The Efficacy of Topical Cefiderocol Treatment of Experimental Extensively Drug-Resistant Pseudomonas aeruginosa Keratitis Is Dependent upon the State of the Corneal Epithelium
Abstract
:1. Introduction
2. Results
2.1. State of the Corneal Epithelium
2.2. Antimicrobial Efficacy in the NZW Rabbit Corneas Infected with P. aeruginosa
2.3. Approximate Corneal Penetration and Concentrations of Cefiderocol
3. Discussion
4. Materials and Methods
4.1. Bacterial Isolates
4.2. Topical Agents
4.3. Animals
4.4. Experimental Protocol
4.5. Statistical Analysis of Corneal Colony Counts
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benson, H. Permeability of the cornea to topically applied drugs. Arch. Ophthalmol. 1974, 91, 313–327. [Google Scholar] [CrossRef]
- Romanowski, E.G.; Mah, F.S.; Kowalski, R.P.; Yates, K.A.; Gordon, Y.J. Benzalkonium chloride enhances the antibacterial efficacy of gatifloxacin in an experimental rabbit model of intrastromal keratitis. J. Ocul. Pharmacol. Ther. 2008, 24, 380–384. [Google Scholar] [CrossRef]
- Snyder, R.W.; Glasser, D.B. Antibiotic therapy for ocular infection. West. J. Med. 1994, 161, 579–584. [Google Scholar]
- López Bernal, D.; Ubels, J.L. Quantitative evaluation of the corneal epithelial barrier: Effect of artificial tears and preservatives. Curr. Eye Res. 1991, 10, 645–656. [Google Scholar] [CrossRef]
- Fukuda, M.; Inoue, A.; Sasaki, K.; Takahashi, N. The effect of the corneal epithelium on the intraocular penetration of fluoroquinolone ophthalmic solution. Jpn. J. Ophthalmol. 2004, 48, 93–96. [Google Scholar] [CrossRef]
- O’Day, D.M.; Head, W.S.; Robinson, R.D.; Clanton, J.A. Corneal penetration of topical amphotericin B and natamycin. Curr. Eye Res. 1986, 5, 877–882. [Google Scholar] [CrossRef]
- Sakarya, R.; Sakarya, Y.; Ozcimen, M.; Kesli, R.; Alpfidan, I.; Kara, S. Ocular penetration of topically applied 1% daptomycin in a rabbit model. J. Ocul. Pharmacol. Ther. 2013, 29, 75–78. [Google Scholar] [CrossRef]
- Wei, L.C.; Tsai, T.C.; Tsai, H.Y.; Wang, C.Y.; Shen, Y.C. Comparison of voriconazole concentration in the aqueous humor and vitreous between non-scraped and scraped corneal epithelium groups after topical 1% voriconazole application. Curr. Eye Res. 2010, 35, 573–579. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, L.; Zhou, J.; Zhang, L.; Xia, H.; Zhou, T.; Zhang, H. Ocular penetration and pharmacokinetics of topical clarithromycin eye drops to rabbits. J. Ocul. Pharmacol. Ther. 2014, 30, 42–48. [Google Scholar] [CrossRef]
- Bron, A.M.; Péchinot, A.; Garcher, C.; Guyonnet, G.; Kazmierczak, A. Ocular penetration of topically applied norfloxacin 0.3% in the rabbits and in humans. J. Ocul. Pharmacol. 1992, 8, 241–246. [Google Scholar] [CrossRef]
- Romanowski, E.G.; Romanowski, J.E.; Shanks, R.M.Q.; Yates, K.A.; Mammen, A.; Dhaliwal, D.K.; Jhanji, V.; Kowalski, R.P. Topical vancomycin 5% is more efficacious than 2.5% and 1.25% for reducing viable MRSA in infectious keratitis. Cornea 2020, 39, 250–253. [Google Scholar] [CrossRef]
- Kowalski, R.P.; Romanowski, E.G.; Yates, K.A.; Mah, F.S. An independent evaluation of a novel peptide mimetic, Brilacidin (PMX30063), for ocular anti-infective therapy. J. Ocul. Pharmacol. Ther. 2016, 32, 23–27. [Google Scholar] [CrossRef]
- Kowalski, R.P.; Romanowski, E.G.; Yates, K.A.; Romanowski, J.E.; Grewal, A.; Bilonick, R.A. Is there a role for topical penicillin treatment of Staphylococcus aureus keratitis based on elevated corneal concentrations? J. Clin. Ophthalmol. Optom. 2018, 2, 103. [Google Scholar]
- Kupferman, A.; Leibowitz, H.M. Topical antibiotic therapy of staphylococcal keratitis. Arch. Ophthalmol. 1977, 95, 1634–1637. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Golden, A.R.; Zelenitsky, S.; Wiebe, K.; Lawrence, C.K.; Adam, H.J.; Idowu, T.; Domalaon, R.; Schweizer, F.; Zhanel, M.A.; et al. Cefiderocol: A siderophore cephalosporin with activity against carbapenem-resistant and multidrug-resistant gram-negative bacilli. Drugs 2019, 79, 271–289. [Google Scholar] [CrossRef]
- El-Lababidi, R.M.; Rizk, J.G. Cefiderocol: A siderophore cephalosporin. Ann. Pharmacother. 2020, 54, 1215–1231. [Google Scholar] [CrossRef]
- McCreary, E.K.; Heil, E.L.; Tamma, P.D. New perspectives on antimicrobial agents: Cefiderocol. Antimicrob. Agents Chemother. 2021, 65, e0217120. [Google Scholar] [CrossRef]
- Yao, J.; Wang, J.; Chen, M.; Cai, Y. Cefiderocol: An overview of its in-vitro and in-vivo activity and underlying resistant mechanisms. Front. Med. 2021, 8, 741940. [Google Scholar] [CrossRef]
- Romanowski, E.G.; Mumper, S.M.; Shanks, H.Q.; Yates, K.A.; Mandel, J.B.; Zegans, M.E.; Shanks, R.M.Q. Cefiderocol is an effective topical monotherapy for experimental extensively-drug resistant Pseudomonas aeruginosa keratitis. Ophthalmol. Sci. 2024, 4, 100452. [Google Scholar] [CrossRef]
- Morelli, M.K.; Kloosterboer, A.; Fulton, S.A.; Furin, J.; Newman, N.; Omar, A.F.; Rojas, L.J.; Marshall, S.H.; Yasmin, M.; Bonomo, R.A. Investigating and Treating a Corneal Ulcer Due to Extensively Drug-Resistant Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2023, 67, e0027723. [Google Scholar] [CrossRef]
- Shoji, M.K.; Gutkind, N.E.; Meyer, B.I.; Yusuf, R.; Sengillo, J.D.; Amescua, G.; Miller, D. Multidrug-resistant Pseudomonas aeruginosa keratitis associated with artificial tear use. JAMA Ophthalmol. 2023, 141, 499–500. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. In Outbreak of Extensively Drug-Resistant Pseudomonas Aeruginosa Associated with Artificial Tears; 2023. Available online: https://archive.cdc.gov/www_cdc_gov/hai/outbreaks/crpa-artificial-tears.html (accessed on 7 October 2024).
- Wang, T.; Jain, S.; Glidai, Y.; Dua, P.; Dempsey, K.S.; Shakin, E.; Chu, D.S.; Epstein, M.; Ha, L.G. Extensively drug-resistant Pseudomonas aeruginosa panophthalmitis from contaminated artificial tears. IDCases 2023, 33, e01839. [Google Scholar] [CrossRef]
- Kuo, I.C. Extensively multi-drug-resistant Pseudomonas aeruginosa in artificial tears: Public health sleuthing success but challenges ahead. Am. J. Ophthalmol. 2023, 253, xii–xiv. [Google Scholar] [CrossRef]
- Grossman, M.K.; Rankin, D.A.; Maloney, M.; Stanton, R.A.; Gable, P.; Stevens, V.A.; Ewing, T.; Saunders, K.; Kogut, S.; Nazarian, E.; et al. Extensively drug-resistant Pseudomonas aeruginosa outbreak associated with artificial tears. Clin. Infect. Dis. 2024, 79, 6–14. [Google Scholar] [CrossRef]
- Rezaei, S.; Steen, D.; Amin, S. Successful treatment of an extensively drug-resistant pseudomonal ulcer associated with contaminated artificial tears. Am. J. Ophthalmol. Case Rep. 2023, 32, 101909. [Google Scholar] [CrossRef]
- Arun, K.; Georgoudis, P. Pseudomonas Keratitis: From Diagnosis to Successful Deep Anterior Lamellar Keratoplasty. Cureus 2024, 16, e56154. [Google Scholar] [CrossRef]
CDC1270 | K900 | |||||
---|---|---|---|---|---|---|
CDC1270 | Intact vs. Abraded | K900 | Intact vs. Abraded | |||
Intact | Abraded [19] | p Value | Intact | Abraded [19] | p Value | |
Cefiderocol | 3.09 ± 0.83 #$ | 1.26 ± 1.43 #$& | p = 0.02 | 1.85 ± 1.47 # | 0.53 ± 0.83 # | p = 0.08 NS |
Ciprofloxacin | 4.43 ± 1.12 | 3.53 ± 0.38 | p = 0.10 NS | 0.88 ± 0.97 # | 0.56 ± 0.91 # | p = 0.57 NS |
Tobramycin | 4.09 ± 0.62 | 2.69 ± 0.40 # | p < 0.001 | 0.75 ± 0.83 # | 0.77 ± 0.85 # | p = 0.97 NS |
Saline | 5.09 ± 0.32 | 4.62 ± 0.80 | p = 0.21 NS | 3.65 ± 0.30 | 2.93 ± 1.00 | p = 0.12 NS |
Onset of Therapy | 4.46 ± 0.95 | 3.74 ± 1.02 | p = 0.23 NS | 3.92 ± 0.54 | 3.87 ± 0.85 | p = 0.93 NS |
Intact | Abraded | p Value | Fold Difference | |
---|---|---|---|---|
K900-Infected Eyes | 1.08 ± 1.18 | 23.13 ± 8.80 | p = 0.002 | 21.5 |
CDC1270-Infected Eyes | 4.91 ± 6.64 | 24.63 ± 9.34 | p = 0.002 | 5.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romanowski, E.G.; Mandell, J.B.; Jhanji, V.; Shanks, R.M.Q. The Efficacy of Topical Cefiderocol Treatment of Experimental Extensively Drug-Resistant Pseudomonas aeruginosa Keratitis Is Dependent upon the State of the Corneal Epithelium. Antibiotics 2024, 13, 979. https://doi.org/10.3390/antibiotics13100979
Romanowski EG, Mandell JB, Jhanji V, Shanks RMQ. The Efficacy of Topical Cefiderocol Treatment of Experimental Extensively Drug-Resistant Pseudomonas aeruginosa Keratitis Is Dependent upon the State of the Corneal Epithelium. Antibiotics. 2024; 13(10):979. https://doi.org/10.3390/antibiotics13100979
Chicago/Turabian StyleRomanowski, Eric G., Jonathan B. Mandell, Vishal Jhanji, and Robert M.Q. Shanks. 2024. "The Efficacy of Topical Cefiderocol Treatment of Experimental Extensively Drug-Resistant Pseudomonas aeruginosa Keratitis Is Dependent upon the State of the Corneal Epithelium" Antibiotics 13, no. 10: 979. https://doi.org/10.3390/antibiotics13100979
APA StyleRomanowski, E. G., Mandell, J. B., Jhanji, V., & Shanks, R. M. Q. (2024). The Efficacy of Topical Cefiderocol Treatment of Experimental Extensively Drug-Resistant Pseudomonas aeruginosa Keratitis Is Dependent upon the State of the Corneal Epithelium. Antibiotics, 13(10), 979. https://doi.org/10.3390/antibiotics13100979