Genomic Characterization of Multidrug-Resistant Enterobacteriaceae Clinical Isolates from Southern Thailand Hospitals: Unraveling Antimicrobial Resistance and Virulence Mechanisms
Abstract
:1. Introduction
2. Results and Discussions
2.1. Clinical Data and Antimicrobial Susceptibility Testing Results
2.2. Antimicrobial Resistance Genes in Enterobacteriaceae
2.3. Stress Response, Metal Tolerance, and Virulence-Associated Genes in Enterobacteriaceae
2.4. Plasmid Identification in Enterobacteriaceae
3. Materials and Methods
3.1. Sample Collection
3.2. Antimicrobial Susceptibility Testing
3.3. DNA Extraction and Sequencing
3.4. Bioinformatics and Sequence Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bologna, E.; Licari, L.C.; Manfredi, C.; Ditonno, F.; Cirillo, L.; Fusco, G.M.; Abate, M.; Passaro, F.; Di Mauro, E.; Crocetto, F.; et al. Carbapenem-Resistant Enterobacteriaceae in Urinary Tract Infections: From Biological Insights to Emerging Therapeutic Alternatives. Medicina 2024, 60, 214. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.W.K.; Millar, B.C.; Moore, J.E. Antimicrobial Resistance (AMR). Br. J. Biomed. Sci. 2023, 80, 11387. [Google Scholar] [CrossRef] [PubMed]
- Poudel, A.N.; Zhu, S.; Cooper, N.; Little, P.; Tarrant, C.; Hickman, M.; Yao, G. The economic burden of antibiotic resistance: A systematic review and meta-analysis. PLoS ONE 2023, 18, e0285170. [Google Scholar] [CrossRef] [PubMed]
- Logan, L.K.; Weinstein, R.A. The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. J. Infect. Dis. 2017, 215, S28–S36. [Google Scholar] [CrossRef] [PubMed]
- Tilahun, M.; Kassa, Y.; Gedefie, A.; Ashagire, M. Emerging Carbapenem-Resistant Enterobacteriaceae Infection, Its Epidemiology and Novel Treatment Options: A Review. Infect. Drug Resist. 2021, 14, 4363–4374. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information. Kosakonia Assemblies. RefSeq NCBI. Available online: https://www.ncbi.nlm.nih.gov/assembly/?term=Kosakonia (accessed on 12 April 2024).
- Chen, L.; Todd, R.; Kiehlbauch, J.; Walters, M.; Kallen, A. Notes from the Field: Pan-Resistant New Delhi Metallo-Beta-Lactamase-Producing Klebsiella pneumoniae—Washoe County, Nevada, 2016. MMWR. Morb. Mortal. Wkly. Rep. 2017, 66, 33. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, H.; Zhang, Y.; Wang, Q.; Zhao, C.; Li, H.; He, W.; Zhang, F.; Wang, Z.; Li, S.; et al. Genetic characterisation of clinical Klebsiella pneumoniae isolates with reduced susceptibility to tigecycline: Role of the global regulator RamA and its local repressor RamR. Int. J. Antimicrob. Agents 2015, 45, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Ho, P.L.; Chan, J.; Lo, W.U.; Lai, E.L.; Cheung, Y.Y.; Lau, T.C.K.; Chow, K.H. Prevalence and molecular epidemiology of plasmid-mediated fosfomycin resistance genes among blood and urinary Escherichia coli isolates. J. Med. Microbiol. 2013, 62, 1707–1713. [Google Scholar] [CrossRef]
- Moosavian, M.; Khoshkholgh Sima, M.; Ahmad Khosravi, N.; Abbasi Montazeri, E. Detection of OqxAB Efflux Pumps, a Multidrug-Resistant Agent in Bacterial Infection in Patients Referring to Teaching Hospitals in Ahvaz, Southwest of Iran. Int. J. Microbiol. 2021, 2021, 2145176. [Google Scholar] [CrossRef] [PubMed]
- Kerluku, M.; Ratkova Manovska, M.; Prodanov, M.; Stojanovska-Dimzoska, B.; Hajrulai-Musliu, Z.; Jankuloski, D.; Blagoevska, K. Phenotypic and Genotypic Analysis of Antimicrobial Resistance of Commensal Escherichia coli from Dairy Cows’ Feces. Processes 2023, 11, 1929. [Google Scholar] [CrossRef]
- Bobate, S.; Mahalle, S.; Dafale, N.A.; Bajaj, A. Emergence of environmental antibiotic resistance: Mechanism, monitoring and management. Environ. Adv. 2023, 13, 100409. [Google Scholar] [CrossRef]
- Li, K.; Xu, P.; Wang, J.; Yi, X.; Jiao, Y. Identification of errors in draft genome assemblies at single-nucleotide resolution for quality assessment and improvement. Nat. Commun. 2023, 14, 6556. [Google Scholar] [CrossRef]
- Amereh, F.; Arabestani, M.R.; Shokoohizadeh, L. Relationship of OqxAB efflux pump to antibiotic resistance, mainly fluoroquinolones in Klebsiella pneumoniae, isolated from hospitalized patients. Iran. J. Basic Med. Sci. 2023, 26, 93–98. [Google Scholar] [CrossRef]
- da Cruz Nizer, W.S.; Inkovskiy, V.; Versey, Z.; Strempel, N.; Cassol, E.; Overhage, J. Oxidative Stress Response in Pseudomonas aeruginosa. Pathogens 2021, 10, 1187. [Google Scholar] [CrossRef]
- Matsuo, T.; Chen, J.; Minato, Y.; Ogawa, W.; Mizushima, T.; Kuroda, T.; Tsuchiya, T. SmdAB, a heterodimeric ABC-Type multidrug efflux pump, in Serratia marcescens. J. Bacteriol. 2008, 190, 648–654. [Google Scholar] [CrossRef]
- Dalvi, S.D.; Worobec, E.A. Gene expression analysis of the SdeAB multidrug efflux pump in antibiotic-resistant clinical isolates of Serratia marcescens. Indian J. Med. Microbiol. 2012, 30, 302–307. [Google Scholar] [CrossRef]
- Minato, Y.; Shahcheraghi, F.; Ogawa, W.; Kuroda, T.; Tsuchiya, T. Functional gene cloning and characterization of the SsmE multidrug efflux pump from Serratia marcescens. Biol. Pharm. Bull. 2008, 31, 516–519. [Google Scholar] [CrossRef]
- Nguyen, T.H.T.; Nguyen, H.D.; Le, M.H.; Nguyen, T.T.H.; Nguyen, T.D.; Nguyen, D.L.; Nguyen, Q.H.; Nguyen, T.K.O.; Michalet, S.; Dijoux-Franca, M.G.; et al. Efflux Pump Inhibitors in Controlling Antibiotic Resistance: Outlook under a Heavy Metal Contamination Context. Molecules 2023, 28, 2912. [Google Scholar] [CrossRef]
- Vats, P.; Kaur, U.J.; Rishi, P. Heavy metal-induced selection and proliferation of antibiotic resistance: A review. J. Appl. Microbiol. 2022, 132, 4058–4076. [Google Scholar] [CrossRef]
- Mohsen, Y.; Tarchichi, N.; Barakat, R.; Kawtharani, I.; Ghandour, R.; Ezzeddine, Z.; Ghssein, G. The Different Types of Metallophores Produced by Salmonella enterica: A Review. Microbiol. Res. 2023, 14, 1457–1469. [Google Scholar] [CrossRef]
- Koh, E.I.; Hung, C.S.; Henderson, J.P. The Yersiniabactin-Associated ATP Binding Cassette Proteins YbtP and YbtQ Enhance Escherichia coli Fitness during High-Titer Cystitis. Infect. Immun. 2016, 84, 1312–1319. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Wang, Y.; Fu, Y.; Deng, Z.; Lin, S.; Liang, R. Characterization of the Tellurite-Resistance Properties and Identification of the Core Function Genes for Tellurite Resistance in Pseudomonas citronellolis SJTE-3. Microorganisms 2022, 10, 95. [Google Scholar] [CrossRef] [PubMed]
- Kovács, J.K.; Felső, P.; Horváth, G.; Schmidt, J.; Dorn, Á.; Ábrahám, H.; Cox, A.; Márk, L.; Emődy, L.; Kovács, T.; et al. Stress Response and Virulence Potential Modulating Effect of Peppermint Essential Oil in Campylobacter jejuni. BioMed Res. Int. 2019, 2019, 2971741. [Google Scholar] [CrossRef] [PubMed]
- Mourão, J.; Magalhães, M.; Ribeiro-Almeida, M.; Rebelo, A.; Novais, C.; Peixe, L.; Novais, Â.; Antunes, P. Decoding Klebsiella pneumoniae in poultry chain: Unveiling genetic landscape, antibiotic resistance, and biocide tolerance in non-clinical reservoirs. Front. Microbiol. 2024, 15, 1365011. [Google Scholar] [CrossRef] [PubMed]
- Abd Elnabi, M.K.; Elkaliny, N.E.; Elyazied, M.M.; Azab, S.H.; Elkhalifa, S.A.; Elmasry, S.; Mouhamed, M.S.; Shalamesh, E.M.; Alhorieny, N.A.; Abd Elaty, A.E.; et al. Toxicity of Heavy Metals and Recent Advances in Their Removal: A Review. Toxics 2023, 11, 580. [Google Scholar] [CrossRef] [PubMed]
- Papagiannitsis, C.C.; Dolejska, M.; Izdebski, R.; Giakkoupi, P.; Skálová, A.; Chudějová, K.; Dobiasova, H.; Vatopoulos, A.C.; Derde, L.P.; Bonten, M.J.; et al. Characterisation of IncA/C2 plasmids carrying an In416-like integron with the blaVIM-19 gene from Klebsiella pneumoniae ST383 of Greek origin. Int. J. Antimicrob. Agents 2016, 47, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Pauly, N.; Hammerl, J.A.; Grobbel, M.; Käsbohrer, A.; Tenhagen, B.A.; Malorny, B.; Schwarz, S.; Meemken, D.; Irrgang, A. Identification of a bla(VIM-1)-Carrying IncA/C(2) Multiresistance Plasmid in an Escherichia coli Isolate Recovered from the German Food Chain. Microorganisms 2020, 9, 29. [Google Scholar] [CrossRef] [PubMed]
- von Wintersdorff, C.J.; Penders, J.; van Niekerk, J.M.; Mills, N.D.; Majumder, S.; van Alphen, L.B.; Savelkoul, P.H.; Wolffs, P.F. Dissemination of Antimicrobial Resistance in Microbial Ecosystems through Horizontal Gene Transfer. Front. Microbiol. 2016, 7, 173. [Google Scholar] [CrossRef] [PubMed]
- Marí-Almirall, M.; Ferrando, N.; Fernández, M.J.; Cosgaya, C.; Viñes, J.; Rubio, E.; Cuscó, A.; Muñoz, L.; Pellice, M.; Vergara, A.; et al. Clonal Spread and Intra- and Inter-Species Plasmid Dissemination Associated with Klebsiella pneumoniae Carbapenemase-Producing Enterobacterales During a Hospital Outbreak in Barcelona, Spain. Front. Microbiol. 2021, 12, 781127. [Google Scholar] [CrossRef]
- Peleg, A.Y.; Hooper, D.C. Hospital-acquired infections due to gram-negative bacteria. N. Engl. J. Med. 2010, 362, 1804–1813. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, H.; Yu, S.; Li, D.; Gillings, M.R.; Ren, H.; Mao, D.; Guo, J.; Luo, Y. Inter-plasmid transfer of antibiotic resistance genes accelerates antibiotic resistance in bacterial pathogens. ISME J. 2024, 18, wrad032. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xu, Y.; Wang, M.; Li, X.; Liu, Z.; Kuang, D.; Deng, Z.; Ou, H.-Y.; Qu, J. Mobilizable plasmids drive the spread of antimicrobial resistance genes and virulence genes in Klebsiella pneumoniae. Genome Med. 2023, 15, 106. [Google Scholar] [CrossRef]
- Yaikhan, T.; Chukamnerd, A.; Singkhamanan, K.; Nokchan, N.; Chintakovid, N.; Chusri, S.; Pomwised, R.; Wonglapsuwan, M.; Surachat, K. Genomic Characterization of Mobile Genetic Elements Associated with Multidrug-Resistant Acinetobacter Non-baumannii Species from Southern Thailand. Antibiotics 2024, 13, 149. [Google Scholar] [CrossRef] [PubMed]
- Chukamnerd, A.; Pomwised, R.; Chusri, S.; Singkhamanan, K.; Chumtong, S.; Jeenkeawpiam, K.; Sakunrang, C.; Saroeng, K.; Saengsuwan, P.; Wonglapsuwan, M.; et al. Antimicrobial Susceptibility and Molecular Features of Colonizing Isolates of Pseudomonas aeruginosa and the Report of a Novel Sequence Type (ST) 3910 from Thailand. Antibiot. Antibiot. 2023, 12, 165. [Google Scholar] [CrossRef] [PubMed]
- Chukamnerd, A.; Singkhamanan, K.; Chongsuvivatwong, V.; Palittapongarnpim, P.; Doi, Y.; Pomwised, R.; Sakunrang, C.; Jeenkeawpiam, K.; Yingkajorn, M.; Chusri, S.; et al. Whole-genome analysis of carbapenem-resistant Acinetobacter baumannii from clinical isolates in Southern Thailand. Comput. Struct. Biotechnol. J. 2022, 20, 545–558. [Google Scholar] [CrossRef] [PubMed]
- Paul De Vos, E. Bergey’s Manual of Systematic Bacteriology. Volume Three, The Firmicutes, 2nd ed.; Springer: Dordrecht, The Netherlands; New York, NY, USA, 2009. [Google Scholar]
- Hudzicki, J. Kirby-Bauer Disk Diffusion Susceptibility Test Protocol; American Society for Microbiology: Washington, DC, USA, 2009. [Google Scholar]
- Weinstein Melvin, P.; Lewis James, S. The Clinical and Laboratory Standards Institute Subcommittee on Antimicrobial Susceptibility Testing: Background, Organization, Functions, and Processes. J. Clin. Microbiol. 2020, 58, 3. [Google Scholar] [CrossRef] [PubMed]
- TIANamp Bacterial DNA Kit: User Manual; Tiangen Biotech: Bejing, China, 2021.
- Chukamnerd, A.; Jeenkeawpiam, K.; Chusri, S.; Pomwised, R.; Singkhamanan, K.; Surachat, K. BacSeq: A User-Friendly Automated Pipeline for Whole-Genome Sequence Analysis of Bacterial Genomes. Microorganisms 2023, 11, 1769. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 18 February 2024).
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. J. Comput. Mol. Cell Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef]
- Simão, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015, 31, 3210–3212. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Feldgarden, M.; Brover, V.; Gonzalez-Escalona, N.; Frye, J.G.; Haendiges, J.; Haft, D.H.; Hoffmann, M.; Pettengill, J.B.; Prasad, A.B.; Tillman, G.E.; et al. AMRFinderPlus and the Reference Gene Catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Sci. Rep. 2021, 11, 12728. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A.; Zankari, E.; García-Fernández, A.; Voldby Larsen, M.; Lund, O.; Villa, L.; Møller Aarestrup, F.; Hasman, H. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef]
- Galata, V.; Fehlmann, T.; Backes, C.; Keller, A. PLSDB: A resource of complete bacterial plasmids. Nucleic Acids Res. 2019, 47, D195–D202. [Google Scholar] [CrossRef] [PubMed]
- R Studio Team. RStudio: Integrated Development for R; RStudio, PBC: Boston, MA, USA, 2022. [Google Scholar]
- Lee, I.; Ouk Kim, Y.; Park, S.C.; Chun, J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 2016, 66, 1100–1103. [Google Scholar] [CrossRef]
- Grant, J.R.; Enns, E.; Marinier, E.; Mandal, A.; Herman, E.K.; Chen, C.-Y.; Graham, M.; Van Domselaar, G.; Stothard, P. Proksee: In-depth characterization and visualization of bacterial genomes. Nucleic Acids Res. 2023, 51, W484–W492. [Google Scholar] [CrossRef]
Strain | Hospital | Source | Antimicrobial Susceptibility Test (AST) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MEM | IPM | ETP | GEN | AMK | TZP | CIP | LVX | CRO | CAZ | SAM | |||
Proteus mirabilis PSU2 | PSU | R | R | R | R | S | R | R | R | R | R | R | R |
Serratia nevei PSU6 | PSU | Th | R | R | R | R | R | R | I | I | R | R | R |
Klebsiella variicola PSU7 | PSU | R | R | R | R | R | S | R | R | R | R | R | R |
Klebsiella variicola PSU16 | PT | R | R | R | R | R | R | R | R | R | R | R | R |
Klebsiella aerogenes PSU22 | ST | Tu | R | R | R | R | S | R | R | R | R | R | R |
Klebsiella indica PSU33 | PA | Th | R | R | R | S | R | R | R | R | R | R | S |
Klebsiella grimontii PSU35 | PA | Ng | R | R | R | R | R | R | R | R | R | R | R |
Phytobacter ursingii PSU26 | ST | Ng | R | R | R | R | R | R | I | R | R | R | R |
Phytobacter palmae PSU29 | ST | Ng | R | R | R | S | R | R | R | I | R | R | R |
Kosakonia spp. PSU27 | ST | Ng | R | R | R | R | R | R | R | R | R | R | R |
Citrobacter freundii PSU41 | YL | R | R | R | R | R | S | R | I | R | R | R | S |
Citrobacter freundii PSU42 | YL | R | R | R | R | R | R | R | R | R | R | R | R |
Hospital | Source of isolation | ||||||||||||
PSU: Songklanagarind Hospital | Ng: nasopharynx | ||||||||||||
PT: Patthalung Hospital | Tu: endotracheal tube | ||||||||||||
ST: Satun Hospital | Th: throat | ||||||||||||
PA: Pattani Hospital | R: rectum | ||||||||||||
YL: Yala Hospital |
Isolate | Accession No. | Identity | Length | Location | Taxonomy |
---|---|---|---|---|---|
Phytobacter ursingii PSU26 | NZ_CP083851.1 | 0.998551 | 3115 | China | Enterobacter hormaechei |
Phytobacter palmae PSU29 | NZ_CP056253.1 | 0.98551 | 71,960 | United Kingdom | Citrobacter sp. RHBSTW-00903 |
CP101347.1 | 0.984609 | 1702 | China | Salmonella enterica | |
CP093099.1 | 0.983292 | 4448 | USA | Salmonella enterica | |
NZ_CP038598.1 | 0.983159 | 4448 | Canada | Salmonella enterica | |
CP093106.1 | 0.982958 | 4448 | USA | Salmonella enterica | |
CP093079.1 | 0.982958 | 4448 | USA | Salmonella enterica | |
NZ_CP113909.1 | 0.982282 | 4448 | United Kingdom | Klebsiella michiganensis | |
Klebsiella grimontii PSU35 | NZ_CP079817.1 | 1 | 1657 | India | Klebsiella pneumoniae |
NZ_CP093279.1 | 0.999377 | 20,796 | China | Raoultella sp. HC6 | |
NZ_AP026417.1 | 0.999038 | 2889 | Japan | Klebsiella quasipneumoniae | |
Citrobacter freundii PSU41 | NZ_MN370929.1 | 1 | 3579 | missing | Klebsiella pneumoniae |
NZ_CP079817.1 | 1 | 1657 | India | Klebsiella pneumoniae | |
NZ_CP079667.1 | 0.999522 | 2186 | India | Klebsiella pneumoniae | |
NZ_CP083865.1 | 0.999473 | 17,041 | China | Enterobacter kobei | |
NZ_CP069298.1 | 0.999425 | 17,017 | China | Salmonella enterica | |
NZ_CP055215.1 | 0.999281 | 13,247 | Hong Kong | Klebsiella quasipneumoniae | |
Citrobacter freundii PSU42 | NZ_CP079817.1 | 1 | 1657 | India | Klebsiella pneumoniae |
NZ_MN370929.1 | 0.999618 | 3579 | missing | Klebsiella pneumoniae | |
NZ_CP079667.1 | 0.999522 | 2186 | India | Klebsiella pneumoniae | |
NZ_CP083865.1 | 0.999425 | 17,041 | China | Enterobacter kobei | |
NZ_CP069298.1 | 0.999377 | 17,017 | China | Salmonella enterica | |
NZ_CP055215.1 | 0.999184 | 13,247 | Hong Kong | Klebsiella quasipneumoniae |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaikhan, T.; Suwannasin, S.; Singkhamanan, K.; Chusri, S.; Pomwised, R.; Wonglapsuwan, M.; Surachat, K. Genomic Characterization of Multidrug-Resistant Enterobacteriaceae Clinical Isolates from Southern Thailand Hospitals: Unraveling Antimicrobial Resistance and Virulence Mechanisms. Antibiotics 2024, 13, 531. https://doi.org/10.3390/antibiotics13060531
Yaikhan T, Suwannasin S, Singkhamanan K, Chusri S, Pomwised R, Wonglapsuwan M, Surachat K. Genomic Characterization of Multidrug-Resistant Enterobacteriaceae Clinical Isolates from Southern Thailand Hospitals: Unraveling Antimicrobial Resistance and Virulence Mechanisms. Antibiotics. 2024; 13(6):531. https://doi.org/10.3390/antibiotics13060531
Chicago/Turabian StyleYaikhan, Thunchanok, Sirikan Suwannasin, Kamonnut Singkhamanan, Sarunyou Chusri, Rattanaruji Pomwised, Monwadee Wonglapsuwan, and Komwit Surachat. 2024. "Genomic Characterization of Multidrug-Resistant Enterobacteriaceae Clinical Isolates from Southern Thailand Hospitals: Unraveling Antimicrobial Resistance and Virulence Mechanisms" Antibiotics 13, no. 6: 531. https://doi.org/10.3390/antibiotics13060531
APA StyleYaikhan, T., Suwannasin, S., Singkhamanan, K., Chusri, S., Pomwised, R., Wonglapsuwan, M., & Surachat, K. (2024). Genomic Characterization of Multidrug-Resistant Enterobacteriaceae Clinical Isolates from Southern Thailand Hospitals: Unraveling Antimicrobial Resistance and Virulence Mechanisms. Antibiotics, 13(6), 531. https://doi.org/10.3390/antibiotics13060531