Antibiotic Use in Beekeeping: Implications for Health and Environment from a One-Health Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Trial Setup
2.2. Chemical Analysis of the Samples
2.3. Assessment of OTC Residues
2.4. Bacterial Cultures, Identification, and Genetic Analysis
2.5. PCR Assay to Investigate Tetracycline-Resistance Genes from Isolates
2.6. Statistical Analysis
3. Results
3.1. Syrup Consumption and OTC Residues
3.2. Bacterial Strains and Genetic Analysis from the Different Sample Matrices
3.2.1. Honeybee Intestines
3.2.2. Dry Swabs
3.2.3. Flowers
4. Discussion
4.1. OTC Residues in Honey
4.2. OTC Residues in Flowers
4.3. Bacterial Strains Isolated from Honeybee Intestinal Samples
4.4. Genetic Analysis in Strains from Dry Swabs
4.5. Genetic Analysis and Bacterial Strains Isolated from Flowers
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Organisation for Animal Health. Terrestrial Animal Health Code. Volume 2. Chapter 9.2. Available online: https://www.woah.org/en/what-we-do/standards/codes-and-manuals/terrestrial-code-online-access/ (accessed on 25 February 2025).
- Okamoto, M.; Kumagai, M.; Kanamori, H.; Takamatsu, D. Antimicrobial resistance genes in bacteria isolated from Japanese honey, and their potential for conferring macrolide and lincosamide resistance in the American foulbrood pathogen Paenibacillus larvae. Front. Microbiol. 2021, 12, 667096. [Google Scholar]
- European Parliament. Directive 2001/82/EC of the European Parliament and of the Council of 6 November 2001 on the Community code relating to veterinary medicinal products. Off. J. Eur. Union 2001, 311, 1–66. [Google Scholar]
- European Parliament and the Council of the European Union. Regulation (EU) 2019/6 of the European Parliament and of the Council of 11 December on veterinary medicinal products and repealing Directive 2001/82/EC. Off. J. Eur. Union 2019, 4, 43–167. [Google Scholar]
- Jończyk-Matysiak, E.; Popiela, E.; Owczarek, B.; Hodyra-Stefaniak, K.; Świtała-Jeleń, K.; Łodej, N.; Kula, D.; Neuberg, J.; Migdał, P.; Bagińska, N.; et al. Phages in Therapy and Prophylaxis of American Foulbrood—Recent Implications From Practical Applications. Front. Microbiol. 2020, 11, 1913. [Google Scholar]
- Thanasarakhan, W.; Kruanetr, S.; Deming, R.L.; Liawruangrath, B.; Wangkarn, S.; Liawruangrath, S. Sequential injection spectrophotometric determination of tetracycline antibiotics in pharmaceutical preparations and their residues in honey and milk samples using yttrium (III) and cationic surfactant. Talanta 2011, 84, 1401–1409. [Google Scholar]
- Olatoye, I.O.; Ehinmowo, A.A. Oxytetracycline residues in edible tissues of cattle slaughtered in Akure, Nigeria. Niger. Vet. J. 2010, 31, 93–102. [Google Scholar] [CrossRef]
- Medhi, B.; Sewal, R.K. Ecopharmacovigilance: An issue urgently to be addressed. Indian J. Pharmacol. 2012, 44, 547. [Google Scholar]
- Holm, G.; Snape, J.R.; Murray-Smith, R.; Talbot, J.; Taylor, D.; Sörme, P. Implementing ecopharmacovigilance in practice: Challenges and potential opportunities. Drug Saf. 2013, 36, 533–546. [Google Scholar]
- Mosca, M.; Giannetti, L.; Franco, A.; Iurescia, M.; Milito, M.; Pietropaoli, M.; Leto, A.; Di Ruggiero, C.; Mezher, Z.; Palazzetti, M.; et al. Impact of Oxytetracycline on Colonies: Preliminary Results on Residues and Antibiotic Resistance. J. Apic. Sci. 2022, 66, 159–170. [Google Scholar] [CrossRef]
- Fuselli, S.R.; Martinez, P.G.; Fuentes, G.; Alonso-Salces, R.M.; Maggi, M. Prevention and Control of American Foulbrood in South America with Essential Oils: Review. In Beekeeping-New Challenges; IntechOpen: London, UK, 2019. [Google Scholar]
- Zhuang, M.; Achmon, Y.; Cao, Y.; Liang, X.; Chen, L.; Wang, H.; Siame, B.A.; Leung, K.Y. Distribution of antibiotic resistance genes in the environment. Environ. Pollut. 2021, 285, 117402. [Google Scholar]
- Tian, B.; Fadhil, N.H.; Powell, J.E.; Kwong, W.K.; Moran, N.A. Long-term exposure to antibiotics has caused accumulation of resistance determinants in the gut microbiota of honeybees. mBio 2012, 3, 10–1128. [Google Scholar]
- Reygaert, W.C. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018, 4, 482. [Google Scholar]
- Formato, G.; D’Ascenzi, C.; Mosca, M.; Bava, R.; Valentini, L. Api e Ambiente-Manuale Operativo. Soc. Ital. Med. Vet. Prev. 2020, 5, 85. [Google Scholar]
- Piva, S.; Giacometti, F.; Marti, E.; Massella, E.; Cabbri, R.; Galuppi, R.; Serraino, A. Could honey bees signal the spread of antimicrobial resistance in the environment? Lett. Appl. Microbiol. 2020, 70, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Resci, I.; Cilia, G. The use of honey bee (Apis mellifera L.) as biological monitors for pathogenic bacteria and antimicrobial resistance: A systematic review. Environ. Pollut. 2023, 333, 122120. [Google Scholar]
- Savarino, A.E.; Terio, V.; Barrasso, R.; Ceci, E.; Panseri, S.; Chiesa, L.M.; Bonerba, E. Occurrence of antibiotic residues in Apulian honey: Potential risk of environmental pollution by antibiotics. Ital. J. Food Saf. 2020, 9, 8678. [Google Scholar]
- Ministry of Health. National Animal Registry (“Banca Dati Nazionale”, BDN). Available online: https://www.vetinfo.it/j6_statistiche/#/ (accessed on 24 February 2025).
- Lafrenière, R. Recommendations for Administering Antibiotics and Acaricides to Honey Bees. Available online: https://gov.mb.ca/agriculture/crops/crop-management/pubs/administering-antibiotics-and-acaricides-to-honey-bees.pdf (accessed on 25 February 2025).
- Nowak, A.; Szczuka, D.; Górczyńska, A.; Motyl, I.; Kręgiel, D. Characterization of Apis mellifera gastrointestinal microbiota and lactic acid bacteria for honeybee protection—A review. Cells 2021, 10, 701. [Google Scholar] [CrossRef]
- Aarestrup, F.M.; Lertworapreecha, M.; Evans, M.C.; Bangtrakulnonth, A.; Chalermchaikit, T.; Hendriksen, R.S.; Wegener, H.C. Antimicrobial susceptibility and occurrence of resistance genes among Salmonella enterica serovar Weltevreden from different countries. J. Antimicrob. Chemother. 2003, 52, 715–718. [Google Scholar]
- Trzcinski, K.; Cooper, B.S.; Hryniewicz, W.; Dowson, C.G. Expression of resistance to tetracyclines in strains of methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 2000, 45, 763–770. [Google Scholar]
- Dorsch, M.; Stackebrandt, E. Some modifications in the procedure of direct sequencing of PCR amplified 16S rDNA. J. Microbiol. Methods 1992, 16, 271–279. [Google Scholar]
- XLSTAT Data Analysis and Statistical Solution for Microsoft Excel, Version 2023.1.6; Addinsoft: Paris, France, 2023.
- Thompson, H.M.; Waite, R.J.; Wilkins, S.; Brown, M.A.; Bigwood, T.; Shaw, M.; Ridgway, C.; Sharman, M. Effects of shook swarm and supplementary feeding on oxytetracycline levels in honey extracted from treated colonies. Apidologie 2006, 37, 51–57. [Google Scholar]
- Richards, E.D.; Tell, L.A.; Davis, J.L.; Baynes, R.E.; Lin, Z.; Maunsell, F.P.; Riviere, J.E.; Jaberi-Douraki, M.; Martin, K.L.; Davidson, G. Honey bee medicine for veterinarians and guidance for avoiding violative chemical residues in honey. J. Am. Vet. Med. Assoc. 2021, 259, 860–873. [Google Scholar] [CrossRef]
- Khan, S.J.; Ongerth, J.E. Modelling of pharmaceutical residues in Australian sewage by quantities of use and fugacity calculations. Chemosphere 2004, 54, 355–367. [Google Scholar]
- Chee-Sanford, J.C.; Mackie, R.I.; Koike, S.; Krapac, I.G.; Lin, Y.; Yannarell, A.C.; Maxwell, S.; Aminov, R.I. Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. J. Environ. Qual. 2009, 38, 1086–1108. [Google Scholar]
- Watkinson, A.J.; Murby, E.J.; Kolpin, D.W.; Costanzo, S.D. The occurrence of antibiotics in an urban watershed: From wastewater to drinking water. Sci. Total Environ. 2009, 407, 2711–2723. [Google Scholar] [CrossRef] [PubMed]
- Borrely, S.I.; Caminada, S.M.L.; Ponezi, A.N.; dos Santos, D.R.; Silva, V.H.O. Contaminação das águas por resíduos de medicamentos: Ênfase ao cloridrato de fluoxetina. O Mundo Da Saúde 2012, 36, 556–563. [Google Scholar] [CrossRef]
- Hendriksen, R.S.; Munk, P.; Njage, P.; Van Bunnik, B.; McNally, L.; Lukjancenko, O.; Röder, T.; Nieuwenhuijse, D.; Pedersen, S.K.; Kjeldgaard, J.; et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat. Commun. 2019, 10, 1124. [Google Scholar]
- Soares, K.O.; de Oliveira, C.J.B.; Rodrigues, A.E.; Vasconcelos, P.C.; da Silva, N.M.V.; Filho, O.G.d.C.; Madden, C.; Hale, V.L. Tetracycline exposure alters key gut microbiota in Africanized honey bees (Apis mellifera scutellata x spp.). Front. Ecol. Evol. 2021, 9, 716660. [Google Scholar]
- Zhao, F.; Yang, L.; Chen, L.; Li, S.; Sun, L. Bioaccumulation of antibiotics in crops under long-term manure application: Occurrence, biomass response and human exposure. Chemosphere 2019, 219, 882–895. [Google Scholar]
- Yi, W.; Law, S.E.; McCoy, D.; Wetzstein, H.Y. Stigma Development and Receptivity in Almond (Prunus dulcis). Ann. Bot. 2005, 97, 57–63. [Google Scholar]
- Christiano, R.S.C.; Reilly, C.C.; Miller, W.P.; Scherm, H. Oxytetracycline dynamics on peach leaves in relation to temperature, sunlight, and simulated rain. Plant Dis. 2010, 94, 1213–1218. [Google Scholar] [PubMed]
- Fry, K.L.; McPherson, V.J.; Gillings, M.R.; Taylor, M.P. Tracing the sources and prevalence of class 1 integrons, antimicrobial resistance, and trace elements using European honey bees. Environ. Sci. Technol. 2023, 57, 10582–10590. [Google Scholar]
- Stanton, I.C.; Tipper, H.J.; Chau, K.; Klümper, U.; Subirats, J.; Murray, A.K. Does environmental exposure to pharmaceutical and personal care product residues result in the selection of antimicrobial-resistant microorganisms, and is this important in terms of human health outcomes? Environ. Toxicol. Chem. 2024, 43, 623–636. [Google Scholar] [PubMed]
- Liu, Y.; Chen, J.; Lang, H.; Zheng, H. Bartonella choladocola sp. nov. and Bartonella apihabitans sp. nov., two novel species isolated from honey bee gut. Syst. Appl. Microbiol. 2022, 45, 126372. [Google Scholar]
- Alippi, A.M.; Leon, I.E.; López, A.C. Tetracycline-resistance encoding plasmids from Paenibacillus larvae, the causal agent of American foulbrood disease, isolated from commercial honeys. Int. Microbiol. 2014, 17, 49–61. [Google Scholar]
- Murray, K.D.; Aronstein, K.A. Oxytetracycline-resistance in the honey bee pathogen Paenibacillus larvae is encoded on novel plasmid pMA67. J. Apic. Res. 2006, 45, 207–214. [Google Scholar]
- Fondi, M.; Fani, R. The horizontal flow of the plasmid resistome: Clues from inter-generic similarity networks. Environ. Microbiol. 2010, 12, 3228–3242. [Google Scholar]
- López, A.C.; De Ortuzar, R.V.M.; Alippi, A.M. Tetracycline and oxytetracycline resistance determinants detected in Bacillus cereus strains isolated from honey samples. Rev. Argent. Microbiol. 2008, 40, 231–237. [Google Scholar]
- Robles-Jimenez, L.E.; Aranda-Aguirre, E.; Castelan-Ortega, O.A.; Shettino-Bermudez, B.S.; Ortiz-Salinas, R.; Miranda, M.; Li, X.; Angeles-Hernandez, J.C.; Vargas-Bello-Pérez, E.; Gonzalez-Ronquillo, M. Worldwide Traceability of Antibiotic Residues from Livestock in Wastewater and Soil: A Systematic Review. Animals 2022, 12, 60. [Google Scholar]
- Dunai, A.; Spohn, R.; Farkas, Z.; Lázár, V.; Györkei, Á.; Apjok, G.; Boross, G.; Szappanos, B.; Grézal, G.; Faragó, A.; et al. Rapid decline of bacterial drug-resistance in an antibiotic-free environment through phenotypic reversion. eLife 2019, 16, e47088. [Google Scholar]
- Zhu, M.; Dai, X. On the intrinsic constraint of bacterial growth rate: M. tuberculosis’s view of the protein translation capacity. Crit. Rev. Microbiol. 2018, 44, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Masood, F.; Thebeau, J.M.; Cloet, A.; Kozii, I.V.; Zabrodski, M.W.; Biganski, S.; Liang, J.; Guarna, M.M.; Simko, E.; Ruzzini, A.; et al. Evaluating approved and alternative treatments against an oxytetracycline-resistant bacterium responsible for European foulbrood disease in honey bees. Sci. Rep. 2022, 12, 5906. [Google Scholar] [CrossRef]
- Snowdon, J.A.; Cliver, D.O. Microorganisms in honey. Int. J. Food Microbiol. 1996, 31, 1–26. [Google Scholar] [CrossRef]
- Sinacori, M.; Francesca, N.; Alfonzo, A.; Cruciata, M.; Sannino, C.; Settanni, L.; Moschetti, G. Cultivable microorganisms associated with honeys of different geographical and botanical origin. Food Microbiol. 2014, 38, 284–294. [Google Scholar] [CrossRef]
- Floyd, A.S.; Mott, B.M.; Maes, P.; Copeland, D.C.; McFrederick, Q.S.; Anderson, K.E. Microbial ecology of european foul brood disease in the honey bee (Apis mellifera): Towards a microbiome understanding of disease susceptibility. Insects 2020, 11, 555. [Google Scholar] [CrossRef]
- Tiusanen, M.; Becker-Scarpitta, A.; Wirta, H. Distinct Communities and Differing Dispersal Routes in Bacteria and Fungi of Honey Bees, Honey, and Flowers. Microb. Ecol. 2024, 87, 100. [Google Scholar]
- Checcucci, A.; Trevisi, P.; Luise, D.; Modesto, M.; Blasioli, S.; Braschi, I.; Mattarelli, P. Exploring the animal waste resistome: The spread of antimicrobial resistance genes through the use of livestock manure. Front. Microbiol. 2020, 11, 1416. [Google Scholar]
- Murcia-Morales, M.; Díaz-Galiano, F.J.; Guitérrez-Tirado, I.; Flores, J.M.; Van der Steen, J.J.M.; Fernández-Alba, A.R. Dissipation and cross-contamination of miticides in apiculture. Evaluation by APIStrip-based sampling. Chemosphere 2021, 280, 130783. [Google Scholar] [CrossRef] [PubMed]
- Kačániová, M.; Gasper, J.; Terentjeva, M. Antagonistic effect of gut microbiota of honeybee (Apis mellifera) against causative agent of American foulbrood Paenibacillus larvae. J. Microbiol. Biotechnol. Food Sci. 2019, 9, 478–481. [Google Scholar] [CrossRef]
- Avila, L.; McCullough, C.; Schiffer, A.; Moreno, J.; Ganjur, N.; Ofenloch, Z.; DuPont, T.; Nottingham, L.; Gerardo, N.M.; Brosi, B.J. Effects of a field-sprayed antibiotic on bee foraging behavior and pollination in pear orchards. Agric. Ecosyst. Environ. 2024, 359, 108757. [Google Scholar] [CrossRef]
Matrix | Protocol |
---|---|
Flowers | Collect 50 almond flowers in a sterile, sealed bag. Add 100 mL of sterile physiological solution (1:3 dilution) and homogenize for 2 min. Streak the homogenate onto three blood agar plates and one Sabouraud agar plate using a 10 µL loop. |
Swabs | Swab the hive walls and place the swab in a 16 mL Falcon tube with 10 mL of sterile physiological solution. Vortex for 1 min. Transfer the swab onto three blood agar plates and one Sabouraud agar plate using sterile forceps. Perform triple smears: first directly from the swab, then using a 10 µL loop [10]. |
Honeybees | Collect 10 live adult bees from each hive in a sterile bag. Extract intestines under sterile conditions and transfer them to a 16 mL test tube. Add 1 mL of sterile physiological solution and homogenize with a sterile swab. Perform triple smears using a 10 µL loop onto three blood agar plates and one Sabouraud agar plate [10,21]. |
Pre-Treatment Sampling | 3 Days After the Treatment | 9 Days After the Treatment | Total | |
---|---|---|---|---|
Flowers | 32/31 | 33/12 | 17/23 | 82/66 |
Swabs | 16/11 | 14/6 | 19/12 | 49/29 |
Intestines | 18/3 | 39/20 | 28/2 | 85/27 |
Total | 66/45 | 86/40 | 64/37 | 216/127 |
OTC Treatment | Beehive Identification Code | OTC Residue Level Before the OTC Treatment (µg/kg) | OTC Residue Level 3 Days After the Last OTC Treatment (µg/kg) | OTC Residue Level 9 Days After the Last OTC Treatment (µg/kg) |
---|---|---|---|---|
Treated (subgroup 2) | DB11 | Below LOD | 112,000 | 51,700 |
Control (subgroup 2) | 4OTC | Below LOD | 20 | 432 |
Treated (subgroup 2) | DB4 | Below LOD | 316,000 | 302,000 |
Treated (subgroup 1) | K1 | Below LOD | 311,000 | 44,100 |
Control (subgroup 1) | DB17 | Below LOD | 30 | 52 |
Control (subgroup 1) | K2 | Below LOD | 10 | 7 |
Treated | 6 | Below LOD | 314,000 | No honey in the supers |
Control | DB15 | Below LOD | 22 | 52 |
Zone | Pre-Treatment (22 February 2022) | 3 Days After the Treatment (16 March 2022) (µg/kg) | 9 Days After the Treatment (24 March 2022) (µg/kg) |
---|---|---|---|
Near | Below LOD | 0.7 ± 0.1 | Below LOD |
Middle | Below LOD | 0.3 ± 0.1 | 1.0 ± 0.1 |
Far | Below LOD | Below LOD | Below LOD |
Control tree | Below LOD | Below LOD | Below LOD |
Matrix | Categorization Within the Matrix | Pre-Treatment | 3 Days After OTC Treatment | 9 Days After OTC Treatment |
---|---|---|---|---|
Almond flowers | Near zone | N/A | 1 tet(O) in Cellulomonas/Microbacterium | 1 tet(D) in Kocuria varians |
Middle zone | 1 tet(K) in Staphylococcus equorum 1 tet(L) in Alkalihalobacterium elongatum | N/A | N/A | |
Far zone | 1 tet(L) in Chryseobacterium spp. | N/A | 1 tet(B) in Micrococcus spp. | |
Control tree | 1 tet(M) in Facklamia spp. 1 tet(B) in Micrococcus spp. | N/A | 1 tet(K) in Kocuria spp. | |
Hive boxes | Treated group | N/A | N/A | N/A |
Untreated group | N/A | N/A | N/A | |
Honeybees | Treated group | N/A | 1 tet(M) in Bartonella apihabitans 2 tet(M) and 2 tet(A) in Bartonella apihabitans 1 tet(D) in Paenibacillus glucunolyticus | N/A |
Untreated group | N/A | 1 tet(B) in Bacillus cereus | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mosca, M.; Gyorffy, A.; Milito, M.; Di Ruggiero, C.; De Carolis, A.; Pietropaoli, M.; Giannetti, L.; Necci, F.; Marini, F.; Smedile, D.; et al. Antibiotic Use in Beekeeping: Implications for Health and Environment from a One-Health Perspective. Antibiotics 2025, 14, 359. https://doi.org/10.3390/antibiotics14040359
Mosca M, Gyorffy A, Milito M, Di Ruggiero C, De Carolis A, Pietropaoli M, Giannetti L, Necci F, Marini F, Smedile D, et al. Antibiotic Use in Beekeeping: Implications for Health and Environment from a One-Health Perspective. Antibiotics. 2025; 14(4):359. https://doi.org/10.3390/antibiotics14040359
Chicago/Turabian StyleMosca, Michela, Andrea Gyorffy, Marcella Milito, Camilla Di Ruggiero, Alessandra De Carolis, Marco Pietropaoli, Luigi Giannetti, Francesco Necci, Francesca Marini, Daniele Smedile, and et al. 2025. "Antibiotic Use in Beekeeping: Implications for Health and Environment from a One-Health Perspective" Antibiotics 14, no. 4: 359. https://doi.org/10.3390/antibiotics14040359
APA StyleMosca, M., Gyorffy, A., Milito, M., Di Ruggiero, C., De Carolis, A., Pietropaoli, M., Giannetti, L., Necci, F., Marini, F., Smedile, D., Iurescia, M., Franco, A., Battisti, A., Rombolà, P., Guarducci, M., & Formato, G. (2025). Antibiotic Use in Beekeeping: Implications for Health and Environment from a One-Health Perspective. Antibiotics, 14(4), 359. https://doi.org/10.3390/antibiotics14040359