalez, L.J.; Gutierrez-Fernandez, J. Characterization of fosfomycin and nitrofurantoin resistance mechanisms in Escherichia coli isolated in clinical urine samples. Antibiotics 2020, 9, E534. [Google Scholar] [CrossRef]
- Falagas, M.E.; Kastoris, A.C.; Kapaskelis, A.M.; Karageorgopoulos, D.E. Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum beta-lactamase producing, Enterobacteriaceae infections: A systematic review. Lancet. Infect. Dis. 2010, 10, 43–50. [Google Scholar] [CrossRef]
- Akilandeswari, K.; Ruckmani, K. Synergistic antibacterial effect of apigenin with β-lactam antibiotics and modulation of bacterial resistance by a possible membrane effect against methicillin resistant Staphylococcus aureus. Cell. Mol. Biol. 2016, 62, 74–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eumkeb, G.; Chukrathok, S. Synergistic activity and mechanism of action of ceftazidime and apigenin combination against ceftazidime-resistant Enterobacter cloacae. Phytomedicine 2013, 20, 262–269. [Google Scholar] [CrossRef]
- Kalia, P.; Kumar, N.R.; Harjai, K. Studies on the therapeutic effect of propolis along with standard antibacterial drug in Salmonella enterica serovar Typhimurium infected BALB/c mice. BMC Complement. Altern. Med. 2016, 16, 485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zilberberg, M.D.; Nathanson, B.H.; Sulham, K.; Shorr, A.F. Antimicrobial Susceptibility and Cross-Resistance Patterns among Common Complicated Urinary Tract Infections in U.S. Hospitals, 2013 to 2018. Antimicrob. Agents Chemother. 2020, 64, e00346-20. [Google Scholar] [CrossRef] [PubMed]
- Fasugba, O.; Gardner, A.; Mitchell, B.G.; Mnatzaganian, G. Ciprofloxacin resistance in community- and hospital-acquired Escherichia coli urinary tract infections: A systematic review and meta-analysis of observational studies. BMC Infect. Dis. 2015, 15, 545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buyck, J.M.; Plésiat, P.; Traore, H.; Vanderbist, F.; Tulkens, P.M.; Van Bambeke, F. Increased susceptibility of Pseudomonas aeruginosa to macrolides and ketolides in eukaryotic cell culture media and biological fluids due to decreased expression of oprM and increased outer-membrane permeability. Clin. Infect. Dis. 2012, 55, 534–542. [Google Scholar] [CrossRef] [Green Version]
- Neugent, M.L.; Hulyalkar, N.V.; Nguyen, V.H.; Zimmern, P.E.; De Nisco, N.J. Advances in understanding the human urinary microbiome and its potential role in urinary tract infection. mBio 2020, 11, e00218-20. [Google Scholar] [CrossRef]
- Lavigne, J.P.; Vitrac, X.; Bernard, L.; Bruyère, F.; Sotto, A. Propolis can potentialize the anti-adhesion activity of proanthocyanidins on uropathogenic Escherichia coli in the prevention of recurrent urinary tract infections. BMC Res. Notes. 2011, 4, 522. [Google Scholar] [CrossRef] [Green Version]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 22th ed.; CLSI supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2014. [Google Scholar]
- CLSI. Methods for Determining Bactericidal Activity of Antimicrobial Agents; CLSI Supplement M26-A; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 1999. [Google Scholar]
Strains | Resistance | OFX | OFX + Propolis | CRO | CRO + Propolis | ETP | ETP + Propolis | FOS | FOS + Propolis | Propolis |
---|---|---|---|---|---|---|---|---|---|---|
CFT073 | Sensitive | 0.25 | 0.06 1 | 0.5 | 0.125 | 0.06 | 0.006 | 8 | 4 | 256 |
NECS892841 | Sensitive | 0.5 | 0.125 | 1 | 0.125 | 0.06 | 0.03 | 512 2 | 128 | 256 |
NECS30990 | Sensitive | 0.25 | 0.06 | 0.5 | 0.06 | 0.03 | 0.012 | 8 | 8 | 128 |
NECS858785 | OFX R | 2 | 0.5 | 0.25 | <0.06 | 0.06 | 0.012 | 128 | 64 | 256 |
NECS864598 | OFX R | 32 | 8 | 0.5 | 0.06 | 0.125 | 0.06 | 512 | 256 | 256 |
NECS892420 | ESBL | >32 | 8 | >32 | 2 | 0.25 | 0.06 | 8 | 8 | 256 |
NECS118564 | ESBL | >32 | 8 | >32 | 2 | 0.5 | 0.125 | 8 | 4 | 256 |
Strains | FIC OFX | FIC Propolis | FIC Index | FIC CRO | FIC Propolis | FIC Index | FIC ETP | FIC Propolis | FIC Index | FIC FOS | FIC Propolis | FIC index |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CFT073 | 0.24 | 2.3 × 10−5 | 0.25 | 0.25 | 4.9 × 10−4 | 0.26 | 0.1 | 2.3 × 10−5 | 0.11 | 0.5 | 0.016 | 0.51 |
NECS892841 | 0.25 | 4.9 × 10−4 | 0.26 | 0.125 | 4.9 × 10−4 | 0.13 | 0.5 | 1.2 × 10−4 | 0.51 | 0.25 | 0.5 | 0.75 |
NECS30990 | 0.24 | 2.3 × 10−5 | 0.25 | 0.12 | 4.7 × 10−4 | 0.13 | 0.4 | 9.4 × 10−5 | 0.41 | 1 | 0.063 | 1.06 |
NECS858785 | 0.25 | 0.002 | 0.26 | 0.25 | 1.2 × 10−4 | 0.26 | 0.2 | 4.7 × 10−5 | 0.21 | 0.5 | 0.25 | 0.75 |
NECS864598 | 0.25 | 0.03125 | 0.28 | 0.5 | 4.9 × 10−4 | 0.51 | 0.48 | 2.3 × 10−4 | 0.49 | 0.5 | 1 | 1.5 |
NECS892420 | 0.13 | 0.03125 | 0.16 | 0.031 | 0.008 | 0.04 | 0.24 | 2.3 × 10−4 | 0.25 | 1 | 0.031 | 1.03 |
NECS118564 | 0.06 | 0.03125 | 0.10 | 0.031 | 0.008 | 0.04 | 0.25 | 4.8 × 10−4 | 0.26 | 0.5 | 0.016 | 0.52 |
Strains | OFX | CRO | ETP | FOS | Propolis |
---|---|---|---|---|---|
CFT073 | B (2–24 h) | B (2–24 h) | B (2–24 h) | B (2–24 h) | - |
NECS892841 | B (2–24 h) | B (3–24 h) | B (2–24 h) | - | - |
NECS30990 | B (2–24 h) | B (2–24 h) | B (2–24 h) | B (2–24 h) | - |
NECS858785 | - | B (2–24 h) | B (2–24 h) | - | - |
NECS864598 | - | B (2–24 h) | B (2–24 h) | - | - |
NECS892420 | - | - | B (2–24 h) | B (3–24 h) | - |
NECS118564 | - | - | B (2–24 h) | B (4–24 h) | - |
Strains | OFX + PRO | CRO + PRO | ETP + PRO | FOS + PRO |
---|---|---|---|---|
CFT073 | B + S (4–6 h) | B + S (4–5 h) | B + S (4–6 h) | - |
NECS892841 | B + S (4–6 h) | B + S (4–6 h) | B + S (5 h) | - |
NECS30990 | B + S (4–24 h) | B + S (4–6 h) | B + S (5–6 h) | B (6 h) |
NECS858785 | - | B + S (4–6 h) | B + S (4–6 h) | - |
NECS864598 | - | B + S (4–6 h) | B + S (5–6 h) | - |
NECS892420 | - | - | B + S (5–6 h) | - |
NECS118564 | - | - | B +S (4–6 h) | - |
Strain | Source | Resistance Profile 1 | Phylogroup | Serogroup | ST |
---|---|---|---|---|---|
CFT073 | Blood | - | B2 | O6 | 73 |
NECS892841 | Urine (cystitis) | - | B2 | O18 | 95 |
NECS30090 | Urine (pyelonephritis) | - | B2 | O9 | 10 |
NECS858785 | Urine (cystitis) | NAL, OFX | B2 | O6 | 73 |
NECS864598 | Urine (pyelonephritis) | NAL, OFX, CIP | B2 | O21 | 12 |
NEC892420 | Urine (cystitis) | AMX, AMC, TIC, TCC, PIP, TZP, CTX, CAZ, KAN, TOB, GEN, NET, NAL, OFX | B2 | O6 | 127 |
NEC118564 | Urine (pyelonephritis) | AMX, AMC, TIC, TCC, PIP, TZP, CTX, CAZ, KAN, TOB, GEN, NET, NAL, OFX, CIP, SXT | B2 | O25 | 131 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lavigne, J.-P.; Ranfaing, J.; Dunyach-Rémy, C.; Sotto, A. Synergistic Effect of Propolis and Antibiotics on Uropathogenic Escherichia coli. Antibiotics 2020, 9, 739. https://doi.org/10.3390/antibiotics9110739
Lavigne J-P, Ranfaing J, Dunyach-Rémy C, Sotto A. Synergistic Effect of Propolis and Antibiotics on Uropathogenic Escherichia coli. Antibiotics. 2020; 9(11):739. https://doi.org/10.3390/antibiotics9110739
Chicago/Turabian StyleLavigne, Jean-Philippe, Jérémy Ranfaing, Catherine Dunyach-Rémy, and Albert Sotto. 2020. "Synergistic Effect of Propolis and Antibiotics on Uropathogenic Escherichia coli" Antibiotics 9, no. 11: 739. https://doi.org/10.3390/antibiotics9110739
APA StyleLavigne, J. -P., Ranfaing, J., Dunyach-Rémy, C., & Sotto, A. (2020). Synergistic Effect of Propolis and Antibiotics on Uropathogenic Escherichia coli. Antibiotics, 9(11), 739. https://doi.org/10.3390/antibiotics9110739