Reintroduction of Legacy Antibiotics in Neonatal Sepsis: The Special Role of Fosfomycin and Colistin
Abstract
:1. Introduction
1.1. Issues with Prescribing Antibiotics to Neonates
1.2. Definition of Neonatal Sepsis
1.3. Older Antibiotics
2. Materials and Methods
3. Colistin
3.1. Efficacy in Neonatal Sepsis
3.2. Safety
3.3. Pharmacokinetics
3.4. Dosing
3.5. Intraventricular Administration
3.6. Inhaled Administration
4. Fosfomycin
4.1. Efficacy in Neonatal Sepsis
4.2. Safety
4.3. Pharmacokinetics
4.4. Dosing
5. Clinical Points
- Colistin and fosfomycin are potentially useful in treating neonatal sepsis, especially in high-resistance settings.
- These agents are associated with low toxicity, and their use in the neonatal population is considered safe.
- The use of these agents in combination with other antimicrobial agents can minimize the risk of resistance.
- Fosfomycin can penetrate the blood–brain barrier and distribute in the central nervous system, especially in the presence of meningeal inflammation.
- Colistin penetrates poorly in the CNS, and intraventricular administration may be useful in meningitis.
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Oza, S.; Lawn, J.E.; Hogan, D.R.; Mathers, C.; Cousens, S.N. Neonatal cause-of-death estimates for the early and late neonatal periods for 194 countries: 2000–2013. Bull. World Health Organ. 2015, 93, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann-Struzek, C.; Goldfarb, D.M.; Schlattmann, P.; Schlapbach, L.J.; Reinhart, K.; Kissoon, N. The global burden of paediatric and neonatal sepsis: A systematic review. Lancet Respir. Med. 2018, 6, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Seale, A.C.; Blencowe, H.; Manu, A.A.; Nair, H.; Bahl, R.; Qazi, S.A.; Zaidi, A.K.; Berkley, J.A.; Cousens, S.N.; Lawn, J.E. Estimates of possible severe bacterial infection in neonates in sub-Saharan Africa, south Asia, and Latin America for 2012: A systematic review and meta-analysis. Lancet Infect. Dis. 2014, 14, 731–741. [Google Scholar] [CrossRef] [PubMed]
- Shane, A.L.; Sánchez, P.J.; Stoll, B.J. Neonatal sepsis. Lancet 2017, 390, 1770–1780. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, A.; Bielicki, J.; Mathur, S.; Sharland, M.; Van Den Anker, J.N. Reviewing the WHO guidelines for antibiotic use for sepsis in neonates and children. Paediatr. Int. Child Health 2018, 38, S3–S15. [Google Scholar] [CrossRef]
- Labi, A.K.; Obeng-Nkrumah, N.; Bjerrum, S.; Enweronu-Laryea, C.; Newman, M.J. Neonatal bloodstream infections in a Ghanaian Tertiary Hospital: Are the current antibiotic recommendations adequate? BMC Infect. Dis. 2016, 16, 598. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, T.; Kumar, A.; Saili, A.; Randhawa, V.S. Distribution, antimicrobial resistance and predictors of mortality in neonatal sepsis. J. Neonatal Perinat. Med. 2018, 11, 145–153. [Google Scholar] [CrossRef]
- Jajoo, M.; Manchanda, V.; Chaurasia, S.; Sankar, M.J.; Gautam, H.; Agarwal, R.; Yadav, C.P.; Aggarwal, K.C.; Chellani, H.; Ramji, S.; et al. Alarming rates of antimicrobial resistance and fungal sepsis in outborn neonates in North India. PLoS ONE 2018, 13, e0180705. [Google Scholar] [CrossRef] [PubMed]
- Yadav, N.S.; Sharma, S.; Chaudhary, D.K.; Panthi, P.; Pokhrel, P.; Shrestha, A.; Mandal, P.K. Bacteriological profile of neonatal sepsis and antibiotic susceptibility pattern of isolates admitted at Kanti Children’s Hospital Kathmandu Nepal. BMC Res. Notes BioMed Cent. 2018, 11, 301. [Google Scholar] [CrossRef]
- Pokhrel, B.; Koirala, T.; Shah, G.; Joshi, S.; Baral, P. Bacteriological profile and antibiotic susceptibility of neonatal sepsis in neonatal intensive care unit of a tertiary hospital in Nepal. BMC Pediatr. 2018, 18, 208. [Google Scholar] [CrossRef]
- Chaurasia, S.; Sivanandan, S.; Agarwal, R.; Ellis, S.; Sharland, M.; Sankar, M.J. Neonatal sepsis in South Asia: Huge burden and spiralling antimicrobial resistance. BMJ 2019, 364, k5314. [Google Scholar] [CrossRef] [PubMed]
- Sands, K.; Carvalho, M.J.; Portal, E.; Thomson, K.; Dyer, C.; Akpulu, C.; Andrews, R.; Ferreira, A.; Gillespie, D.; Hender, T.; et al. Characterization of antimicrobial-resistant Gram-negative bacteria that cause neonatal sepsis in seven low- and middle-income countries. Nat. Microbiol. 2021, 6, 512–523. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.C.M.; Bradley, J.; Roilides, E.; Olson, L.; Kaplan, S.; Lutsar, I.; Giaquinto, C.; Benjamin, D.K.; Sharland, M. Harmonising regulatory approval for antibiotics in children. Lancet Child Adolesc. Health 2021, 5, 96–98. [Google Scholar] [CrossRef] [PubMed]
- Folgori, L.; Lutsar, I.; Standing, J.F.; Walker, A.S.; Roilides, E.; Zaoutis, T.E.; Jafri, H.; Giaquinto, C.; Turner, M.A.; Sharland, M. Standardising neonatal and paediatric antibiotic clinical trial design and conduct: The PENTA-ID network view. BMJ Open 2019, 9, e032592. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.C.; Qazi, S.A.; Agarwal, R.; Velaphi, S.; Bielicki, J.A.; Nambiar, S.; Giaquinto, C.; Bradley, J.; Noel, G.J.; Ellis, S.; et al. Antibiotics needed to treat multidrug-resistant infections in neonates. Bull. World Health Organ. 2022, 100, 797–807. [Google Scholar] [CrossRef] [PubMed]
- Metsvaht, T.; Nellis, G.; Varendi, H.; Nunn, A.J.; Graham, S.; Rieutord, A.; Storme, T.; McElnay, J.; Mulla, H.; Turner, M.A.; et al. High variability in the dosing of commonly used antibiotics revealed by a Europe-wide point prevalence study: Implications for research and dissemination. BMC Pediatr. 2015, 15, 41. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Bielicki, J.A.; Ahmed, A.S.M.N.U.; Islam, M.S.; Berezin, E.N.; Gallacci, C.B.; Guinsburg, R.; da Silva Figueiredo, C.E.; Santarone Vieira, R.; Silva, A.R.; et al. Towards understanding global patterns of antimicrobial use and resistance in neonatal sepsis: Insights from the NeoAMR network. Arch. Dis. Child. 2020, 105, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.K.; Schrag, S.J.; El Arifeen, S.; Mullany, L.C.; Shahidul Islam, M.; Shang, N.; Qazi, S.A.; Zaidi, A.K.M.; Bhutta, Z.A.; Bose, A.; et al. Causes and incidence of community-acquired serious infections among young children in south Asia (ANISA): An observational cohort study. Lancet 2018, 392, 145–159. [Google Scholar] [CrossRef] [PubMed]
- Russell, N.; Stöhr, W.; Plakkal, N.; Cook, A.; Berkley, J.A.; Adhisivam, B.; Agarwal, R.; Ahmed, N.U.; Balasegaram, M.; Ballot, D.; et al. Patterns of antibiotic use, pathogens and clinical outcomes in hospitalised neonates and young infants with sepsis in the NeoOBS global neonatal sepsis observational cohort study [preprint]. medRxiv 2022. [Google Scholar] [CrossRef]
- Wynn, J.L.; Wong, H.R.; Shanley, T.P.; Bizzarro, M.J.; Saiman, L.; Polin, R.A. Time for a neonatal-specific consensus definition for sepsis. Pediatr. Crit. Care Med. 2014, 15, 523–528. [Google Scholar] [CrossRef]
- Hayes, R.; Hartnett, J.; Semova, G.; Murray, C.; Murphy, K.; Carroll, L.; Plapp, H.; Hession, L.; O’Toole, J.; McCollum, D.; et al. Neonatal sepsis definitions from randomised clinical trials. Pediatr. Res. 2023, 93, 1141–1148. [Google Scholar] [CrossRef] [PubMed]
- Odabasi, I.O.; Bulbul, A. Neonatal Sepsis. Med. Bull. Sisli Etfal Hosp. 2020, 54, 142–158. [Google Scholar] [CrossRef]
- WHO. Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed. Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 1 February 2024).
- Kontou, A.; Kourti, M.; Iosifidis, E.; Sarafidis, K.; Roilides, E. Use of Newer and Repurposed Antibiotics against Gram-Negative Bacteria in Neonates. Antibiotics 2023, 12, 1072. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Nation, R.L.; Turnidge, J.D.; Milne, R.W.; Coulthard, K.; Rayner, C.R.; Paterson, D.L. Colistin: The re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections. Lancet Infect. Dis. 2006, 6, 589–601. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Turnidge, J.; Milne, R.; Nation, R.L.; Coulthard, K. In vitro pharmacodynamic properties of Colistin and Colistin methanesulfonate against Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob. Agents Chemother. 2001, 45, 781–785. [Google Scholar] [CrossRef] [PubMed]
- Schülin, T. In vitro activity of the aerosolized agents Colistin and tobramycin and five intravenous agents against Pseudomonas aeruginosa isolated from cystic fibrosis patients in southwestern Germany. J. Antimicrob. Chemother. 2002, 49, 403–406. [Google Scholar] [CrossRef] [PubMed]
- Ko, K.S.; Suh, J.Y.; Kwon, K.T.; Jung, S.I.; Park, K.H.; Kang, C.I.; Chung, D.R.; Peck, K.R.; Song, J.H. High rates of resistance to Colistin and polymyxin B in subgroups of Acinetobacter baumannii isolates from Korea. J. Antimicrob. Chemother. 2007, 60, 1163–1167. [Google Scholar] [CrossRef]
- Li, J.; Rayner, C.R.; Nation, R.L.; Owen, R.J.; Spelman, D.; Tan, K.E.; Liolios, L. Heteroresistance to Colistin in multidrug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 2006, 50, 2946–2950. [Google Scholar] [CrossRef] [PubMed]
- Hawley, J.S.; Murray, C.K.; Griffith, M.E.; McElmeel, M.L.; Fulcher, L.C.; Hospenthal, D.R.; Jorgensen, J.H. Susceptibility of acinetobacter strains isolated from deployed U.S. military personnel. Antimicrob. Agents Chemother. 2007, 51, 376–378. [Google Scholar] [CrossRef]
- Macfarlane, E.L.; Kwasnicka, A.; Ochs, M.M.; Hancock, R.E. PhoP-PhoQ homologues in Pseudomonas aeruginosa regulate expression of the outer-membrane protein OprH and polymyxin B resistance. Mol. Microbiol. 1999, 34, 305–316. [Google Scholar] [CrossRef]
- Perez, J.C.; Groisman, E.A. Acid pH activation of the PmrA/PmrB two-component regulatory system of Salmonella enterica. Mol. Microbiol. 2007, 63, 283–293. [Google Scholar] [CrossRef]
- Lim, L.M.; Ly, N.; Anderson, D.; Yang, J.C.; Macander, L.; Jarkowski, A., 3rd; Forrest, A.; Bulitta, J.B.; Tsuji, B.T. Resurgence of Colistin: A review of resistance, toxicity, pharmacodynamics, and dosing. Pharmacotherapy. 2010, 30, 1279–1291. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Nation, R.L.; Milne, R.W.; Turnidge, J.D.; Coulthard, K. Evaluation of Colistin as an agent against multi-resistant Gram-negative bacteria. Int. J. Antimicrob. Agents 2005, 25, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Kasiakou, S.K. Colistin: The revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin. Infect. Dis. 2005, 40, 1333–1341. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Kasiakou, S.K. Toxicity of polymyxins: A systematic review of the evidence from old and recent studies. Crit. Care 2006, 10, R27. [Google Scholar] [CrossRef] [PubMed]
- Reina, R.; Estenssoro, E.; Sáenz, G.; Canales, H.S.; Gonzalvo, R.; Vidal, G.; Martins, G.; Das Neves, A.; Santander, O.; Ramos, C. Safety and efficacy of Colistin in Acinetobacter and Pseudomonas infections: A prospective cohort study. Intensive Care Med. 2005, 31, 1058–1065. [Google Scholar] [CrossRef]
- Conway, S.P.; Etherington, C.; Munday, J.; Goldman, M.H.; Strong, J.J.; Wootton, M. Safety and tolerability of bolus intravenous Colistin in acute respiratory exacerbations in adults with cystic fibrosis. Ann. Pharmacother. 2000, 34, 1238–1242. [Google Scholar] [CrossRef] [PubMed]
- Al-Aloul, M.; Miller, H.; Alapati, S.; Stockton, P.A.; Ledson, M.J.; Walshaw, M.J. Renal impairment in cystic fibrosis patients due to repeated intravenous aminoglycoside use. Pediatr. Pulmonol. 2005, 39, 15–20. [Google Scholar] [CrossRef]
- Assadamongkol, K.; Tapaneya-Olarn, W.; Chatasingh, S. Urinary N-acetyl-beta-D-glucosaminidase (NAG) in aminoglycoside nephrotoxicity. J. Med. Assoc. Thai. 1989, 72, 42–46. [Google Scholar]
- Hartzell, J.D.; Neff, R.; Ake, J.; Howard, R.; Olson, S.; Paolino, K.; Vishnepolsky, M.; Weintrob, A.; Wortmann, G. Nephrotoxicity associated with intravenous Colistin (colistimethate sodium) treatment at a tertiary care medical center. Clin. Infect. Dis. 2009, 48, 1724–1728. [Google Scholar] [CrossRef]
- Molina, J.; Cordero, E.; Pachón, J. New information about the polymyxin/Colistin class of antibiotics. Expert Opin. Pharmacother. 2009, 10, 2811–2828. [Google Scholar] [CrossRef] [PubMed]
- Aksoy, G.K.; Özyazıcı-Özkan, S.E.; Tezel, G.; Dayar, G.T.; Köşker, M.; Doğan, Ç.S. Assesment of Colistin related side effects in premature neonates. Turk. J. Pediatr. 2020, 62, 795–801. [Google Scholar] [CrossRef]
- İpek, M.S.; Aktar, F.; Okur, N.; Celik, M.; Ozbek, E. Colistin use in critically ill neonates: A case-control study. Pediatr. Neonatol. 2017, 58, 490–496. [Google Scholar] [CrossRef]
- Alan, S.; Yildiz, D.; Erdeve, O.; Cakir, U.; Kahvecioglu, D.; Okulu, E.; Ates, C.; Atasay, B.; Arsan, S. Efficacy and safety of intravenous Colistin in preterm infants with nosocomial sepsis caused by Acinetobacter baumannii. Am. J. Perinatol. 2014, 31, 1079–1086. [Google Scholar] [CrossRef] [PubMed]
- Ilhan, O.; Bor, M.; Ozdemir, S.A.; Akbay, S.; Ozer, E.A. Efficacy and Safety of Intravenous Colistin in Very Low Birth Weight Preterm Infants. Paediatr. Drugs. 2018, 20, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Ambreen, G.; Salat, M.S.; Hussain, K.; Raza, S.S.; Ali, U.; Azam, I.; Iqbal, J.; Fatmi, Z. Efficacy of Colistin in multidrug-resistant neonatal sepsis: Experience from a tertiary care center in Karachi, Pakistan. Arch. Dis. Child. 2020, 105, 830–836. [Google Scholar] [CrossRef] [PubMed]
- Abrahams, I.; Dramowski, A.; Moloto, K.; Lloyd, L.; Whitelaw, A.; Bekker, A. Colistin use in a carbapenem-resistant Enterobacterales outbreak at a South African neonatal unit. S. Afr. J. Infect. Dis. 2023, 38, 487. [Google Scholar] [CrossRef]
- Kaya, T.B.; Sürmeli Onay, Ö.; Aydemir, Ö.; Tekin, A.N. Ten-year Single Center Experience with Colistin Therapy in NICU. Pediatr. Infect. Dis. J. 2023, 43, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Al-Lawama, M.; Aljbour, H.; Tanash, A.; Badran, E. Intravenous Colistin in the treatment of multidrug-resistant Acinetobacter in neonates. Ann. Clin. Microbiol. Antimicrob. 2016, 15, 8. [Google Scholar] [CrossRef]
- Al-Mouqdad, M.; Eljaaly, K.; Abdalgader, A.; Al-Anazi, M.; Taha, M.; Alshaibani, A.; Asfour, R.; Khalil, T.; Asfour, S. Safety and efficacy of Colistin and fluoroquinolone in neonatal persistent late-onset sepsis. Saudi Pharm. J. 2021, 29, 1013–1020. [Google Scholar] [CrossRef]
- Tekgunduz, K.S.; Kara, M.; Caner, I.; Demirelli, Y. Safety and Efficacy of Intravenous Colistin in Neonates with Culture Proven Sepsis. Iran J. Pediatr. 2015, 25, e453. [Google Scholar] [CrossRef]
- Çağan, E.; Kıray Baş, E.; Asker, H.S. Use of Colistin in a Neonatal Intensive Care Unit: A Cohort Study of 65 Patients. Med. Sci. Monit. 2017, 23, 548–554. [Google Scholar] [CrossRef]
- Jajoo, M.; Kumar, V.; Jain, M.; Kumari, S.; Manchanda, V. Intravenous Colistin administration in neonates. Pediatr. Infect. Dis. J. 2011, 30, 218–221. [Google Scholar] [CrossRef]
- Nakwan, N.; Chokephaibulkit, K.; Imberti, R. The Use of Colistin for the Treatment of Multidrug-resistant Gram-negative Infections in Neonates and Infants: A Review of the Literature. Pediatr. Infect. Dis. J. 2019, 38, 1107–1112. [Google Scholar] [CrossRef]
- Ordooei Javan, A.; Shokouhi, S.; Sahraei, Z. A review on Colistin nephrotoxicity. Eur. J. Clin. Pharmacol. 2015, 71, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Rabi, R.; Enaya, A.; Sweileh, M.W.; Aiesh, B.M.; Namrouti, A.; Hamdan, Z.I.; Abugaber, D.; Nazzal, Z. Comprehensive Assessment of Colistin Induced Nephrotoxicity: Incidence, Risk Factors and Time Course. Infect. Drug Resist. 2023, 16, 3007–3017. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Newland, J.G.; Pannaraj, P.S.; Metjian, T.A.; Banerjee, R.; Gerber, J.S.; Weissman, S.J.; Beekmann, S.E.; Polgreen, P.M.; Hersh, A.L. The use of intravenous Colistin among children in the United States: Results from a multicenter, case series. Pediatr. Infect. Dis. J. 2013, 32, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Schreuder, M.F.; Bueters, R.R.; Huigen, M.C.; Russel, F.G.; Masereeuw, R.; van den Heuvel, L.P. Effect of drugs on renal development. Clin. J. Am. Soc. Nephrol. 2011, 6, 212–217. [Google Scholar] [CrossRef]
- Shafiq, N.; Malhotra, S.; Gautam, V.; Kaur, H.; Kumar, P.; Dutta, S.; Ray, P.; Kshirsagar, N.A. Evaluation of evidence for pharmacokinetics-pharmacodynamics-based dose optimization of antimicrobials for treating Gram-negative infections in neonates. Indian J. Med. Res. 2017, 145, 299–316. [Google Scholar] [CrossRef]
- Nakwan, N.; Usaha, S.; Chokephaibulkit, K.; Villani, P.; Regazzi, M.; Imberti, R. Pharmacokinetics of Colistin Following a Single Dose of Intravenous Colistimethate Sodium in Critically Ill Neonates. Pediatr. Infect. Dis. J. 2016, 35, 1211–1214. [Google Scholar] [CrossRef]
- Antachopoulos, C.; Geladari, A.; Landersdorfer, C.B.; Volakli, E.; Ilia, S.; Gikas, E.; Gika, H.; Sdougka, M.; Nation, R.L.; Roilides, E. Population Pharmacokinetics and Outcomes of Critically Ill Pediatric Patients Treated with Intravenous Colistin at Higher Than Recommended Doses. Antimicrob. Agents Chemother. 2021, 65, e00002-21. [Google Scholar] [CrossRef] [PubMed]
- Wacharachaisurapol, N.; Phasomsap, C.; Sukkummee, W.; Phaisal, W.; Chanakul, A.; Wittayalertpanya, S.; Chariyavilaskul, P.; Puthanakit, T. Greater optimisation of pharmacokinetic/pharmacodynamic parameters through a loading dose of intravenous Colistin in paediatric patients. Int. J. Antimicrob. Agents 2020, 55, 105940. [Google Scholar] [CrossRef] [PubMed]
- Hussain, K.; Sohail Salat, M.; Ambreen, G.; Iqbal, J. Neurodevelopment Outcome of Neonates Treated with Intraventricular Colistin for Ventriculitis Caused by Multiple Drug-Resistant Pathogens-A Case Series. Front. Pediatr. 2021, 8, 582375. [Google Scholar] [CrossRef] [PubMed]
- Antachopoulos, C.; Karvanen, M.; Iosifidis, E.; Jansson, B.; Plachouras, D.; Cars, O.; Roilides, E. Serum and cerebrospinal fluid levels of Colistin in pediatric patients. Antimicrob. Agents Chemother. 2010, 54, 3985–3987. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, R.K.; Pandey, A.K.; Shafiq, N.; Kumar, J.; Malhotra, S.; Mothsara, C.; Sajan, S.; Gautam, V.; Ray, P.; Sankhyan, N.; et al. Colistin disposition in the cerebrospinal fluid when administered either intravenously alone or with intraventricular/intrathecally in neonates/pediatric patients with culture-proven meningitis. Pediatr. Neonatol. 2022, 63, 190–191. [Google Scholar] [CrossRef] [PubMed]
- Karaiskos, I.; Galani, L.; Baziaka, F.; Giamarellou, H. Intraventricular and intrathecal Colistin as the last therapeutic resort for the treatment of multidrug-resistant and extensively drug-resistant Acinetobacter baumannii ventriculitis and meningitis: A literature review. Int. J. Antimicrob. Agents 2013, 41, 499–508. [Google Scholar] [CrossRef]
- European Medicines Agency Completes Review of Polymyxin-Based Medicines. Available online: https://www.ema.europa.eu/en/news/european-medicines-agency-completes-review-polymyxin-based-medicines (accessed on 15 January 2024).
- Alnaami, I.; Alahmari, Z. Intrathecal/Intraventricular Colistin for Antibiotic-Resistant Bacterial CNS Infections in Pediatric Population: A Systematic Review. Trop. Med. Infect. Dis. 2022, 7, 41. [Google Scholar] [CrossRef]
- Chibabhai, V.; Bekker, A.; Black, M.; Demopoulos, D.; Dramowski, A.; du Plessis, N.M.; Lorente, V.P.; Nana, T.; Rabie, H.; Reubenson, G.; et al. Appropriate use of colistin in neonates, infants and children: Interim guidance. Afr. J. Infect. Dis. 2023, 38, 555. [Google Scholar] [CrossRef]
- Nakwan, N.; Wannaro, J.; Thongmak, T.; Pornladnum, P.; Saksawad, R.; Nakwan, N.; Chokephaibulkit, K. Safety in treatment of ventilator-associated pneumonia due to extensive drug-resistant Acinetobacter baumannii with aerosolized Colistin in neonates: A preliminary report. Pediatr. Pulmonol. 2011, 46, 60–66. [Google Scholar] [CrossRef]
- Hussain, K.; Salat, M.S.; Ambreen, G.; Mughal, A.; Idrees, S.; Sohail, M.; Iqbal, J. Intravenous vs. intravenous plus aerosolized Colistin for treatment of ventilator-associated pneumonia—A matched case-control study in neonates. Expert. Opin. Drug Saf. 2020, 19, 1641–1649. [Google Scholar] [CrossRef]
- Celik, I.H.; Oguz, S.S.; Demirel, G.; Erdeve, O.; Dilmen, U. Outcome of ventilator-associated pneumonia due to multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa treated with aerosolized Colistin in neonates: A retrospective chart review. Eur. J. Pediatr. 2012, 171, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.H.; Tsai, C.M.; Wu, T.H.; Wu, H.Y.; Chung, M.Y.; Chen, C.C.; Huang, Y.C.; Liu, S.F.; Liao, D.L.; Niu, C.K.; et al. Colistin inhalation monotherapy for ventilator-associated pneumonia of Acinetobacter baumannii in prematurity. Pediatr. Pulmonol. 2014, 49, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Nakwan, N.; Lertpichaluk, P.; Chokephaibulkit, K.; Villani, P.; Regazzi, M.; Imberti, R. Pulmonary and Systemic Pharmacokinetics of Colistin Following a Single Dose of Nebulized Colistimethate in Mechanically Ventilated Neonates. Pediatr. Infect. Dis. J. 2015, 34, 961–963. [Google Scholar] [CrossRef]
- Hendlin, D.; Stapley, E.O.; Jackson, M.; Wallick, H.; Miller, A.K.; Wolf, F.J.; Miller, T.W.; Chaiet, L.; Kahan, F.M.; Foltz, E.L.; et al. Phosphonomycin, a new antibiotic produced by strains of streptomyces. Science 1969, 166, 122–123. [Google Scholar] [CrossRef] [PubMed]
- Tran, M.T. New ways of using old antibiotics in pediatrics: Focus on Fosfomycin. Pharmacotherapy 2023, 43, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Standing, J.F.; Bielicki, J.; Hope, W.; van den Anker, J.; Heath, P.T.; Sharland, M. The Potential Role of Fosfomycin in Neonatal Sepsis Caused by Multidrug-Resistant Bacteria. Drugs 2017, 77, 941–950. [Google Scholar] [CrossRef]
- Falagas, M.E.; Vouloumanou, E.K.; Samonis, G.; Vardakas, K.Z. Fosfomycin. Clin. Microbiol. Rev. 2016, 29, 321–347. [Google Scholar] [CrossRef] [PubMed]
- Castañeda-García, A.; Blázquez, J.; Rodríguez-Rojas, A. Molecular Mechanisms and Clinical Impact of Acquired and Intrinsic Fosfomycin Resistance. Antibiotics 2013, 2, 217–236. [Google Scholar] [CrossRef] [PubMed]
- Darlow, C.A.; da Costa, R.M.A.; Ellis, S.; Franceschi, F.; Sharland, M.; Piddock, L.; Das, S.; Hope, W. Potential Antibiotics for the Treatment of Neonatal Sepsis Caused by Multidrug-Resistant Bacteria. Paediatr. Drugs. 2021, 23, 465–484. [Google Scholar] [CrossRef]
- Takahata, S.; Ida, T.; Hiraishi, T.; Sakakibara, S.; Maebashi, K.; Terada, S.; Muratani, T.; Matsumoto, T.; Nakahama, C.; Tomono, K. Molecular mechanisms of Fosfomycin resistance in clinical isolates of Escherichia coli. Int. J. Antimicrob. Agents 2010, 35, 333–337. [Google Scholar] [CrossRef]
- Ferrari, V.; Bonanomi, L.; Borgia, M.; Lodola, E.; Marca, G. A new Fosfomycin derivative with much improved bioavailability by oral route. Chemother. Antimicrob. 1981, 4, 59–63. [Google Scholar]
- Darlow, C.A.; Docobo-Perez, F.; Farrington, N.; Johnson, A.; McEntee, L.; Unsworth, J.; Jimenez-Valverde, A.; Gastine, S.; Kolamunnage-Dona, R.; de Costa, R.M.A.; et al. Amikacin Combined with Fosfomycin for Treatment of Neonatal Sepsis in the Setting of Highly Prevalent Antimicrobial Resistance. Antimicrob. Agents Chemother. 2021, 65, e0029321. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.G.; Mascarós, E.; Román, J.; Paz, M.; Santos, M.; Muñoz, A.; Gobernado, M. Enteropathogenic E. coli gastroenterocolitis in neonates treated with Fosfomycin. Chemotherapy 1977, 23, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Algubaisi, S.; Bührer, C.; Thomale, U.W.; Spors, B. Favorable outcome in cerebral abscesses caused by Citrobacter koseri in a newborn infant. IDCases 2014, 2, 22–24. [Google Scholar] [CrossRef] [PubMed]
- Guillois, B.; Guillemin, M.G.; Thoma, M.; Sizun, J.; Monnery, J.L.; Alix, D. Staphylococcie pleuro-pulmonaire néonatale avec abcès hépatiques multiples [Neonatal pleuropulmonary staphylococcal infection with multiple abscesses of the liver]. Ann. Pediatr. 1989, 36, 681–684. (In French) [Google Scholar]
- Darlow, C.A.; Farrington, N.; Johnson, A.; McEntee, L.; Unsworth, J.; Jimenez-Valverde, A.; Kolamunnage-Dona, R.; Da Costa, R.M.A.; Ellis, S.; Franceschi, F.; et al. Flomoxef and Fosfomycin in combination for the treatment of neonatal sepsis in the setting of highly prevalent antimicrobial resistance. J. Antimicrob. Chemother. 2022, 77, 1334–1343. [Google Scholar] [CrossRef]
- Traunmüller, F.; Popovic, M.; Konz, K.H.; Vavken, P.; Leithner, A.; Joukhadar, C. A reappraisal of current dosing strategies for intravenous Fosfomycin in children and neonates. Clin. Pharmacokinet. 2011, 50, 493–503. [Google Scholar] [CrossRef] [PubMed]
- Obiero, C.W.; Williams, P.; Murunga, S.; Thitiri, J.; Omollo, R.; Walker, A.S.; Egondi, T.; Nyaoke, B.; Correia, E.; Kane, Z.; et al. Randomised controlled trial of Fosfomycin in neonatal sepsis: Pharmacokinetics and safety in relation to sodium overload. Arch. Dis. Child. 2022, 107, 802–810. [Google Scholar] [CrossRef] [PubMed]
- Iarikov, D.; Wassel, R.; Farley, J.; Nambiar, S. Adverse Events Associated with Fosfomycin Use: Review of the Literature and Analyses of the FDA Adverse Event Reporting System Database. Infect. Dis. Ther. 2015, 4, 433–458. [Google Scholar] [CrossRef]
- del Río, A.; Gasch, O.; Moreno, A.; Peña, C.; Cuquet, J.; Soy, D.; Mestres, C.A.; Suárez, C.; Pare, J.C.; Tubau, F.; et al. Efficacy and safety of Fosfomycin plus imipenem as rescue therapy for complicated bacteremia and endocarditis due to methicillin-resistant Staphylococcus aureus: A multicenter clinical trial. Clin. Infect. Dis. 2014, 59, 1105–1112. [Google Scholar] [CrossRef]
- Rossignol, S.; Regnier, C. La Fosfomycine dans les infections sévères en néonatologie [Fosfomycin in severe infection in neonatology]. Ann. Pediatr. 1984, 31, 437–444. (In French) [Google Scholar]
- Molina, M.A.; Olay, T.; Quero, J. Pharmacodynamic data on Fosfomycin in underweight infants during the neonatal period. Chemotherapy 1977, 23, 217–222. [Google Scholar] [CrossRef]
- Guggenbichler, J.P.; Kienel, G.; Frisch, H. Fosfomycin, ein neues Antibiotikum. Pharmakokinetische Untersuchungen bei Kindern, Früh- und Neugeborenen [Fosfomycin, a new antibiotic drug (author’s transl)]. Padiatr. Padol. 1978, 13, 429–436. (In German) [Google Scholar] [PubMed]
- Guibert, M.; Magny, J.F.; Poudenx, F.; Lebrun, L.; Dehan, M. Pharmacocinétique comparée de la Fosfomycine au cours de deux modalités d’administration chez le nouveau-né [Comparative pharmacokinetics of Fosfomycin in the neonate: 2 modes of administration]. Pathol. Biol. 1987, 35, 750–752. (In French) [Google Scholar]
- Kane, Z.; Gastine, S.; Obiero, C.; Williams, P.; Murunga, S.; Thitiri, J.; Ellis, S.; Correia, E.; Nyaoke, B.; Kipper, K.; et al. IV and oral Fosfomycin pharmacokinetics in neonates with suspected clinical sepsis. J. Antimicrob. Chemother. 2021, 76, 1855–1864. [Google Scholar] [CrossRef]
- Nau, R.; Sörgel, F.; Eiffert, H. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin. Microbiol. Rev. 2010, 23, 858–883. [Google Scholar] [CrossRef] [PubMed]
- Kühnen, E.; Pfeifer, G.; Frenkel, C. Penetration of Fosfomycin into cerebrospinal fluid across non-inflamed and inflamed meninges. Infection 1987, 15, 422–424. [Google Scholar] [CrossRef] [PubMed]
- Fosfomycin Containing Medicinal Products-Referral 31. Available online: https://www.ema.europa.eu/en/documents/referral/Fosfomycin-article-31-referral-annex-iii_en.pdf (accessed on 5 February 2024).
- Darlow, C.A.; Parrott, N.; Peck, R.W.; Hope, W. Development and application of neonatal physiology-based pharmacokinetic models of amikacin and Fosfomycin to assess pharmacodynamic target attainment. CPT Pharmacomet. Syst. Pharmacol. 2023, 13, 464–475. [Google Scholar] [CrossRef]
- Barbour, A.; Scaglione, F.; Derendorf, H. Class-dependent relevance of tissue distribution in the interpretation of anti-infective pharmacokinetic/pharmacodynamic indices. Int. J. Antimicrob. Agents 2010, 35, 431–438. [Google Scholar] [CrossRef]
Author | Number of Neonates | Gestational Age, Weeks (mean) | Route of Administration | Dosage | Duration, Days (mean) | AKI n (%) | Microbiologic Cure n (%) | Survival n (%) | |
---|---|---|---|---|---|---|---|---|---|
1 | Aksoy, 2020 [43] | 47 | 27 | iv | 5 mg/kg/day (q8h) | 15.95 | 8 (17%) | ND | 43 (91.5%) |
2 | Ipek, 2017 [44] | 47 | 32.1 | iv iv + ivt: 3 iv + neb: 4 | iv: 2.5–5 mg/kg/day (q8h) | 18 | 0 (0) | 36 (90%) | 33 (70.2%) |
3 | Alan, 2014 [45] | 21 | 28 | iv iv + neb: 1 | iv: 2–5 mg/kg/day (q8h) | 9 | 4 (19%) | 17 (80.9%) | 17 (80.9%) |
4 | Ilhan, 2018 [46] | 66 | ND | iv iv + ivt: 1 | 5 mg/kg/d (q8h) | 14 | 5 (7.5%) | 58 (87.9%) | 48 (72.2%) |
5 | Ambreen, 2020 [47] | 153 | ND | iv iv + ivt: 7 ιv + neb 23 ivt: 2/neb: 3 | iv: 2.5–5 mg/kg/day (q6h–q12h) neb: 4 mg/kg/dose twice daily ivt: 0.16–0.24 mg/kg daily | 8.2 | 8 (5.2%) | 126 (82.6%) | 111 (72.5%) |
6 | Ambrahams, 2023 [48] | 53 | 29 | iv | 80,000 IU/kg q12h (<7 days old) 120,000 IU/kg q8h (>7 days old) | 5.5 | 1 (2%) | ND | 33 (62%) |
7 | Kaya, 2024 [49] | 77 | 30 | iv | 5 mg/kg/d (q8h) | ND | 20 (26%) | ND | 50 (65%) |
8 | Al-Lawama, 2016 [50] | 21 | 33 | iv | 70,000 IU/kg/day | 17 | 0 (0) | 19 (91%) | 19 (91%) |
9 | Al-Mouqdad, 2021 [51] | 15 | 27 | iv | ND | 17 | ND | 7 (46.7%) | 7 (46.7%) |
10 | Tekgunduz, 2015 [52] | 12 | 31.8 | iv iv + ivt: 1 | iv: 5 mg/kg/d (q8h) ivt: 10 mg/kg/day | 16.9 | 0 (0) | 11 (91.7%) | 6 (50%) |
11 | Cagan, 2017 [53] | 65 | 33.6 | iv | 5 mg/kg/d (q8h) | 15 | 3 (4.6%) | 100% | 51 (78.5%) |
12 | Jajoo, 2011 [54] | 18 | 34.5 | iv | 50,000–75,000 IU/kg/d (q8h) | 13 | 2 (11.1%) | 81% | 13 (72%) |
Author | Population | Chronological Age (days) | Bodyweight, Mean (gr) | Route of Administration | Dosing | Cmax (mg/L) | Cmean (mg/L) | T1/2 (h) | Conclusions |
---|---|---|---|---|---|---|---|---|---|
Molina, 1977 [94] | 6, preterm | 1–3 | 1900 | iv | 50 mg/kg | 97.7 | ND | 7 | Higher half-life at earlier postnatal day |
Molina, 1977 [94] | 5, preterm | 21–28 | 2100 | iv | 50 mg/kg | 96.5 | ND | 4.9 | |
Guggenbichler, 1978 [95] | 5, term | ND | 3400 | iv | 25 mg/kg | 62 | 2.4 | 95–98% of the drug was recovered in active form in urine. Slower elimination in neonates than in children. | |
Guggenbichler, 1978 [95] | 5, preterm | ND | 1900 | iv | 25 mg/kg | 62 | ND | 2.8 | |
Guibert, 1987 [96] | 10 term, preterm | ND | ND | iv | 200 mg/kg | 135 | ND | ND | Pharmacokinetic parameters were not altered by different times of infusion (30 min or 2 h). |
Kane, 2021 [97] | 61 | 0–3 | 2800 | iv | 100 mg/kg | 350 | 201.7 | 5.2 | The oral bioavailability was estimated to be 0.48. Fosfomycin can penetrate CSF following iv and oral administration. |
Kane, 2021 [97] | 61 | 0–3 | 2800 | per os | 100 mg/kg | ND | 70.1 | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baltogianni, M.; Dermitzaki, N.; Kosmeri, C.; Serbis, A.; Balomenou, F.; Giapros, V. Reintroduction of Legacy Antibiotics in Neonatal Sepsis: The Special Role of Fosfomycin and Colistin. Antibiotics 2024, 13, 333. https://doi.org/10.3390/antibiotics13040333
Baltogianni M, Dermitzaki N, Kosmeri C, Serbis A, Balomenou F, Giapros V. Reintroduction of Legacy Antibiotics in Neonatal Sepsis: The Special Role of Fosfomycin and Colistin. Antibiotics. 2024; 13(4):333. https://doi.org/10.3390/antibiotics13040333
Chicago/Turabian StyleBaltogianni, Maria, Niki Dermitzaki, Chrysoula Kosmeri, Anastasios Serbis, Foteini Balomenou, and Vasileios Giapros. 2024. "Reintroduction of Legacy Antibiotics in Neonatal Sepsis: The Special Role of Fosfomycin and Colistin" Antibiotics 13, no. 4: 333. https://doi.org/10.3390/antibiotics13040333
APA StyleBaltogianni, M., Dermitzaki, N., Kosmeri, C., Serbis, A., Balomenou, F., & Giapros, V. (2024). Reintroduction of Legacy Antibiotics in Neonatal Sepsis: The Special Role of Fosfomycin and Colistin. Antibiotics, 13(4), 333. https://doi.org/10.3390/antibiotics13040333