Control of Escherichia coli in Poultry Using the In Ovo Injection Technique
Abstract
:1. Introduction
2. Consultation of Published Studies
3. Eggshells and Their Natural Defenses
4. Escherichia coli (E. coli) as a Threat during and after Embryonic Development
5. Escherichia coli (E. coli) as a Threat to Human Health
6. What Is the In Ovo Injection Technique?
- The in ovo injection technique does not require very complex professional training to be administered.
- It can be considered the best option for early and systemic immunization of poultry, with the absence of pain and stress.
- This technique allows for rapid and effective absorption of the injected medication, leading to faster immunization, or a faster response to treatment.
- It can inhibit bacterial growth and multiplication, thus reducing the cross-spread of bacteria in hatcheries and farms, as well as outbreaks of fatal diseases.
- It can induce long-lasting immunity, ensuring that poultry protection is maintained over time.
- It can favor the achievement of productivity gains related to the effects of the injected compound.
- It precipitates a reduction in operational and treatment costs related to poultry farming.
7. In Ovo Injection as a Front Line against Escherichia coli (E. coli) Infection in Poultry
8. Is In Ovo Injection Harmful to Hatchability?
9. Antimicrobials and Hygiene Practices in the Poultry Sector
10. Conclusions and Future Perspectives
- Over the past few decades, several protocols have been developed for the delivery of substances in ovo in the poultry field. Some of these protocols have been specifically designed to protect poultry against bacterial infections. Within these protocols, the use of antimicrobial peptides and probiotics has been the subject of intense investigation and reporting. The implementation of these protocols, centered on such compounds, takes priority in commercial production, given the concentrated database available that supports their characteristics of simplicity, cost-benefit, ease of in ovo application, and compatibility with poultry safety. In addition, the toxicity and bacterial resistance of many synthetic chemical compounds have been considered.
- The chosen in ovo delivery route may influence the effectiveness of antibacterials for poultry. Therefore, studies have proposed the amniotic route as the most effective to guarantee avian protection. These results will contribute to the development of commercial protocols utilizing a more advantageous in ovo delivery route.
- Some tested compounds may exhibit antibacterial specificity for a specific group of bacteria, meaning that the compound does not have a broad antibacterial spectrum. Although this review focuses on the control of E. coli, the search for compounds with broad-spectrum antibacterial properties represents a promising avenue for in ovo injection protocols. This requires further investigation.
- When developing in ovo application protocols, it is crucial to consider the associated economic cost and environmental damage. High costs can create barriers to commercial application, while the use of toxic synthetic chemicals can pose a threat to the environment.
- Many of the compounds tested in ovo were only evaluated under laboratory conditions. Therefore, testing under commercial conditions is essential, since the results obtained in the laboratory may encounter several limitations, even if minimal, due to the different realities faced in practice.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soler, J.J.; Peralta-Sánchez, J.M.; Flensted-Jensen, E.; Martín-Platero, A.M.; Møller, A.P. Innate humoural immunity is related to eggshell bacterial load of European birds: A comparative analysis. Naturwissenschaften 2011, 98, 807–813. [Google Scholar] [CrossRef]
- Hananeh, W.M.; Al-Natour, M.Q.; Alaboudi, A.R.; Abo-Shehada, M.N.; Ismail, Z.A.B. Congenital abnormalities in dead-in-shell chicks associated with mixed bacterial infections. Heliyon 2021, 7, e06272. [Google Scholar] [CrossRef]
- Oliveira, G.d.S.; dos Santos, V.M.; McManus, C. Propolis: Effects on the Sanitisation of Hatching Eggs. World’s Poult. Sci. J. 2022, 78, 261–272. [Google Scholar] [CrossRef]
- Lee, S.; La, T.-M.; Lee, H.-J.; Choi, I.-S.; Song, C.-S.; Park, S.-Y.; Lee, J.-B.; Lee, S.-W. Characterization of microbial communities in the chicken oviduct and the origin of chicken embryo gut microbiota. Sci. Rep. 2019, 9, 6838. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, B.; de Boeck, C.; Dumont, A.; Cox, E.; de Reu, K.; Vanrompay, D. First Experimental Evidence for the Transmission of Chlamydia psittaci in Poultry through Eggshell Penetration. Transb. Emerg. Dis. 2017, 64, 167–170. [Google Scholar] [CrossRef] [PubMed]
- Uçan, U.S.; Gök, A. Efficacy of a Water-Based Disinfectant on Reduction of Eggshell Bacterial Contamination. Eur. J. Vet. Sci. 2012, 28, 57–59. [Google Scholar]
- Oliveira, G.d.S.; McManus, C.; de Araújo, M.V.; de Sousa, D.E.R.; de Macêdo, I.L.; de Castro, M.B.; dos Santos, V.M. Sanitizing Hatching Eggs with Essential Oils: Avian and Microbiological Safety. Microorganisms 2023, 11, 1890. [Google Scholar] [CrossRef]
- Mousa-Balabel, T.M.; Al-Midani, S.A.; Al-Refaay, M.A.; Kerady, S.M. Coliform Bacteria and Hatching Egg Disinfectants. Int. J. Sci. Basic Appl. Res. 2017, 33, 151–163. [Google Scholar]
- Cantu, K.; Archer, G.S.; Tucker, Z.S.; Coufal, C.D. Effectiveness of Duck Hatching Egg Sanitization with the Combination of Hydrogen Peroxide and Ultraviolet Light. J. Appl. Poult. Res. 2019, 28, 301–306. [Google Scholar] [CrossRef]
- Oliveira, G.S.; Nascimento, S.T.; dos Santos, V.M.; Silva, M.G. Clove Essential Oil in the Sanitation of Fertile Eggs. Poult. Sci. 2020, 99, 5509–5516. [Google Scholar] [CrossRef]
- Oliveira, G.d.S.; dos Santos, V.M.; Nascimento, S.T. Essential Oils as Sanitisers for Hatching Eggs. World’s Poult. Sci. J. 2021, 77, 605–617. [Google Scholar] [CrossRef]
- Oliveira, G.S.; Nascimento, S.T.; dos Santos, V.M.; Dallago, B.S.L. Spraying Hatching Eggs with Clove Essential Oil Does Not Compromise the Quality of Embryos and One-Day-Old Chicks or Broiler Performance. Animals 2021, 11, 2045. [Google Scholar] [CrossRef]
- Oliveira, G.d.S.; McManus, C.; dos Santos, V.M. Garlic as Active Principle of Sanitiser for Hatching Eggs. World’s Poult. Sci. J. 2022, 78, 1037–1052. [Google Scholar] [CrossRef]
- Oliveira, G.d.S.; McManus, C.; Salgado, C.B.; dos Santos, V.M. Effects of Sanitizers on Microbiological Control of Hatching Eggshells and Poultry Health during Embryogenesis and Early Stages after Hatching in the Last Decade. Animals 2022, 12, 2826. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, G.S.; dos Santos, V.M.; Nascimento, S.T.; Rodrigues, J.C. Alternative Sanitizers to Paraformaldehyde for Incubation of Fertile Eggs. Poult. Sci. 2020, 99, 2001–2006. [Google Scholar] [CrossRef]
- Hincke, M.T.; Da Silva, M.; Guyot, N.; Gautron, J.; McKee, M.D.; Guabiraba-Brito, R.; Rehault-Godbert, S. Dynamics of Structural Barriers and Innate Immune Components during Incubation of the Avian Egg: Critical Interplay between Autonomous Embryonic Development and Maternal Anticipation. J. Innate Immun. 2019, 11, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Gautron, J.; Stapane, L.; Le Roy, N.; Nys, Y.; Rodriguez-Navarro, A.B.; Hincke, M.T. Avian eggshell biomineralization: An update on its structure, mineralogy and protein tool kit. BMC Mol. Cell Biol. 2021, 22, 11. [Google Scholar] [CrossRef] [PubMed]
- Wellman-Labadie, O.; Picman, J.; Hincke, M.T. Antimicrobial Activity of the Anseriform Outer Eggshell and Cuticle. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2008, 149, 640–649. [Google Scholar] [CrossRef] [PubMed]
- Gautron, J.; Nys, Y. Function of eggshell matrix proteins. In Bioactive Egg Compounds; Huopalahti, R., Lopez-Fandino, R., Anton, M., Schade, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 109–115. ISBN 978-3-540-37883-9. [Google Scholar]
- Chen, X.; Li, X.; He, Z.; Hou, Z.; Xu, G.; Yang, N.; Zheng, J. Comparative Study of Eggshell Antibacterial Effectivity in Precocial and Altricial Birds Using Escherichia Coli. PLoS ONE 2019, 14, e0220054. [Google Scholar] [CrossRef]
- Chousalkar, K.K.; Flynn, P.; Sutherland, M.; Roberts, J.R.; Cheetham, B.F. Recovery of Salmonella and Escherichia coli from commercial egg shells and effect of translucency on bacterial penetration in eggs. Int. J. Food Microbiol. 2010, 142, 207–213. [Google Scholar] [CrossRef]
- Rathgeber, B.M.; McCarron, P.; Budgell, K.L. Salmonella penetration through eggshells of chickens of different genetic backgrounds. Poult. Sci. 2013, 92, 2457–2462. [Google Scholar] [CrossRef]
- Messens, W.; Grijspeerdt, K.; De Reu, K.; De Ketelaere, B.; Mertens, K.; Bamelis, F.; Kemps, B.; De Baerdemaeker, J.; Decuypere, E.; Herman, L. Eggshell penetration of various types of hens’ eggs by Salmonella enterica serovar Enteritidis. J. Food Prot. 2007, 70, 623–628. [Google Scholar] [CrossRef] [PubMed]
- De Reu, K.; Grijspeerdt, K.; Messens, W.; Heyndrickx, M.; Uyttendaele, M.; Debevere, J.; Herman, L. Eggshell factors influencing eggshell penetration and whole egg contamination by different bacteria, including Salmonella Eenteritidis. Int. J. Food Microbiol. 2006, 112, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Messens, W.; Grijspeerdt, K.; Herman, L. Intrinsic and extrinsic factors influencing eggshell penetration by Salmonella Enteritidis. In Proceedings of the XVII European Symposium on the Quality of Poultry Meat and XI European Symposium on the Quality of Eggs and Egg Products, Golden Tulip Parkhotel Doorwerth, Doorwerth, The Netherlands, 23–26 May 2005; pp. 23–26. [Google Scholar]
- Sauter, E.A.; Petersen, C.F. The effect of egg shell quality on penetration by Pseudomonas fluorescens. Poult. Sci. 1969, 48, 1525–1528. [Google Scholar] [CrossRef]
- Vlčková, J.; Tůmová, E.; Ketta, M.; Englmaierová, M.; Chodová, D. Effect of housing system and age of laying hens on eggshell quality, microbial contamination, and penetration of microorganisms into eggs. Czech J. Anim. Sci. 2018, 63, 51–60. [Google Scholar] [CrossRef]
- De Reu, K.; Grijspeerdt, K.; Heyndrickx, M.; Messens, W.; Uyttendaele, M.; Debevere, J.; Herman, L. Influence of eggshell condensation on eggshell penetration and whole egg contamination with Salmonella enterica serovar enteritidis. J. Food Prot. 2006, 69, 1539–1545. [Google Scholar] [CrossRef]
- Munoz, A.; Dominguez-Gasca, N.; Jimenez-Lopez, C.; Rodriguez-Navarro, A.B. Importance of eggshell cuticle composition and maturity for avoiding trans-shell Salmonella contamination in chicken eggs. Food Control 2015, 55, 31–38. [Google Scholar] [CrossRef]
- Swelum, A.A.; Elbestawy, A.R.; El-Saadony, M.T.; Hussein, E.O.S.; Alhotan, R.; Suliman, G.M.; Taha, A.E.; Ba-Awadh, H.; El-Tarabily, K.A.; El-Hack, M.E.A. Ways to minimize bacterial infections, with special reference to Escherichia coli, to cope with the first-week mortality in chicks: An updated overview. Poult. Sci. 2021, 100, 101039. [Google Scholar] [CrossRef]
- Abd El-Daye, G.A.; Moustafa, S.S. Effect of using lactobacillus acidophilus on E. coli causing embryonic death and low hatchability in balady hatcheries at dakahlia governorate. Assiut Vet. Med. J. 2013, 59, 170–176. [Google Scholar]
- Ozaki, H.; Murase, K.Y. Virulence of Escherichia coli Isolates Obtained from Layer Chickens with Colibacillosis Associated with Pericarditis, Perihepatitis, and Salpingitis in Experimentally Infected Chicks and Embryonated Eggs. Avian Dis. 2018, 62, 233–236. [Google Scholar] [CrossRef]
- Wang, C.; Pors, S.E.; Olsen, R.H.; Bojesen, A.M. Transmission and pathogenicity of Gallibacterium anatis and Escherichia coli in embryonated eggs. Vet. Microbiol. 2018, 217, 76–81. [Google Scholar] [CrossRef]
- Kosecka-Strojek, M.; Trzeciak, J.; Homa, J.; Trzeciak, K.; Władyka, B.; Trela, M.; Międzobrodzki, J.; Lis, M.W. Effect of Staphylococcus aureus infection on the heat stress protein 70 (HSP70) level in chicken embryo tissues. Poult. Sci. 2021, 100, 101119. [Google Scholar] [CrossRef]
- Kabir, S.M.K. Avian colibacillosis and salmonellosis: A closer look at epidemiology, pathogenesis, diagnosis, control and public health concerns. Int. J. Environ. Res. Public Health 2010, 7, 89–114. [Google Scholar] [CrossRef]
- Kalita, N.; Pathak, N.; Saikia, G.; Ahmed, M. Prevalence and pathology of dead-in-shell embryos of Vanaraja egg. Indian J. 2013, 37, 104–105. [Google Scholar]
- Fatemi, S.A.; Lindsey, L.L.; Evans, J.D.; Elliott, K.E.C.; Leigh, S.A.; Robinson, K.J.; Mousstaaid, A.; Gerard, P.; Peebles, E.D. Effects of the in ovo injection of an Escherichia coli vaccine on the hatchability and quality characteristics of commercial layer hatchlings. Poult. Sci. 2023, 102, 103057. [Google Scholar] [CrossRef] [PubMed]
- Nolan, L.K.; John Barnes, H.; Vaillancourt, J.-P.; Abdul-Aziz, T.; Logue, C.M. Colibacillosis. In Diseases of Poultry; Swayne, D.E., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Elnagar, R.; Elkenany, R.; Younis, G. Interleukin gene expression in broiler chickens infected by different Escherichia coli serotypes. Vet. World 2021, 14, 2727. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, C.R.; Prussing, C.; Boerlin, P.; Daignault, D.; Dutil, L.; Reid-Smith, R.J.; Zhanel, G.G.; Manges, A.R. Chicken as reservoir for extraintestinal pathogenic Escherichia coli in humans, Canada. Emerg. Infect. Dis. 2012, 18, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Bonten, M.; Johnson, J.R.; Van Den Biggelaar, A.H.J.; Georgalis, L.; Geurtsen, J.; De Palacios, P.I.; Gravenstein, S.; Verstraeten, T.; Hermans, P.; Poolman, J.T. Epidemiology of Escherichia Coli Bacteremia: A Systematic Literature Review. Clin. Infect. Dis. 2021, 72, 1211–1219. [Google Scholar] [CrossRef] [PubMed]
- Croxen, M.A.; Finlay, B.B. Molecular mechanisms of Escherichia coli pathogenicity. Nat. Rev. Microbiol. 2010, 8, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef]
- Uni, Z.; Ferket, P.R.; Tako, E.; Kedar, O. In Ovo Feeding Improves Energy Status of Late-Term Chicken Embryos. Poult. Sci. 2005, 84, 764–770. [Google Scholar] [CrossRef]
- Williams, C.J. In ovo vaccination for disease prevention. Int. J. Poult. Sci. 2007, 15, 7–9. [Google Scholar]
- Taghavi, A.; Allan, B.; Mutwiri, G.; Foldvari, M.; Kessel, A.; Willson, P.; Babiuk, L.; Potter, A.; Gomis, S. Enhancement of immunoprotective effect of CpG-ODN by formulation with polyphosphazenes against E. coli septicemia in neonatal chickens. Curr. Drug Deliv. 2009, 6, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.J. In ovo vaccination and chick quality. Int. Hatch. Prac. 2011, 19, 7–13. [Google Scholar]
- Cuperus, T.; van Dijk, A.; Matthijs, M.G.; Veldhuizen, E.J.; Haagsman, H.P. Protective effect of in ovo treatment with the chicken cathelicidin analog D-CATH-2 against avian pathogenic E. coli. Sci. Rep. 2016, 6, 26622. [Google Scholar] [CrossRef] [PubMed]
- Duan, A.Y.; Ju, A.Q.; Zhang, Y.N.; Qin, Y.J.; Xue, L.G.; Ma, X.; Luan, W.M.; Yang, S.B. The Effects of In Ovo Injection of Synbiotics on the Early Growth Performance and Intestinal Health of Chicks. Front. Vet. Sci. 2021, 8, 658301. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, M.; Faurie, A.; Girault, M.; Lavillatte, S.; Menanteau, P.; Chaumeil, T.; Riou, M.; Velge, P.; Schouler, C. In ovo administration of a phage cocktail partially prevents colibacillosis in chicks. Poult. Sci. 2023, 102, 102967. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, G.D.S.; McManus, C.; Salgado, C.B.; Dos Santos, V.M. Bibliographical Mapping of Research into the Relationship between In Ovo Injection Practice and Hatchability in Poultry. Vet. Sci. 2023, 10, 296. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Li, J.; Shi, Q.; Shan, H.; Liu, L.; Geng, T.; Yu, L.; Gong, D. The Effects of In Ovo Feeding of Selenized Glucose on Selenium Concentration and Antioxidant Capacity of Breast Muscle in Neonatal Broilers. Biol. Trace Elem. Res. 2023, 201, 5764–5773. [Google Scholar] [CrossRef]
- Gupta, V.; Ncho, C.M.; Goel, A.; Jeong, C.-M.; Choi, Y.-H. Effects of In Ovo Injection of α-Ketoglutaric Acid on Hatchability, Growth, Plasma Metabolites, and Antioxidant Status of Broilers. Antioxidants 2022, 11, 2102. [Google Scholar] [CrossRef]
- Zhai, W.; Rowe, D.E.; Peebles, E.D. Effects of commercial in ovo injection of carbohydrates on broiler embryogenesis. Poult. Sci. 2011, 90, 1295–1301. [Google Scholar] [CrossRef]
- Ncho, C.M.; Goel, A.; Jeong, C.M.; Youssouf, M.; Choi, Y.H. In ovo injection of gaba can help body weight gain at hatch, increase chick weight to egg weight ratio, and improve broiler heat resistance. Animals 2021, 11, 1364. [Google Scholar] [CrossRef]
- Yang, S.B.; Qin, Y.J.; Ma, X.; Luan, W.M.; Sun, P.; Ju, A.Q.; Duan, A.Y.; Zhang, Y.N.; Zhao, D.H. Effects of in ovo injection of Astragalus polysaccharide on the intestinal development and mucosal immunity in broiler chickens. Front. Vet. Sci. 2021, 8, 738816. [Google Scholar] [CrossRef]
- Wakenell, P.S.; Bryan, T.; Schaeffer, J.; Avakian, A.; Williams, C.; Whitfill, C. Effect of in ovo vaccine delivery route on HVT/SB1 efficacy and viremia. Avian Dis. 2002, 46, 274–280. [Google Scholar] [CrossRef]
- Nicolas, M.; Trotereau, A.; Culot, A.; Moodley, A.; Atterbury, R.; Wagemans, J.; Lavigne, R.; Velge, P.; Schouler, C. Isolation and Characterization of a Novel Phage Collection against Avian-Pathogenic Escherichia coli. Microbiol. Spectr. 2023, 11, e04296-22. [Google Scholar] [CrossRef] [PubMed]
- Sarfraz, M.; Nguyen, T.T.T.; Wheler, C.; Köster, W.; Gerdts, V.; Dar, A. Characterization of dosage levels for in ovo administration of innate immune stimulants for prevention of yolk sac infection in chicks. Vet. Sci. 2022, 9, 203. [Google Scholar] [CrossRef] [PubMed]
- Allan, B.; Wheler, C.; Koster, W.; Sarfraz, M.; Potter, A.; Gerdts, V.; Dar, A. In Ovo Administration of Innate Immune Stimulants and Protection from Early Chick Mortalities due to Yolk Sac Infection. Avian Dis. 2018, 62, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Pedroso, A.A.; Batal, A.B.; Lee, M.D. Effect of in ovo administration of an adult-derived microbiota on establishment of the intestinal microbiome in chickens. Am. J. Vet. Res. 2016, 77, 514–526. [Google Scholar] [CrossRef]
- Arreguin-Nava, M.A.; Graham, B.D.; Adhikari, B.; Agnello, M.; Selby, C.M.; Hernandez-Velasco, X.; Vuong, C.N.; Solis-Cruz, B.; Hernandez-Patlan, D.; Latorre, J.D.; et al. Evaluation of in ovo Bacillus spp. based probiotic administration on horizontal transmission of virulent Escherichia coli in neonatal broiler chickens. Poult. Sci. 2019, 98, 6483–6491. [Google Scholar] [CrossRef] [PubMed]
- Arreguin-Nava, M.A.; Graham, B.D.; Adhikari, B.; Agnello, M.; Selby, C.M.; Hernandez-Velasco, X.; Vuong, C.N.; Solis-Cruz, B.; Hernandez-Patlan, D.; Latorre, J.D.; et al. In ovo administration of defined lactic acid bacteria previously isolated from adult hens induced variations in the cecae microbiota structure and enterobacteriaceae colonization on a virulent escherichia coli horizontal infection model in broiler chicken. Front. Vet. Sci. 2020, 7, 489. [Google Scholar] [CrossRef]
- Majidi-Mosleh, A.; Sadeghi, A.; Mousavi, S.; Chamani, M.; Zarei, A. Ileal MUC2 gene expression and microbial population, but not growth performance and immune response, are influenced by in ovo injection of probiotics in broiler chickens. Br. Poult. Sci. 2017, 58, 40–45. [Google Scholar] [CrossRef]
- Nguyen, T.T.T.; Allan, B.; Wheler, C.; Köster, W.; Gerdts, V.; Dar, A. Avian antimicrobial peptides: In vitro and in ovo characterization and protection from early chick mortality caused by yolk sac infection. Sci. Rep. 2021, 11, 2132. [Google Scholar] [CrossRef] [PubMed]
- Pacifici, S.; Song, J.; Zhang, C.; Wang, Q.; Glahn, R.; Kolba, N.; Tako, E. Intra amniotic administration of raffinose and stachyose affects the intestinal brush border functionality and alters gut microflora populations. Nutrients 2017, 9, 304. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.M.; Ismail, Z.S.; Elwardany, I.; Lohakare, J.; Abdel-Wareth, A.A. In Ovo Feeding Techniques of Green Nanoparticles of Silver and Probiotics: Evaluation of Performance, Physiological, and Microbiological Responses of Hatched One-Day-Old Broiler Chicks. Animals 2023, 13, 3725. [Google Scholar] [CrossRef] [PubMed]
- Hajati, H.; Hassanabadi, A.; Golian, A.; Nassiri-Moghaddam, H.; Nassiri, M.R. The effect of in ovo injection of grape seed extract and vitamin C on hatchability, antioxidant activity, yolk sac absorption, performance and ileal micro flora of broiler chickens. Res. Opin. Anim. Vet. Sci. 2014, 4, 633–638. [Google Scholar]
- Omidi, S.; Ebrahimi, M.; Janmohammadi, H.; Moghaddam, G.; Rajabi, Z.; Hosseintabar-Ghasemabad, B. The impact of in ovo injection of l-arginine on hatchability, immune system and caecum microflora of broiler chickens. J. Anim. Physiol. Anim. Nutr. 2020, 104, 178–185. [Google Scholar] [CrossRef]
- Wang, X.; Shen, Y.; Thakur, K.; Han, J.; Zhang, J.G.; Hu, F.; Wei, Z.J. Antibacterial activity and mechanism of ginger essential oil against Escherichia coli and Staphylococcus aureus. Molecules 2020, 25, 3955. [Google Scholar] [CrossRef]
- Ding, N.; Li, Z.W.; Jiang, L.; Liu, H.; Zhang, Y.P.; Sun, Y.X. Kinetics and mechanisms of bacteria disinfection by performic acid in wastewater: In comparison with peracetic acid and sodium hypochlorite. Sci. Total Environ. 2023, 878, 162606. [Google Scholar] [CrossRef]
- Chen, C.H.; Lu, T.K. Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics 2020, 9, 24. [Google Scholar] [CrossRef]
- Savitskaya, A.; Masso-Silva, J.; Haddaoui, I.; Shymaa, E. Exploring the arsenal of antimicrobial peptides: Mechanisms, diversity, and applications. Biochimie 2023, 214, 216–227. [Google Scholar] [CrossRef]
- Vila-Farres, X.; Giralt, E.; Vila, J. Update of peptides with antibacterial activity. Curr. Med. Chem. 2012, 19, 6188–6198. [Google Scholar] [CrossRef]
- Xie, Z.; Zhao, Q.; Wang, H.; Wen, L.; Li, W.; Zhang, X.; Lin, W.; Li, H.; Xie, Q.; Wang, Y. Effects of antibacterial peptide combinations on growth performance, intestinal health, and immune function of broiler chickens. Poult. Sci. 2020, 99, 6481–6492. [Google Scholar] [CrossRef] [PubMed]
- Nazeer, N.; Uribe-Diaz, S.; Rodriguez-Lecompte, J.C.; Ahmed, M. Antimicrobial peptides as an alternative to relieve antimicrobial growth promoters in poultry. Br. Poult. Sci. 2021, 62, 672–685. [Google Scholar] [CrossRef] [PubMed]
- Neveling, D.P.; van Emmenes, L.; Ahire, J.J.; Pieterse, E.; Smith, C.; Dicks, L.M.T. Effect of a Multi-Species Probiotic on the Colonisation of Salmonella in Broilers. Probiotics Antimicrob. Proteins 2019, 12, 896–905. [Google Scholar] [CrossRef] [PubMed]
- El-Hack, M.E.A.; El-Saadony, M.T.; Shafi, M.E.; Qattan, S.Y.A.; Batiha, G.E.; Khafaga, A.F.; Abdel-Moneim, A.E.; Alagawany, M. Probiotics in poultry feed: A comprehensive review. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1835–1850. [Google Scholar] [CrossRef]
- Cox, C.M.; Dalloul, R.A. Immunomodulatory role of probiotics in poultry and potential in ovo application. Benef. Microbes 2015, 6, 45–52. [Google Scholar] [CrossRef]
- Kopp-Hoolihan, L. Prophylactic and therapeutic uses of probiotics: A review. J. Am. Diet. Assoc. 2001, 101, 229–238. [Google Scholar] [CrossRef]
- McGruder, B.M.; Zhai, W.; Keralapurath, M.M.; Gerard, P.D.; Peebles, E.D. Effects of in Ovo Injection of Theophylline and Electrolyte Solutions on Hatchability and Growth of Broilers from Day 0 to Day 10 Post-Hatch. Int. J. Poult. Sci. 2011, 10, 927–932. [Google Scholar] [CrossRef]
- Joshua, P.P.; Valli, C.; Balakrishnan, V. Effect of in ovo supplementation of nano forms of zinc, copper, and selenium on post-hatch performance of broiler chicken. Vet. World 2016, 9, 287–294. [Google Scholar] [CrossRef]
- Gouda, A.; Tolba, S.A.; El-Moniary, M.M. Impact of in Ovo Injection of Certain Vitamins to Improve the Physiological Conditions of Hatching Chicks. Pak. J. Biol. Sci. 2021, 24, 268–273. [Google Scholar] [CrossRef]
- Nabi, F.; Arain, M.A.; Bhutto, Z.A.; Shah, Q.A.; Bangulzai, N.; Ujjan, N.A.; Fazlani, S.A. Effect of Early Feeding of L-Arginine and L-Threonine on Hatchability and Post-Hatch Performance of Broiler Chicken. Trop. Anim. Health Prod. 2022, 54, 380. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.T.; Bostami, A.R.; Mun, H.S.; Yang, C.J. Efficacy of chlorine dioxide gas in reducing Escherichia coli and Salmonella from broiler house environments. J. Appl. Poult. Res. 2017, 26, 84–88. [Google Scholar] [CrossRef]
- Jiang, L.; Li, M.; Tang, J.; Zhao, X.; Zhang, J.; Zhu, H.; Yu, X.; Li, Y.; Feng, T.; Zhang, X. Effect of Different Disinfectants on Bacterial Aerosol Diversity in Poultry Houses. Front. Microbiol. 2018, 9, 2113. [Google Scholar] [CrossRef] [PubMed]
Factors | Reference |
---|---|
Absence or partial deposition of the cuticle | [20] |
Eggshell pore diameter | [20] |
Exposure of the egg to temperature variation regimes | [21] |
Translucent eggshell surface | [21] |
Genetic origin of Poultry | [22] |
Egg dynamic stiffness | [23] |
High contamination of the eggshell surface | [23] |
Motile and non-clustering properties of some microorganisms | [24] |
Poultry housing system | [25] |
Poultry feed | [25] |
Washing and sanitizing methods | [26] |
Egg storage time | [27] |
Number of pores in the eggshell | [27] |
Eggshell condensation | [28] |
Newly laid eggs (immature cuticle) | [29] |
Chemical composition of the cuticle | [29] |
Compound Classification | Concentration | Day of Application in Embryos | Application Location | Effects Found after Application | Study |
---|---|---|---|---|---|
Immune stimulants | |||||
Cytosine-phosphodiester-guanine oligodeoxynucleotides + polyphosphazene | 50 µg/100 µL | E18 | Amnion | Increased the immunoprotective effect against E. coli infections in poultry | [46] |
Cytosine -phosphodiester-guanine oligodeoxynucleotides | 50 µg/100 µL | E18 | Amnion | It can be used to prevent and control mortality due to yolk sac infection by E. coli | [60] |
Probiotics | |||||
Intestinal microbial product | 3.3 × 105 viable bacteria/egg | E18 | Amnion | Reduced the abundance of Enterobacteriaceae (a family that includes E. coli) in the intestinal microbiota | [61] |
Bacillus spp. probiotic-based | 5 × 107 CFU/mL (1 × 107 CFU/200 µL) | E18 | Amnion | Reduced the severity of virulent horizontal transmission of E. coli and infection of poultry in the incubation cabinet | [62] |
Lactic acid microbiota | 107 CFU/mL | E19 | Amnion | Reduced Enterobacteriaceae colonization in poultry after E. coli infection | [63] |
Bacillus subtilis, Pediococcus acidilactici, and Enterococcus faecium | 107 CFU/mL | E18 | Amnion | Reduced the intestinal population of E. coli in poultry | [64] |
Antimicrobial peptides | |||||
Avian antimicrobial peptides | 30 µg peptide/100 µL PBS/embryo | E18 | Amnion | Effective protection against yolk sac infection caused by E. coli | [65] |
Chicken cathelicidin analog DCATH-2 | 4.4 mg/mL/100 µL PBS/embryo | E18 | Amnion | Protected poultry against E. coli infection | [48] |
Prebiotics | |||||
Raffinose and stachyose | 5 and 10% | E17 | Amnion | The concentration of E. coli in the intestinal content of poultry did not show significant variations | [66] |
Nanomaterials | |||||
Green Silver Nanoparticles | 0.17 mg/mL | E17.5 | Amnion | Reduced E. coli counts in the cecal content of poultry | [67] |
Bacteriophages | |||||
Phage cocktail | 100 µL of the phage cocktail (5.2 × 108 PFU/mL) or DPBS | E16 | Allantois | Prevented the development of avian colibacillosis | [50] |
Synbiotics | |||||
Lactobacillus plantarum + Astragalus polysaccharide | 200 µL of the Lactobacillus plantarum + 2 mg/egg Astragalus polysaccharide | E18.5 | Amnion | Increased colonization of Lactobacillus spp. and Bifidobacterium spp. and decreased the population of E. coli in the avian cecum. | [49] |
Natural extract and vitamins | |||||
Grape seed extract and vitamin C | Grape seed extract (3, 4.5 or 6 mg/egg), and vitamin C (3 mg/egg) | E18 | Air sac | Decrease in the population of E. coli in the ileum | [68] |
Amino acids | |||||
L-arginine | 1–0.5% | E14 | Amnion | Reduced E. coli in the cecum of poultry | [69] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, G.d.S.; McManus, C.; dos Santos, V.M. Control of Escherichia coli in Poultry Using the In Ovo Injection Technique. Antibiotics 2024, 13, 205. https://doi.org/10.3390/antibiotics13030205
Oliveira GdS, McManus C, dos Santos VM. Control of Escherichia coli in Poultry Using the In Ovo Injection Technique. Antibiotics. 2024; 13(3):205. https://doi.org/10.3390/antibiotics13030205
Chicago/Turabian StyleOliveira, Gabriel da Silva, Concepta McManus, and Vinícius Machado dos Santos. 2024. "Control of Escherichia coli in Poultry Using the In Ovo Injection Technique" Antibiotics 13, no. 3: 205. https://doi.org/10.3390/antibiotics13030205
APA StyleOliveira, G. d. S., McManus, C., & dos Santos, V. M. (2024). Control of Escherichia coli in Poultry Using the In Ovo Injection Technique. Antibiotics, 13(3), 205. https://doi.org/10.3390/antibiotics13030205