Comparative Antimicrobial Resistance and Prevalence of Methicillin Resistance in Coagulase-Positive Staphylococci from Conventional and Organic Dairy Farms in South Korea
Abstract
:1. Introduction
2. Results
2.1. Presumptive S. aureus Isolates from Bovine Mastitis Milk Samples in Conventional and Organic Dairy Farms
2.2. Antimicrobial Resistance of Coagulase-Positive Staphylococci (CoPS) and Presumptive S. aureus Isolates from Conventional and Organic Dairy Farms
2.3. DNA Extraction and PCR Amplification of Isolated S. aureus Isolates
3. Discussion
4. Materials and Methods
4.1. Sample Collection and Isolation of S. aureus from Bovine Mastitis Milk Samples
4.2. Antimicrobial Susceptibility Testing of Isolated S. aureus Cultures Using a Disc Diffusion Method
4.3. Bacterial DNA Extraction, PCR Amplification, and Gel Electrophoresis
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bradley, A.J. Bovine Mastitis: An Evolving Disease. Vet. J. 2002, 164, 116–128. [Google Scholar] [CrossRef]
- Cheng, W.N.; Han, S.G. Bovine Mastitis: Risk Factors, Therapeutic Strategies, and Alternative Treatments—A Review. Asian-Australas. J. Anim. Sci. 2020, 33, 1699–1713. [Google Scholar] [CrossRef]
- Barkema, H.W.; Green, M.J.; Bradley, A.J.; Zadoks, R.N. Invited Review: The Role of Contagious Disease in Udder Health. J. Dairy Sci. 2009, 92, 4717–4729. [Google Scholar] [CrossRef]
- Bobbo, T.; Ruegg, P.L.; Stocco, G.; Fiore, E.; Gianesella, M.; Morgante, M.; Pasotto, D.; Bittante, G.; Cecchinato, A. Associations between Pathogen-Specific Cases of Subclinical Mastitis and Milk Yield, Quality, Protein Composition, and Cheese-Making Traits in Dairy Cows. J. Dairy Sci. 2017, 100, 4868–4883. [Google Scholar] [CrossRef]
- Campos, B.; Pickering, A.C.; Rocha, L.S.; Aguilar, A.P.; Fabres-Klein, M.H.; De Oliveira Mendes, T.A.; Fitzgerald, J.R.; De Oliveira Barros Ribon, A. Diversity and Pathogenesis of Staphylococcus aureus from Bovine Mastitis: Current Understanding and Future Perspectives. BMC Vet. Res. 2022, 18, 115. [Google Scholar] [CrossRef]
- Annamanedi, M.; Sheela, P.; Sundareshan, S.; Isloor, S.; Gupta, P.; Jasmeen, P.; Gargi, M.; Mallick, S.; Hegde, N.R. Molecular Fingerprinting of Bovine Mastitis-Associated Staphylococcus aureus Isolates from India. Sci. Rep. 2021, 11, 15228. [Google Scholar] [CrossRef]
- Zhang, K.; Sparling, J.; Chow, B.L.; Elsayed, S.; Hussain, Z.; Church, D.L.; Gregson, D.B.; Louie, T.; Conly, J.M. New Quadriplex PCR Assay for Detection of Methicillin and Mupirocin Resistance and Simultaneous Discrimination of Staphylococcus aureus from Coagulase-Negative Staphylococci. J. Clin. Microbiol. 2004, 42, 4947–4955. [Google Scholar] [CrossRef]
- Seiberling, K.A.; Aruni, W.; Kim, S.; Scapa, V.I.; Fletcher, H.; Church, C.A. The Effect of Intraoperative Mupirocin Irrigation on Staphylococcus aureus within the Maxillary Sinus. Int. Forum Allergy Rhinol. 2013, 3, 94–98. [Google Scholar] [CrossRef]
- Deng, J.; Liu, K.; Wang, K.; Yang, B.; Xu, H.; Wang, J.; Dai, F.; Xiao, X.; Gu, X.; Zhang, L.; et al. The Prevalence of Coagulase-Negative Staphylococcus Associated with Bovine Mastitis in China and Its Antimicrobial Resistance Rate: A Meta-Analysis. J. Dairy Res. 2023, 90, 158–163. [Google Scholar] [CrossRef]
- Tikofsky, L.L.; Barlow, J.W.; Santisteban, C.; Schukken, Y.H. A Comparison of Antimicrobial Susceptibility Patterns for Staphylococcus aureus in Organic and Conventional Dairy Herds. Microb. Drug Resist. 2003, 9, 39–45. [Google Scholar] [CrossRef]
- Meissner, K.; Sauter-Louis, C.; Heiden, S.E.; Schaufler, K.; Tomaso, H.; Conraths, F.J.; Homeier-Bachmann, T. Extended-Spectrum ß-Lactamase-Producing Escherichia Coli in Conventional and Organic Pig Fattening Farms. Microorganisms 2022, 10, 603. [Google Scholar] [CrossRef]
- National Antibiotics Use and Resistance Monitoring Report 2020|National Institute of Food and Drug Safety Evaluation (NIFDSE). Available online: https://www.mfds.go.kr/brd/m_231/view.do?seq=33051&srchFr=&srchTo=&srchWord=&srchTp=&itm_seq_1=0&itm_seq_2=0&multi_itm_seq=0&company_cd=&company_nm=&page=1 (accessed on 19 December 2022).
- South Korea: Dairy and Products Annual|USDA Foreign Agricultural Service. Available online: https://fas.usda.gov/data/south-korea-dairy-and-products-annual-6 (accessed on 19 December 2022).
- Korean Food Standards Codex-KFS Codex|General Test Method|Microbiology|Staphylococcus aureus. Available online: https://foodsafetykorea.go.kr/foodcode/01_03.jsp?idx=380 (accessed on 1 December 2021).
- Roesch, M.; Perreten, V.; Doherr, M.G.; Schaeren, W.; Schällibaum, M.; Blum, J.W. Comparison of Antibiotic Resistance of Udder Pathogens in Dairy Cows Kept on Organic and on Conventional Farms. J. Dairy Sci. 2006, 89, 989–997. [Google Scholar] [CrossRef]
- Sato, K.; Bennedsgaard, T.W.; Bartlett, P.C.; Erskine, R.J.; Kaneene, J.B. Comparison of Antimicrobial Susceptibility of Staphylococcus aureus Isolated from Bulk Tank Milk in Organic and Conventional Dairy Herds in the Midwestern United States and Denmark. J. Food Prot. 2004, 67, 1104–1110. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Fernández, E.; Cancelo, A.; Díaz-Vega, C.; Capita, R.; Alonso-Calleja, C. Antimicrobial Resistance in E. Coli Isolates from Conventionally and Organically Reared Poultry: A Comparison of Agar Disc Diffusion and Sensi Test Gram-Negative Methods. Food Control 2013, 30, 227–234. [Google Scholar] [CrossRef]
- Tenhagen, B.-A.; Alt, K.; Pfefferkorn, B.; Wiehle, L.; Käsbohrer, A.; Fetsch, A. Short Communication: Methicillin-Resistant Staphylococcus aureus in Conventional and Organic Dairy Herds in Germany. J. Dairy Sci. 2018, 101, 3380–3386. [Google Scholar] [CrossRef]
- Ray, K.A.; Warnick, L.D.; Mitchell, R.M.; Kaneene, J.B.; Ruegg, P.L.; Wells, S.J.; Fossler, C.P.; Halbert, L.W.; May, K. Antimicrobial Susceptibility of Salmonella from Organic and Conventional Dairy Farms. J. Dairy Sci. 2006, 89, 2038–2050. [Google Scholar] [CrossRef]
- Chantziaras, I.; Boyen, F.; Callens, B.; Dewulf, J. Correlation between Veterinary Antimicrobial Use and Antimicrobial Resistance in Food-Producing Animals: A Report on Seven Countries. J. Antimicrob. Chemother. 2014, 69, 827–834. [Google Scholar] [CrossRef]
- Lam, T.J.G.M.; Scherpenzeel, C.G.M.; den Uijl, I.E.M.; van Schaik, G. Dry Cow Therapy: Does It Still Deserve a Blanked Recommendation? In Proceedings of the National Mastitis Council 53rd Annual Meeting, Forth Worth, TX, USA, 26 January 2014; pp. 64–72. [Google Scholar]
- Schnitt, A.; Tenhagen, B.-A. Risk Factors for the Occurrence of Methicillin-Resistant Staphylococcus aureus in Dairy Herds: An Update. Foodborne Pathog. Dis. 2020, 17, 585–596. [Google Scholar] [CrossRef]
- Hakenbeck, R.; Coyette, J. Resistant Penicillin-Binding Proteins. Cell. Mol. Life Sci. CMLS 1998, 54, 332–340. [Google Scholar] [CrossRef]
- Zapun, A.; Contreras-Martel, C.; Vernet, T. Penicillin-Binding Proteins and β-Lactam Resistance. FEMS Microbiol. Rev. 2008, 32, 361–385. [Google Scholar] [CrossRef]
- National Antibiotics Use and Resistance Monitoring Report 2022|National Institute of Food and Drug Safety Evaluation (NIFDSE). Available online: https://www.mfds.go.kr/brd/m_231/view.do?seq=33058&srchFr=&srchTo=&srchWord=&srchTp=&itm_seq_1=0&itm_seq_2=0&multi_itm_seq=0&company_cd=&company_nm=&page=1 (accessed on 23 October 2023).
- Zhang, Y.; Zhang, N.; Wang, M.; Luo, M.; Peng, Y.; Li, Z.; Xu, J.; Ou, M.; Kan, B.; Li, X.; et al. The Prevalence and Distribution of Aminoglycoside Resistance Genes. Biosaf. Health 2023, 5, 14–20. [Google Scholar] [CrossRef]
- Grobbel, M.; Hammerl, J.A.; Alt, K.; Irrgang, A.; Kaesbohrer, A.; Tenhagen, B.-A. Comparison of Antimicrobial Resistances in Escherichia coli from Conventionally and Organic Farmed Poultry from Germany. Antibiotics 2022, 11, 1282. [Google Scholar] [CrossRef]
- Shortle, D. A Genetic System for Analysis of Staphylococcal Nuclease. Gene 1983, 22, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Velázquez-Guadarrama, N.; Olivares-Cervantes, A.L.; Salinas, E.; Martínez, L.; Escorcia, M.; Oropeza, R.; Rosas, I. Presence of Environmental Coagulase-Positive Staphylococci, Their Clonal Relationship, Resistance Factors and Ability to Form Biofilm. Rev. Argent. Microbiol. 2017, 49, 15–23. [Google Scholar] [CrossRef]
- Freney, J.; Kloos, W.E.; Hajek, V.; Webster, J.A.; Bes, M.; Brun, Y.; Vernozy-Rozand, C. Recommended Minimal Standards for Description of New Staphylococcal Species. Int. J. Syst. Evol. Microbiol. 1999, 49, 489–502. [Google Scholar] [CrossRef]
- Pérez-Roth, E.; Claverie-Martín, F.; Villar, J.; Méndez-Alvarez, S. Multiplex PCR for Simultaneous Identification of Staphylococcus aureus and Detection of Methicillin and Mupirocin Resistance. J. Clin. Microbiol. 2001, 39, 4037–4041. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, R.; Boon, R.J.; Griffin, K.E.; Masters, P.J.; Slocombe, B.; White, A.R. Antibacterial Activity of Mupirocin (Pseudomonic Acid), a New Antibiotic for Topical Use. Antimicrob. Agents Chemother. 1985, 27, 495–498. [Google Scholar] [CrossRef] [PubMed]
- CLSI Supplement M100S—Performance Standards for Antimicrobial Susceptibility Testing, 32nd ed.; Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2022.
Antibiotic Name | Code | Conventional Farm (n = 11) | Organic Farm (n = 17) | Total (n = 28) | |||
---|---|---|---|---|---|---|---|
Number | % | Number | % | Number | % | ||
Ampicillin | AMP | 9 | 81.8 b | 2 | 11.8 a | 11 | 39.3 |
Oxacillin | OX | 4 | 36.4 b | 0 | 0.0 a | 4 | 14.3 |
Gentamicin | CN | 4 | 36.4 a | 9 | 52.9 a | 13 | 46.4 |
Teicoplanin | TEC | 0 | 0.0 a | 0 | 0.0 a | 0 | 0.0 |
Vancomycin | VA | 0 | 0.0 a | 0 | 0.0 a | 0 | 0.0 |
Erythromycin | E | 5 | 45.5 b | 1 | 5.9 a | 6 | 21.4 |
Chloramphenicol | C | 2 | 18.2 a | 2 | 11.8 a | 4 | 14.3 |
Ciprofloxacin | CIP | 0 | 0.0 a | 0 | 0.0 a | 0 | 0.0 |
Tetracycline | TE | 9 | 81.8 b | 4 | 23.5 a | 13 | 46.4 |
Compound Class | Antibiotic Name | Code | Disc Concentration (μg) | Zone Diameter (mm) | ||
---|---|---|---|---|---|---|
R † | I † | S † | ||||
β-lactams | Ampicillin | AMP | 10 | 15 | 16–21 | 22 |
Oxacillin | OX | 10 | 17 | 18–24 | 25 | |
Aminoglycosides | Gentamicin | CN | 10 | 18 | 19–27 | 28 |
Glycopeptides | Teicoplanin | TEC | 30 | 14 | 15–21 | 22 |
Vancomycin | VA | 30 | 16 | 17–21 | 22 | |
Macrolides | Erythromycin | E | 15 | 21 | 22–30 | 31 |
Phenicols | Chloramphenicol | C | 10 | 18 | 19–26 | 27 |
Quinolones | Ciprofloxacin | CIP | 5 | 21 | 22–30 | 31 |
Tetracyclines | Tetracycline | TE | 30 | 23 | 24–30 | 31 |
Target Gene | Primer | Oligonucleotide Sequence (5′–3′) | Amplicon Size (bp) |
---|---|---|---|
mecA | mecA 1 | GTAGAAATGACTGAACGTCCGATAA | 310 |
mecA 2 | CCAATTCCACATTGTTTCGGTCTAA | ||
nuc | nuc 1 | GCGATTGATGGTGATACGGTT | 279 |
nuc 2 | AGCCAAGCCTTGACGAACTAAAGC | ||
mupA | mupA 1 | TATATTATGCGATGGAAGGTTGG | 457 |
mupA 2 | AATAAAATCAGCTGGAAAGTGTTG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neri, T.A.N.; Park, H.; Kang, S.; Baek, S.H.; Nam, I.S. Comparative Antimicrobial Resistance and Prevalence of Methicillin Resistance in Coagulase-Positive Staphylococci from Conventional and Organic Dairy Farms in South Korea. Antibiotics 2024, 13, 617. https://doi.org/10.3390/antibiotics13070617
Neri TAN, Park H, Kang S, Baek SH, Nam IS. Comparative Antimicrobial Resistance and Prevalence of Methicillin Resistance in Coagulase-Positive Staphylococci from Conventional and Organic Dairy Farms in South Korea. Antibiotics. 2024; 13(7):617. https://doi.org/10.3390/antibiotics13070617
Chicago/Turabian StyleNeri, Therese Ariane N., Hyunjung Park, Sujin Kang, Seung Hee Baek, and In Sik Nam. 2024. "Comparative Antimicrobial Resistance and Prevalence of Methicillin Resistance in Coagulase-Positive Staphylococci from Conventional and Organic Dairy Farms in South Korea" Antibiotics 13, no. 7: 617. https://doi.org/10.3390/antibiotics13070617
APA StyleNeri, T. A. N., Park, H., Kang, S., Baek, S. H., & Nam, I. S. (2024). Comparative Antimicrobial Resistance and Prevalence of Methicillin Resistance in Coagulase-Positive Staphylococci from Conventional and Organic Dairy Farms in South Korea. Antibiotics, 13(7), 617. https://doi.org/10.3390/antibiotics13070617