Regional-Scale Analysis of Antimicrobial Usage in Smallholder Cattle Herds (Aosta Valley, Italy): Why Surveillance Matters
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Geographical Background
4.2. Data Sources and Management
4.3. Estimation of Antimicrobial Usage
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rhouma, M.; Soufi, L.; Cenatus, S.; Archambault, M.; Butaye, P. Current Insights Regarding the Role of Farm Animals in the Spread of Antimicrobial Resistance from a One Health Perspective. Vet. Sci. 2022, 9, 480. [Google Scholar] [CrossRef] [PubMed]
- Collignon, P.J.; McEwen, S.A. One Health-Its Importance in Helping to Better Control Antimicrobial Resistance. Trop. Med. Infect. Dis. 2019, 4, 22. [Google Scholar] [CrossRef] [PubMed]
- McEwen, S.A.; Collignon, P.J. Antimicrobial Resistance: A One Health Perspective. Microbiol. Spectr. 2018, 6, 521–547. [Google Scholar] [CrossRef] [PubMed]
- EMA. Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2022. Trends from 2010 to 2022. Thirteenth ESVAC Report (EMA/299538/2023). Available online: https://www.ema.europa.eu/en/documents/report/sales-veterinary-antimicrobial-agents-31-european-countries-2022-trends-2010-2022-thirteenth-esvac-report_en.pdf (accessed on 5 January 2024).
- Sanders, P.; Vanderhaeghen, W.; Fertner, M.; Fuchs, K.; Obritzhauser, W.; Agunos, A.; Carson, C.; Hog, B.B.; Andersen, V.D.; Chauvin, C.; et al. Monitoring of Farm-Level Antimicrobial Use to Guide Stewardship: Overview of Existing Systems and Analysis of Key Components and Processes. Front. Vet. Sci. 2020, 7, 540. [Google Scholar] [CrossRef]
- Gozdzielewska, L.; King, C.; Flowers, P.; Mellor, D.; Dunlop, P.; Price, L. Scoping review of approaches for improving antimicrobial stewardship in livestock farmers and veterinarians. Prev. Vet. Med. 2020, 180, 105025. [Google Scholar] [CrossRef]
- More, S.J.; McAloon, C.; Silva Bolona, P.; O’Grady, L.; O’Sullivan, F.; McGrath, M.; Buckley, W.; Downing, K.; Kelly, P.; Ryan, E.G.; et al. Mastitis Control and Intramammary Antimicrobial Stewardship in Ireland: Challenges and Opportunities. Front. Vet. Sci. 2022, 9, 748353. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.J.; Wellington, M.; Shah, R.M.; Ferreira, M.J. Antibiotic Stewardship in Food-producing Animals: Challenges, Progress, and Opportunities. Clin. Ther. 2020, 42, 1649–1658. [Google Scholar] [CrossRef]
- EMA. Categorisation of Antibiotics in the European Union (EMA/CVMP/CHMP/682198/2017). Available online: https://www.ema.europa.eu/en/documents/report/categorisation-antibiotics-european-union-answer-request-european-commission-updating-scientific_en.pdf (accessed on 5 September 2023).
- WHO. Critically Important Antimicrobials for Human Medicine, 6th Revision. Available online: https://apps.who.int/iris/bitstream/handle/10665/312266/9789241515528-eng.pdf (accessed on 2 October 2023).
- DANMAP. DANMAP 2021—Use of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Bacteria from Food Animals, Food and Humans in Denmark. Available online: https://www.danmap.org/-/media/sites/danmap/downloads/reports/2021/danmap_2021_version-1.pdf?la=da&hash=23EEC276EE27773E79670BC1200BA82504125562 (accessed on 22 December 2023).
- The Netherlands Veterinary Medicines Institute. Usage of Antibiotics in Agricultural Livestock in the Netherlands in 2022. Available online: https://cdn.i-pulse.nl/autoriteitdiergeneesmiddelen/userfiles/EN/SDa-rapporten/engels-def-sda-rapport-met-brief---het-gebruik-van-antibiotica-bij-landbouwhuisdieren-in-2022-revision.pdf (accessed on 12 January 2024).
- de Campos, J.L.; Kates, A.; Steinberger, A.; Sethi, A.; Suen, G.; Shutske, J.; Safdar, N.; Goldberg, T.; Ruegg, P.L. Quantification of antimicrobial usage in adult cows and preweaned calves on 40 large Wisconsin dairy farms using dose-based and mass-based metrics. J. Dairy Sci. 2021, 104, 4727–4745. [Google Scholar] [CrossRef]
- Kuipers, A.; Koops, W.J.; Wemmenhove, H. Antibiotic use in dairy herds in the Netherlands from 2005 to 2012. J. Dairy Sci. 2016, 99, 1632–1648. [Google Scholar] [CrossRef]
- Mazza, F.; Scali, F.; Formenti, N.; Romeo, C.; Tonni, M.; Ventura, G.; Bertocchi, L.; Lorenzi, V.; Fusi, F.; Tolini, C.; et al. The Relationship between Animal Welfare and Antimicrobial Use in Italian Dairy Farms. Animals 2021, 11, 2575. [Google Scholar] [CrossRef]
- Redding, L.E.; Bender, J.; Baker, L. Quantification of antibiotic use on dairy farms in Pennsylvania. J. Dairy Sci. 2019, 102, 1494–1507. [Google Scholar] [CrossRef] [PubMed]
- Saini, V.; McClure, J.T.; Leger, D.; Dufour, S.; Sheldon, A.G.; Scholl, D.T.; Barkema, H.W. Antimicrobial use on Canadian dairy farms. J. Dairy Sci. 2012, 95, 1209–1221. [Google Scholar] [CrossRef] [PubMed]
- Stevens, M.; Piepers, S.; Supre, K.; Dewulf, J.; De Vliegher, S. Quantification of antimicrobial consumption in adult cattle on dairy herds in Flanders, Belgium, and associations with udder health, milk quality, and production performance. J. Dairy Sci. 2016, 99, 2118–2130. [Google Scholar] [CrossRef] [PubMed]
- Jerab, J.; Jansen, W.; Blackwell, J.; van Hout, J.; Palzer, A.; Lister, S.; Chantziaras, I.; Dewulf, J.; De Briyne, N. Real-World Data on Antibiotic Group Treatment in European Livestock: Drivers, Conditions, and Alternatives. Antibiotics 2022, 11, 1046. [Google Scholar] [CrossRef] [PubMed]
- Menegon, F.; Capello, K.; Tarakdjian, J.; Pasqualin, D.; Cunial, G.; Andreatta, S.; Dellamaria, D.; Manca, G.; Farina, G.; Di Martino, G. Antibiotic Use in Alpine Dairy Farms and Its Relation to Biosecurity and Animal Welfare. Antibiotics 2022, 11, 231. [Google Scholar] [CrossRef] [PubMed]
- Zuliani, A.; Lora, I.; Brscic, M.; Rossi, A.; Piasentier, E.; Gottardo, F.; Contiero, B.; Bovolenta, S. Do Dairy Farming Systems Differ in Antimicrobial Use? Animals 2020, 10, 47. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Scientific Opinion on the assessment of dairy cow welfare in small-scale farming systems. EFSA J. 2015, 13, 4137. [Google Scholar]
- FAO. Proposed International Definition of Small-scale Food Producers for Monitoring the Sustainable Development Goal Indicators 2.3.1 and 2.3.2. Available online: https://unstats.un.org/unsd/statcom/49th-session/documents/BG-Item3j-small-scale-food-producers-definition-FAO-E.pdf (accessed on 13 February 2024).
- Guiomar, N.; Godinho, S.; Pinto-Correia, T.; Almeida, M.; Bartolini, F.; Bezák, P.; Biró, M.; Bjorkhaug, H.; Bojnec, S.; Brunori, G.; et al. Typology and distribution of small farms in Europe: Towards a better picture. Land Use Policy 2018, 75, 784–798. [Google Scholar] [CrossRef]
- Khalil, C.A.; Conforti, P.; Ergin, I.; Gennari, P. Defining Smallholders to Monitor Target 2.3. of the 2030 Agenda for Sustainable Development. Available online: https://www.fao.org/3/i6858e/i6858e.pdf (accessed on 13 February 2024).
- Morton, J.F. The impact of climate change on smallholder and subsistence agriculture. Proc. Natl. Acad. Sci. USA 2007, 104, 19680–19685. [Google Scholar] [CrossRef]
- Diana, A.; Penasa, M.; Santinello, M.; Scali, F.; Magni, E.; Alborali, G.L.; Bertocchi, L.; De Marchi, M. Exploring potential risk factors of antimicrobial use in beef cattle. Animal 2021, 15, 100091. [Google Scholar] [CrossRef]
- Diana, A.; Santinello, M.; Penasa, M.; Scali, F.; Magni, E.; Alborali, G.L.; Bertocchi, L.; De Marchi, M. Use of antimicrobials in beef cattle: An observational study in the north of Italy. Prev. Vet. Med. 2020, 181, 105032. [Google Scholar] [CrossRef]
- Collineau, L.; Belloc, C.; Stark, K.D.C.; Hemonic, A.; Postma, M.; Dewulf, J.; Chauvin, C. Guidance on the Selection of Appropriate Indicators for Quantification of Antimicrobial Usage in Humans and Animals. Zoonoses Public Health 2017, 64, 165–184. [Google Scholar] [CrossRef]
- ISTAT. 7° Censimento Generale Dell’agricoltura: Primi Risultati. Available online: https://www.istat.it/it/files//2022/06/REPORT-CENSIAGRI_2021-def.pdf (accessed on 15 September 2023).
- Ferroni, L.; Lovito, C.; Scoccia, E.; Dalmonte, G.; Sargenti, M.; Pezzotti, G.; Maresca, C.; Forte, C.; Magistrali, C.F. Antibiotic Consumption on Dairy and Beef Cattle Farms of Central Italy Based on Paper Registers. Antibiotics 2020, 9, 273. [Google Scholar] [CrossRef]
- Martinez, E.P.; van Rosmalen, J.; Jacobs, J.; Sanders, P.; van Geijlswijk, I.M.; Heederik, D.J.J.; Verbon, A. Seasonality of antimicrobial use in Dutch food-producing animals. Prev. Vet. Med. 2023, 219, 106006. [Google Scholar] [CrossRef] [PubMed]
- Postma, M.; Sjölund, M.; Collineau, L.; Lösken, S.; Stärk, K.D.C.; Dewulf, J.; Consortium, M. Assigning defined daily doses animal: A European multi-country experience for antimicrobial products authorized for usage in pigs. J. Antimicrob. Chemother. 2015, 70, 294–302. [Google Scholar] [CrossRef]
- EMA. Defined Daily Doses for Animals (DDDvet) and Defined Course Doses for Animals (DCDvet): European Surveillance of Veterinary Antimicrobial Consumption (ESVAC)(EMA/224954/2016). Available online: https://www.ema.europa.eu/en/documents/other/defined-daily-doses-animals-dddvet-and-defined-course-doses-animals-dcdvet-european-surveillance-veterinary-antimicrobial-consumption-esvac_en.pdf (accessed on 13 February 2024).
- Portillo-Gonzalez, R.; Garzon, A.; Pereira, R.V.V.; Silva-Del-Rio, N.; Karle, B.M.; Habing, G.G. Effect of a dairy farmworker stewardship training program on antimicrobial drug usage in dairy cows. J. Dairy Sci. 2023. [Google Scholar] [CrossRef]
- Kikuchi, M.; Okabe, T.; Shimizu, H.; Matsui, T.; Matsuda, F.; Haga, T.; Fujimoto, K.; Endo, Y.; Sugiura, K. Evaluating the antimicrobial use on dairy farms in Chiba Prefecture in Japan using the antimicrobial treatment incidence, an indicator based on Japanese defined daily doses from 2014–2016. J. Vet. Med. Sci. 2022, 84, 1164–1174. [Google Scholar] [CrossRef]
- Zbrun, M.V.; Rossler, E.; Romero-Scharpen, A.; Soto, L.P.; Berisvil, A.; Zimmermann, J.A.; Fusari, M.L.; Signorini, M.L.; Frizzo, L.S. Worldwide meta-analysis of the prevalence of Campylobacter in animal food products. Res. Vet. Sci. 2020, 132, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Italian Ministry of Health. Linee Guida per l’uso Prudente Degli Antimicrobici Negli Allevamenti Zootecnici per la Prevenzione Dell’antimicrobico-Resistenza e Proposte Alternative. Available online: https://www.salute.gov.it/imgs/C_17_pubblicazioni_2782_allegato.pdf (accessed on 22 December 2023).
- Afifi, M.; Kabera, F.; Stryhn, H.; Roy, J.P.; Heider, L.C.; Godden, S.; Montelpare, W.; Sanchez, J.; Dufour, S. Antimicrobial-based dry cow therapy approaches for cure and prevention of intramammary infections: A protocol for a systematic review and meta-analysis. Anim. Health Res. Rev. 2018, 19, 74–78. [Google Scholar] [CrossRef]
- Burke, N.; Adley, C.C. Prevalence of intramammary antibiotic usage in dairy farming. J. Dairy Res. 2021, 88, 176–178. [Google Scholar] [CrossRef] [PubMed]
- Lam, T.; Jansen, J.; Wessels, R.J. The RESET Mindset Model applied on decreasing antibiotic usage in dairy cattle in the Netherlands. Ir. Vet. J. 2017, 70, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ruegg, P.L. A 100-Year Review: Mastitis detection, management, and prevention. J. Dairy Sci. 2017, 100, 10381–10397. [Google Scholar] [CrossRef] [PubMed]
- Ruegg, P.L. Realities, Challenges and Benefits of Antimicrobial Stewardship in Dairy Practice in the United States. Microorganisms 2022, 10, 1626. [Google Scholar] [CrossRef]
- Krogh, M.A.; Nielsen, C.L.; Sorensen, J.T. Antimicrobial use in organic and conventional dairy herds. Animal 2020, 14, 2187–2193. [Google Scholar] [CrossRef] [PubMed]
- Larde, H.; Dufour, S.; Archambault, M.; Masse, J.; Roy, J.P.; Francoz, D. An observational cohort study on antimicrobial usage on dairy farms in Quebec, Canada. J. Dairy Sci. 2021, 104, 1864–1880. [Google Scholar] [CrossRef] [PubMed]
- Pereyra, V.G.; Pol, M.; Pastorino, F.; Herrero, A. Quantification of antimicrobial usage in dairy cows and preweaned calves in Argentina. Prev. Vet. Med. 2015, 122, 273–279. [Google Scholar] [CrossRef]
- Hommerich, K.; Ruddat, I.; Hartmann, M.; Werner, N.; Kasbohrer, A.; Kreienbrock, L. Monitoring Antibiotic Usage in German Dairy and Beef Cattle Farms-A Longitudinal Analysis. Front. Vet. Sci. 2019, 6, 244. [Google Scholar] [CrossRef]
- Centro di Ricerca Politiche e Bioeconomia. L’Agricoltura Nella Valle D’aosta in Cifre 2021. Available online: https://www.crea.gov.it/documents/68457/0/Valle_D_Aosta_inCifre_2021.pdf/6aa6d7cf-e226-ba7d-01ee-5ff18c31a6ee?t=1617276705833 (accessed on 20 September 2023).
- Scali, F.; Santucci, G.; Maisano, A.M.; Giudici, F.; Guadagno, F.; Tonni, M.; Amicabile, A.; Formenti, N.; Giacomini, E.; Lazzaro, M.; et al. The Use of Antimicrobials in Italian Heavy Pig Fattening Farms. Antibiotics 2020, 9, 892. [Google Scholar] [CrossRef]
- AACTING. Guidelines for Collection, Analysis and Reporting of Farm-Level Antimicrobial Use, in the Scope of Antimicrobial Stewardship (Version 1.2). Available online: https://aacting.org/swfiles/files/AACTING_Guidelines_V1.2_2019.07.02_54.pdf (accessed on 6 June 2023).
Year | Herds | Animal Category | Heads | Mean (Standard Error) | Median (Range) |
---|---|---|---|---|---|
2008 | 931 | Cows | 20,086 | 21.6 (0.63) | 15 (2–142) |
Heifers/beef | 8752 | 9.4 (0.31) | 7 (0–83) | ||
Calves | 2797 | 3.0 (0.11) | 2 (0–36) | ||
2009 | 926 | Cows | 20,391 | 22.0 (0.63) | 16 (2–159) |
Heifers/beef | 8895 | 9.6 (0.30) | 7 (0–77) | ||
Calves | 2702 | 2.9 (0.11) | 2 (0–31) | ||
2010 | 907 | Cows | 20,837 | 23.0 (0.67) | 18 (2–184) |
Heifers/beef | 8784 | 9.7 (0.31) | 7 (0–89) | ||
Calves | 2823 | 3.1 (0.12) | 2 (0–36) | ||
2011 | 861 | Cows | 20,361 | 23.6 (0.69) | 18 (2–162) |
Heifers/beef | 8729 | 10.1 (0.33) | 7 (0–80) | ||
Calves | 2675 | 3.1 (0.12) | 2 (0–40) | ||
2012 | 831 | Cows | 19,960 | 24.0 (0.69) | 19 (2–124) |
Heifers/beef | 8233 | 9.9 (0.31) | 8 (0–73) | ||
Calves | 2655 | 3.2 (0.11) | 2 (0–26) | ||
2013 | 814 | Cows | 19,732 | 24.2 (0.68) | 19 (2–113) |
Heifers/beef | 8243 | 10.1 (0.32) | 8 (0–90) | ||
Calves | 2601 | 3.2 (0.12) | 2 (0–31) | ||
2014 | 763 | Cows | 19,635 | 25.7 (0.74) | 20 (2–131) |
Heifers/beef | 8338 | 10.9 (0.36) | 9 (0–99) | ||
Calves | 2600 | 3.4 (0.12) | 2 (0–34) | ||
2015 | 741 | Cows | 19,375 | 26.1 (0.75) | 21 (2–111) |
Heifers/beef | 8349 | 11.3 (0.36) | 9 (0–92) | ||
Calves | 2677 | 3.6 (0.14) | 3 (0–43) | ||
2016 | 717 | Cows | 19,197 | 26.8 (0.78) | 22 (2–112) |
Heifers/beef | 8134 | 11.3 (0.37) | 9 (0–99) | ||
Calves | 2584 | 3.6 (0.13) | 2 (0–29) | ||
2017 | 699 | Cows | 19,123 | 27.4 (0.81) | 22 (2–128) |
Heifers/beef | 7715 | 11.0 (0.37) | 8 (0–94) | ||
Calves | 2580 | 3.7 (0.14) | 3 (0–39) | ||
2018 | 693 | Cows | 18,896 | 27.3 (0.78) | 23 (2–130) |
Heifers/beef | 7633 | 11.0 (0.38) | 9 (0–94) | ||
Calves | 2512 | 3.6 (0.13) | 3 (0–33) | ||
TOTAL | 8883 | Cows | 217,593 | 24.5 (0.21) | 18.8 (2–183.9) |
Heifers/beef | 91,805 | 10.3 (0.10) | 7.7 (0–98.9) | ||
Calves | 29,204 | 3.3 (0.04) | 2.3 (0–43.2) |
Year | Herds | Antimicrobial Use | Weighted Mean (Standard Error) | Median (Range) |
---|---|---|---|---|
2008 | 931 | Total | 3.59 (0.07) | 3.36 (0.06–18.13) |
Critical 1 | 0.53 (0.03) | 0.14 (0–14.04) | ||
2009 | 926 | Total | 3.76 (0.08) | 3.44 (0.11–22.59) |
Critical 1 | 0.51 (0.03) | 0.17 (0–8.10) | ||
2010 | 907 | Total | 3.83 (0.08) | 3.48 (0.06–21.40) |
Critical 1 | 0.56 (0.03) | 0.16 (0–10.45) | ||
2011 | 861 | Total | 4.00 (0.08) | 3.70 (0.09–17.96) |
Critical 1 | 0.55 (0.03) | 0.15 (0–7.82) | ||
2012 | 831 | Total | 3.74 (0.08) | 3.48 (0.03–17.94) |
Critical 1 | 0.52 (0.03) | 0.17 (0–5.83) | ||
2013 | 814 | Total | 3.64 (0.08) | 3.43 (0.07–20.44) |
Critical 1 | 0.52 (0.03) | 0.21 (0–5.22) | ||
2014 | 763 | Total | 3.75 (0.08) | 3.48 (0.07–18.80) |
Critical 1 | 0.56 (0.03) | 0.19 (0–5.64) | ||
2015 | 741 | Total | 3.40 (0.08) | 3.16 (0.04–19.55) |
Critical 1 | 0.57 (0.03) | 0.25 (0–19.55) | ||
2016 | 717 | Total | 3.21 (0.08) | 2.98 (0.03–14.52) |
Critical 1 | 0.48 (0.03) | 0.18 (0–7.98) | ||
2017 | 699 | Total | 3.32 (0.08) | 3.28 (0.05–18.40) |
Critical 1 | 0.48 (0.03) | 0.18 (0–6.08) | ||
2018 | 693 | Total | 3.41 (0.08) | 3.22 (0.07–20.27) |
Critical 1 | 0.49 (0.03) | 0.19 (0–7.04) | ||
TOTAL | 8883 | Total | 3.61 (0.02) | 3.35 (0.03–22.59) |
Critical1 | 0.52 (0.01) | 0.19 (0–19.55) |
Antimicrobial Class | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
---|---|---|---|---|---|---|---|---|---|---|---|
Cephalosporins (1st and 2nd gen.) | 4.59 | 6.20 | 6.97 | 7.48 | 10.86 | 13.11 | 12.15 | 13.44 | 14.25 | 16.10 | 17.35 |
Rifamycins | 17.36 | 19.16 | 19.65 | 17.87 | 16.69 | 17.96 | 17.87 | 14.06 | 14.96 | 14.42 | 14.96 |
Penicillins Beta | 18.07 | 13.20 | 13.95 | 14.03 | 12.10 | 10.08 | 12.54 | 12.51 | 12.75 | 12.53 | 13.36 |
Aminopenicillins | 20.90 | 19.51 | 15.03 | 14.32 | 14.35 | 13.76 | 13.43 | 14.70 | 14.21 | 13.87 | 13.29 |
Aminoglycosides | 10.10 | 13.16 | 14.57 | 16.92 | 16.44 | 15.20 | 13.43 | 13.48 | 13.83 | 13.49 | 12.77 |
Cephalosporins (3rd and 4th gen.) | 9.14 | 7.96 | 9.41 | 7.97 | 9.04 | 9.57 | 9.56 | 9.79 | 10.13 | 10.77 | 10.22 |
Lincosamides | 5.18 | 6.93 | 7.73 | 7.41 | 7.92 | 8.81 | 8.33 | 7.35 | 6.99 | 7.16 | 7.26 |
Penicillins | 4.29 | 3.53 | 3.87 | 5.12 | 4.89 | 4.54 | 4.63 | 4.51 | 6.18 | 6.08 | 5.29 |
Macrolides | 4.47 | 4.39 | 3.99 | 4.44 | 3.82 | 3.45 | 3.93 | 4.55 | 3.44 | 2.83 | 3.19 |
Tetracyclines | 2.32 | 2.26 | 1.92 | 1.79 | 1.37 | 1.26 | 1.78 | 1.61 | 1.31 | 1.14 | 1.03 |
Fluoroquinolones | 1.08 | 1.08 | 1.07 | 1.16 | 0.91 | 1.08 | 1.11 | 1.88 | 1.06 | 0.99 | 0.78 |
Sulfonamides | 2.12 | 2.38 | 1.59 | 1.32 | 1.25 | 0.96 | 0.99 | 1.53 | 0.64 | 0.61 | 0.45 |
Amphenicols | 0.20 | 0.17 | 0.14 | 0.10 | 0.26 | 0.14 | 0.02 | 0.04 | 0.02 | <0.01 | 0.05 |
Polymyxins | 0.08 | 0.06 | 0.11 | 0.08 | 0.09 | 0.07 | 0.22 | 0.54 | 0.22 | <0.01 | <0.01 |
Polypeptides | 0.08 | 0 | 0.02 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Tetracyclines | 2.32 | 2.26 | 1.92 | 1.79 | 1.37 | 1.26 | 1.78 | 1.61 | 1.31 | 1.14 | 1.03 |
Year | Herds | Antimicrobial Use (TI100) 1 | Weighted Mean (Standard error) | Median (Range) |
---|---|---|---|---|
2008 | 931 | Total | 1.20 (0.02) | 1.12 (0–5.26) |
Critical 2 | 0.16 (0.01) | 0.02 (0–1.96) | ||
2009 | 926 | Total | 1.25 (0.02) | 1.12 (0–6.59) |
Critical 2 | 0.16 (0.01) | 0.04 (0–2.28) | ||
2010 | 907 | Total | 1.27 (0.03) | 1.19 (0–7.42) |
Critical 2 | 0.18 (0.01) | 0.05 (0–3.39) | ||
2011 | 861 | Total | 1.33 (0.03) | 1.23 (0–5.13) |
Critical 2 | 0.18 (0.01) | 0.04 (0–2.71) | ||
2012 | 831 | Total | 1.24 (0.03) | 1.15 (0–5.91) |
Critical 2 | 0.17 (0.01) | 0.04 (0–2.74) | ||
2013 | 814 | Total | 1.20 (0.03) | 1.15 (0–6.51) |
Critical 2 | 0.17 (0.01) | 0.07 (0–1.74) | ||
2014 | 763 | Total | 1.24 (0.03) | 1.16 (0–6.01) |
Critical 2 | 0.18 (0.01) | 0.06 (0–2.14) | ||
2015 | 741 | Total | 1.09 (0.03) | 0.99 (0–6.52) |
Critical 2 | 0.17 (0.01) | 0.07 (0–6.52) | ||
2016 | 717 | Total | 1.06 (0.03) | 1.02 (0–4.71) |
Critical 2 | 0.15 (0.01) | 0.06 (0–2.20) | ||
2017 | 699 | Total | 1.24 (0.03) | 1.21 (0–6.9) |
Critical 2 | 0.19 (0.01) | 0.06 (0–2.28) | ||
2018 | 693 | Total | 1.13 (0.03) | 1.05 (0–5.8) |
Critical 2 | 0.16 (0.01) | 0.06 (0–2.05) | ||
TOTAL | 8883 | Total | 1.21 (0.01) | 1.12 (0–7.42) |
Critical 2 | 0.17 (0.01) | 0.05 (0–6.52) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scali, F.; Ganio, S.; Roullet, C.; Ruffier, M.; Bergagna, S.; Pagliasso, G.; Romeo, C.; Formenti, N.; Maisano, A.M.; Santucci, G.; et al. Regional-Scale Analysis of Antimicrobial Usage in Smallholder Cattle Herds (Aosta Valley, Italy): Why Surveillance Matters. Antibiotics 2024, 13, 204. https://doi.org/10.3390/antibiotics13030204
Scali F, Ganio S, Roullet C, Ruffier M, Bergagna S, Pagliasso G, Romeo C, Formenti N, Maisano AM, Santucci G, et al. Regional-Scale Analysis of Antimicrobial Usage in Smallholder Cattle Herds (Aosta Valley, Italy): Why Surveillance Matters. Antibiotics. 2024; 13(3):204. https://doi.org/10.3390/antibiotics13030204
Chicago/Turabian StyleScali, Federico, Sandra Ganio, Claudio Roullet, Mauro Ruffier, Stefania Bergagna, Giulia Pagliasso, Claudia Romeo, Nicoletta Formenti, Antonio Marco Maisano, Giovanni Santucci, and et al. 2024. "Regional-Scale Analysis of Antimicrobial Usage in Smallholder Cattle Herds (Aosta Valley, Italy): Why Surveillance Matters" Antibiotics 13, no. 3: 204. https://doi.org/10.3390/antibiotics13030204
APA StyleScali, F., Ganio, S., Roullet, C., Ruffier, M., Bergagna, S., Pagliasso, G., Romeo, C., Formenti, N., Maisano, A. M., Santucci, G., Tonni, M., Guadagno, F., Mazza, F., Guarneri, F., Bontempi, G., Candela, L., & Alborali, G. L. (2024). Regional-Scale Analysis of Antimicrobial Usage in Smallholder Cattle Herds (Aosta Valley, Italy): Why Surveillance Matters. Antibiotics, 13(3), 204. https://doi.org/10.3390/antibiotics13030204