Next Article in Journal
The Efficacy of Topical Cefiderocol Treatment of Experimental Extensively Drug-Resistant Pseudomonas aeruginosa Keratitis Is Dependent upon the State of the Corneal Epithelium
Previous Article in Journal
Investigation of the Impact of Antibiotic Administration on the Preterm Infants’ Gut Microbiome Using Next-Generation Sequencing—Based 16S rRNA Gene Analysis
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Systematic Review

Insights into the Rising Threat of Carbapenem-Resistant Enterobacterales and Pseudomonas aeruginosa Epidemic Infections in Eastern Europe: A Systematic Literature Review

1
Proper Medical Writing Sp. z o.o., Panieńska 9/12, 03-704 Warsaw, Poland
2
Merck Sharp & Dohme, Dubai Healthcare City, Bldg #39, Dubai 2096, United Arab Emirates
3
MSD Innovation GmbH, The Circle 66, 8058 Zurich, Switzerland
4
Merck & Co., Inc., Rahway, NJ 07065, USA
*
Author to whom correspondence should be addressed.
Antibiotics 2024, 13(10), 978; https://doi.org/10.3390/antibiotics13100978
Submission received: 28 August 2024 / Revised: 20 September 2024 / Accepted: 14 October 2024 / Published: 17 October 2024

Abstract

:
Background: Antimicrobial resistance is a major global public health challenge, particularly with the rise of carbapenem-resistant Enterobacterales (CRE) and Pseudomonas aeruginosa (CRPA). This study aimed to describe the characteristics of CRE and CRPA infections in Eastern Europe, focusing on Bulgaria, Croatia, Czechia, Greece, Hungary, Poland, Romania, Serbia, Slovakia, and Slovenia. Methods: Following MOOSE and PRISMA guidelines, a systematic literature review of articles published between 1 November 2017 and 1 November 2023 was conducted using the MEDLINE, Embase, Web of Science, CDSR, DARE, and CENTRAL databases. The search strategy used a combination of free text and subject headings to gather pertinent literature regarding the incidence and treatment patterns of CRE and CRPA infections. A total of 104 studies focusing on infections in both children and adults were included in this review. Results: This review revealed a significant prevalence of carbapenem-resistant Gram-negative isolates and underscored the effectiveness of imipenem/relebactam and ceftazidime/avibactam (CAZ/AVI) against Klebsiella pneumoniae carbapenemase-producing Enterobacterales and of ceftolozane/tazobactam, imipenem/relebactam and ceftazidime/avibactam against non-metallo-β-lactamase-producing CRPA strains. Conclusions: This study highlights the urgent need for comprehensive measures to combat the escalating threat of CRE and CRPA infections in Eastern European countries. At the same time, it shows the activity of the standard of care and new antimicrobials against carbapenem-resistant Gram-negative pathogens in Eastern Europe. Clinical real-world data on the treatment of carbapenem-resistant infections in Eastern Europe are needed.

1. Introduction

Antimicrobial resistance has led to a global public health crisis by rendering antibiotics ineffective against bacterial infections [1]. If left unchecked, it could contribute to 10 million annual deaths worldwide by 2050, including 390,000 deaths in Europe [2]. In 2019, 133,000 deaths were attributed to bacterial antimicrobial resistance in the World Health Organization (WHO) European region, with Eastern Europe showing the highest mortality rate of 19.9 per 100,000 population [3]. Antimicrobial resistance also imposes a financial burden, estimated to be at least EUR 1.5 billion annually in Europe [4]. Treatment costs for resistant Gram-negative bacterial infections are approximately 29% higher than those for infections caused by susceptible strains, and they are associated with longer hospital stays and higher mortality rates [5,6].
In response to increasing antimicrobial resistance, the WHO, Infectious Diseases Society of America, and Centers for Disease Control and Prevention have identified critical pathogens, including carbapenem-resistant isolates. The most relevant Gram-negative bacteria discussed include carbapenem-resistant Enterobacterales (CRE) (Klebsiella pneumoniae and Escherichia coli), Pseudomonas aeruginosa, and Acinetobacter baumannii [7,8,9].
Gram-negative bacterial infections are commonly treated with β-lactam antibiotics, but resistance mechanisms such as β-lactamase production have evolved to encompass broader-spectrum antibiotics, including carbapenems [10,11]. P. aeruginosa develops resistance to antibiotics not only through the production of carbapenemases but also through other mechanisms such as the increased expression of efflux pumps, the reduced permeability of the outer membrane, and the overproduction of AmpC β-lactamase. Nonenzymatic mechanisms, specifically efflux pumps and porin deficiency, along with the overproduction of AmpC, are responsible for approximately 85% to 95% of resistance in Pseudomonas. In Eastern Europe, the prevalence of carbapenemase-producing P. aeruginosa strains is estimated at 5% to 15%. As carbapenems are last-line broad-spectrum antibiotics, different antimicrobial treatments are needed to control Gram-negative infections, addressing both carbapenemase-related and nonenzymatic mechanisms of bacterial resistance [10]. In European countries, 1.3 patients per 10,000 hospital admissions were infected with CRE in the years 2013 and 2014, with the highest infection rates in Mediterranean and Balkan countries [12]. Carbapenem-resistant K. pneumoniae has been reported increasingly in the Balkan region, with the highest number of cases observed in Greece and Romania [13].
In 2021, significant differences in the prevalence of carbapenem-resistant P. aeruginosa (CRPA) were reported, with the lowest percentage of invasive CRPA isolates in Denmark (6.8%), Finland (4.2%), the Netherlands (5.2%), and Norway (6.8%) and the highest in Belarus (60.2%), Romania (45.9%), Serbia (62.6%), and Ukraine (78.0%) [14].
In Eastern Europe, treatment options for carbapenem-resistant Gram-negative infections include old antibiotics (e.g., fosfomycin, colistin, tigecycline, and aminoglycosides), new antibiotics (e.g., plazomicin, eravacycline, and cefiderocol), new β-lactam/β-lactamase inhibitor combinations (e.g., ceftazidime/avibactam (CAZ/AVI), meropenem/vaborbactam [MERO/VAB], and imipenem/relebactam [IMI/REL] for CRE; ceftolozane/tazobactam [C/T] and ceftazidime/avibactam [CAZ/AVI] for CRPA), and combination therapies (e.g., double-carbapenem therapy, new β-lactam/β-lactamase inhibitor combinations with colistin, fosfomycin, aminoglycosides, and fluoroquinolones) [15].
The treatment of infections caused by carbapenem-resistant bacteria depends on the type of enzyme produced: for Enterobacterales producing OXA-48-like enzymes, CAZ/AVI is used; for K. pneumoniae carbapenemase (KPC), treatments include MERO/VAB, IMI/REL, and CAZ/AVI; and for metallo-β-lactamases (MBLs), a combination of CAZ/AVI with aztreonam or cefiderocol is recommended [11,16]. For patients with severe infections caused by non-MBL CRPA, C/T is suggested as a preferred treatment. There is limited evidence on the real-world effectiveness of IMI/REL, cefiderocol, and CAZ/AVI in the treatment of CRE/KPC-associated infections (16). Conventional and less novel antibiotics (e.g., colistin and fosfomycin) may still be used in patients with these infections (16).
In 2020, the European Medicines Agency (EMA) approved IMI/REL for the treatment of adults with hospital-acquired pneumonia, including ventilator-associated pneumonia, bacteremia associated with or suspected to be associated with hospital-acquired or ventilator-associated pneumonia, and infections due to aerobic Gram-negative organisms with limited treatment options [17]. Moreover, the EMA approved C/T for complicated intra-abdominal and urinary tract infections in 2014, for hospital-acquired or ventilator-associated pneumonia in 2019, and for pediatric use in complicated intra-abdominal and urinary tract infections in 2022. Recent antimicrobial susceptibility data showed that C/T and IMI/REL are important treatment options for patients in Czechia, Hungary, Poland, and Greece with infections caused by resistant Gram-negative pathogens, including Enterobacterales and P. aeruginosa [18,19].
This study aimed to summarize the available evidence on the clinical and economic disease burden and treatment patterns of carbapenem-resistant Gram-negative infections among adults and children, with a focus on CRE and CRPA in Eastern European countries (i.e., Bulgaria, Croatia, Czechia, Greece, Hungary, Poland, Romania, Serbia, Slovenia, and Slovakia). Here, we report findings on clinical evidence.

2. Results

Of the 758 citations initially identified, 147 full-text articles were retrieved as potentially eligible for inclusion. After a thorough review, a total of 104 studies were included in the systematic literature review (Figure 1). Detailed information on the publications is provided in the Supplementary Materials (Supplementary Tables S1–S9). Among the included articles, 27 were from Poland [18,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45], 24 from Greece [46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69], 16 from Romania [70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85], 11 from Croatia [86,87,88,89,90,91,92,93,94,95,96], 9 from Serbia [97,98,99,100,101,102,103,104,105], 7 from Bulgaria [106,107,108,109,110,111,112], 5 from Czechia [18,113,114,115,116], 4 from Hungary [18,117,118,119], and 1 from Slovakia [120]. There were no publications from Slovenia that met the inclusion criteria.

2.1. Diagnostic Methods

The most common bacterial identification methods used in the included studies were the automated VITEK system and MALDI coupled to time-of-flight mass spectrometry (MALDI-TOF MS). Antimicrobial susceptibility testing methods included the disk diffusion method, broth microdilution, the VITEK or Phoenix system, and E-tests, with a similar distribution across studies. For carbapenemase detection, the modified Hodge test, disk synergy test, Carba NP test, and carbapenem inactivation method (CIM) were used at similar rates across studies.

2.2. Epidemiology and Antibiotic Susceptibility of CRE

Among the analyzed studies, the highest number of CRE cases was reported for Greece, Poland, Romania, and Serbia. KPC carbapenemases were most prevalent in Greece and Bulgaria; New Delhi MBLs (NDM) in Czechia and Poland; Verona integron-encoded MBLs (VIM) in Hungary and Croatia; and OXA-48 in Serbia, Poland, and Romania (Table 1).
After excluding studies that analyzed 100% strains resistant to carbapenems, we calculated the rate of CRE as follows: Bulgaria 83.7%, Croatia 47.9%, Greece 49.4%, Hungary 1.8%, Poland 9.4%, Romania 18.0%, and Serbia 62.3%. For Czechia and Slovakia, a recalculation was not possible, as all studies from these countries included only strains resistant to carbapenems (Figure 2).
We identified eight studies [22,47,52,58,59,75,88,105] that evaluated the activity of both IMI/REL and CAZ/AVI against CRE. The resistance rate for IMI/REL ranged from 7.3% to 100%, while that for CAZ/AVI ranged from 0.3% to 100%. The lowest resistance rates to both antibiotics were observed for K. pneumoniae in a study by Galani et al. [52], although it should be noted that 94% of the strains tested were KPC producers. In a study by Bedenić et al. [88], all 10 strains tested, including 8 K. pneumoniae strains, were resistant to IMI/REL, and 50% were resistant to CAZ/AVI. All these strains were OXA-48 producers, and 50% also produced NDM. In a study by Biedrzyca et al. [22], K. pneumoniae strains also showed high resistance rates to both antibiotics, with all tested strains being VIM producers. Detailed data are presented in Table 2.
An additional 14 studies assessed only the activity of CAZ/AVI [22,34,35,44,45,48,49,54,61,69,79,106,107,112]. The resistance rate for CAZ/AVI in these studies ranged from 0.7% to 100%. In the three studies reporting a resistance rate of 100%, all strains produced MBLs [54,106,107].

2.3. Carbapenem-Resistant P. aeruginosa Susceptibility to Antibiotics and Resistance Mechanisms

Among the analyzed studies, the highest numbers of CRPA cases were reported in Poland, Hungary, and Greece. High rates of MBL producers were found in Bulgaria, Croatia, Czechia, Hungary, and Poland (Table 3).
After excluding studies that analyzed 100% strains resistant to carbapenems, we calculated the rate of CRPA as follows: Croatia 70.4%, Czechia 47.7%, Greece 31.2%, Hungary 19.1%, Poland 17.6%, Romania 46.4%, and Serbia 53.4%. For Bulgaria and Slovakia, a recalculation was not possible, as all studies from these countries included only strains resistant to carbapenems (Figure 3).
We identified three studies [45,107,119] that assessed susceptibility to CAZ/AVI and C/T. In a study by Kostyanev et al. [107], all five CRPA strains were resistant to CAZ/AVI and C/T. The included strains were also resistant to other antipseudomonal agents, such as piperacillin/tazobactam, ceftazidime, cefepime, and fluoroquinolones, but susceptible to colistin, and all CRPA produced NDM carbapenemases [107]. O’Neall et al. [119] tested the susceptibility of 65 CRPA strains to CAZ/AVI and C/T. The resistance rate was 98.4% for both antibiotics, with most strains (90.8%) being MBL producers. In a study by Zalas-Wiecek et al. [45], the resistance rates for CAZ/AVI and C/T were 50.5% and 42.8%, respectively, with all tested strains being susceptible to colistin.

3. Discussion

Antimicrobial resistance is one of the top 10 global public health challenges. In 2022, the European Commission, together with the European Union Member States, identified it as one of the three highest-priority health threats [122,123]. Numerous studies have linked the use of carbapenems to the development of carbapenem resistance [124,125]. Carbapenems are the third most commonly used class of antibiotics worldwide for the treatment of community-acquired infections in the intensive care unit (10.7%) and the foremost class for managing healthcare-associated infections (21.5%) [126]. In 2022, the most significant increase in antimicrobial resistance within the European Union/European Economic Area was observed for carbapenem-resistant K. pneumoniae, as measured by the population-weighted mean percentage increase from 2018, across all bacterial species and antimicrobial group combinations. This escalating trend in resistance, coupled with a marked increase in the estimated incidence of bloodstream infections across the European Union over the same period, raises significant concerns [127].
The objective of our study was to conduct a systematic literature review to outline the characteristics of CRE and carbapenem-resistant P. aeruginosa in Eastern European countries, specifically Bulgaria, Croatia, Czechia, Greece, Hungary, Poland, Romania, Serbia, Slovakia, and Slovenia. The economic burden study could not be completed due to an insufficient number of publications for the region. We also aimed to assess treatment patterns, but they were not covered by available data. Instead, we included data on antimicrobial susceptibility to antibiotics.
The European Centre for Disease Prevention and Control and WHO 2023 report highlighted a significantly higher incidence of infections caused by carbapenem-resistant pathogens in Eastern European countries compared with Western Europe in 2021. For example, in Greece, the prevalence of carbapenem-resistant K. pneumoniae infections was 73.7% compared with 54.5%, 47.9%, and 46.3% in Romania, Serbia, and Bulgaria, respectively. In contrast, Czechia reported a prevalence of only 1%. Similar trends were observed for CRPA, with higher resistance prevalence in Eastern Europe compared with Western Europe. This alarming increase in carbapenem-resistant Gram-negative strains across most Eastern European countries in 2017–2021 indicates the urgent need for comprehensive measures, including surveillance, antimicrobial stewardship, infection prevention and control, and public health initiatives, to effectively address this growing threat and protect public health.
The methodology of the included studies indicates that the countries analyzed used advanced automated techniques to identify bacterial species. Carbapenemases were detected by different methods such as the Carba NP, CIM, or modified Hodge test. The early detection of carbapenemase producers allows for the timely initiation of appropriate antibiotic therapy, which is particularly important in severe infections. Additionally, it can help hospitals implement necessary infection control measures to prevent the spread of resistant bacteria. O’Neal et al. [119] suggested that the CIM could be useful for the routine testing of carbapenemase activity in Gram-negative organisms. According to the authors, a negative CIM test result for P. aeruginosa suggests that C/T could be an effective treatment, even in cases with carbapenem resistance.
Our study showed significant variations in the rates of antimicrobial resistance and the types of resistance-causing enzymes among different countries and bacterial strains. These variations could be caused by various factors and underlying mechanisms, including antimicrobial use, infection control measures, healthcare settings, and bacterial genetic characteristics. Further studies are needed to gain a deeper understanding of these variations and to guide the development of effective strategies to combat antibiotic resistance.
New treatment options have emerged for infections caused by carbapenem-resistant bacteria, with varying effectiveness depending on the organism and specific class of carbapenemases produced. These options include C/T, CAZ/AVI, IMI/REL, and cefiderocol for CRPA, while for CRE, MERO/VAB, CAZ/AVI, IMI/REL, cefiderocol, and other antibiotics are often used in combination therapies (plazomicin, eravacycline, and fosfomycin) [128,129,130,131]. There are few treatment options for infections caused by class B carbapenemase-producing bacteria (new β-lactam/β-lactamase inhibitors in combination with aztreonam, colistin, and cefiderocol). This is a major concern in countries such as Bulgaria, Croatia, Greece, Hungary, Romania, and Serbia, where KPC producers are highly prevalent. Interestingly, a shift from the predominance of KPC-producing bacteria to MBL-producing bacteria was observed in Greece, possibly related to the excessive empirical use of newer antimicrobial agents such as CAZ/AVI [62,69]. In our study, we focused on new antimicrobial agents used for the treatment of infections caused by CRE and CRPA. IMI/REL and CAZ/AVI showed good activities in studies with KPC-producing Enterobacterales. In addition, CAZ/AVI exhibited good activity against OXA-48 producers. C/T and CAZ/AVI were highly effective against non-carbapenemase-producing CRPA strains. In our systematic literature review, two of three studies reported that all strains were resistant to both agents due to MBL production. In the third study, the resistance rates for CAZ/AVI and C/T were 50.5% and 42.8%, respectively [45,107,119].
Containing the spread of carbapenem resistance, particularly in healthcare settings, requires a multifaceted approach. This should be focused on antimicrobial stewardship programs, infection prevention and control, rapid diagnostics, the education and training of healthcare workers, and research into and the development of new antibiotics [132,133,134]. Future clinical studies should focus on the development and evaluation of novel antibiotics specifically targeting CRE and CRPA. Investigating combination therapies that may enhance the efficacy of existing drugs or prevent resistance development is another area of interest. Further studies on resistance mechanisms, including the role of plasmid-mediated genes, could help in identifying new targets for therapeutic intervention. Clinical trials evaluating the effectiveness and safety of emerging treatments, as well as strategies for optimizing antibiotic stewardship, will be essential in combating CRE and CRPA infections.
The limitations of our systematic literature review include differences in methodology between the included studies, the lack of a central laboratory, the lack of published data from clinical studies, and the retrospective design of most studies. Therefore, our results should be interpreted with caution, especially since there was a small number of isolates tested against modern antimicrobials.

4. Materials and Methods

4.1. Literature Search

This systematic literature review was conducted following the MOOSE and PRISMA guidelines using databases such as MEDLINE, Embase, Web of Science, CDSR, DARE, and CENTRAL. Additional studies were identified by searching reference lists and national journals. The search strategy covered articles published from 1 November 2017 to 1 November 2023 and incorporated a combination of free text searching and subject headings, eliminating the need for multiple synonyms for each term. This approach aimed to identify the most relevant literature on Enterobacterales, P. aeruginosa, carbapenem resistance, and the countries within the scope of the systematic literature review. The search strategy is described in detail in the Supplementary Materials. This study was not pre-registered.

4.2. Inclusion Criteria

The primary inclusion criteria comprised publications on bacterial infections or colonization caused by CRE and CRPA in both children and adults from the following countries: Bulgaria, Croatia, Czechia, Greece, Hungary, Poland, Romania, Serbia, Slovakia, and Slovenia. We searched for publications in either English or the local language that reported outcomes related to the incidence or prevalence of CRE and/or CRPA infections and antimicrobial treatment patterns.
Publications describing infections susceptible to carbapenems and those reporting on studies conducted during a hospital infection outbreak were excluded.

4.3. Study Selection and Data Extraction

Two investigators (M.P.) searched the databases and exported the results to EndNote. Two independent investigators (K.B-M) screened the data. Conflicting outcomes were resolved by a third (senior) investigator. The identified studies were deduplicated in EndNote before being transferred to Excel and assessed against the inclusion criteria. Study selection was performed in two steps: title and abstract screening followed by full-text screening.
For title and abstract screening, the titles and abstracts of publications identified from the database searches were screened by two investigators to determine their eligibility according to the inclusion criteria. If the relevance of a study was unclear, a senior investigator was consulted. Articles that did not meet the inclusion criteria were excluded from further review, and the reasons for exclusion were recorded.
Full-text screening was performed by two investigators to determine the eligibility of publications using the same inclusion and exclusion criteria as for title and abstract screening. If the relevance of a study was unclear, a senior investigator was consulted.
Relevant publication data were extracted using a predeveloped data extraction form. Data extraction was performed by one investigator, while a senior investigator carefully reviewed the extracted data for accuracy. The extracted data included the title and year of publication, authors, study type, country, site of infection, type of hospital ward, sample size, bacteria type, resistance mechanisms, resistance genes, antibiotics tested, minimum inhibitory concentrations, treatment outcomes, diagnostic methods, infection risk factors, and economic burden.

5. Conclusions

In conclusion, IMI/REL and CAZ/AVI demonstrated good comparable activity against KPC-producing Enterobacterales. C/T and CAZ/AVI showed high activity against CR P. aeruginosa strains that do not produce MBLs. Our study also showed a significant prevalence of carbapenem-resistant Gram-negative isolates in Eastern European countries. This highlights the urgent need for a multifaceted approach to address this public health challenge. Further research into the mechanisms underlying carbapenem resistance and real-world clinical studies in patients with carbapenem-resistant infections are needed to develop new antimicrobial agents that would be effective against these infections. Moreover, it is necessary to implement and strengthen effective public health strategies, both regionally in Eastern Europe and globally, to reduce the spread of carbapenem-resistant bacteria. Such efforts should be aimed at optimizing antibiotic use, improving infection control measures, and promoting international collaboration in research and public health initiatives.

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/antibiotics13100978/s1, Search strategy, Tables S1–S9: Titles: Table S1 Characteristics of Bulgarian GN CR bacterial isolates. Table S2 Characteristics of Croatian GN CR bacterial isolates. Table S3 Characteristics of Czech GN CR bacterial isolates. Table S4 Characteristics of Greece GN CR bacterial isolates. Table S5 Characteristics of Hungarian GN CR bacterial isolates. Table S6 Characteristics of Polish GN CR bacterial isolates. Table S7 Characteristics of Romanian GN CR bacterial isolates. Table S8 Characteristics of Serbian GN CR bacterial isolates. Table S9 Characteristics of Slovakian GN CR bacterial isolates.

Author Contributions

All authors are responsible for the work described in this paper. All authors were involved in at least one of the following: conception, design of work or acquisition, analysis, interpretation of data and drafting the manuscript and/or revising/reviewing the manuscript for important intellectual content. All authors provided final approval of this version of the manuscript to be published. All authors agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data that support the findings of this study are available on request from the corresponding author.

Acknowledgments

We would like to thank Tomasz Adamczewski from MSD Poland for their administrative support and Karolina Beda-Maluga from Proper Medical Writing Sp. z o.o. for serving as an independent second reviewer.

Conflicts of Interest

Irina Alekseeva is an employee of MSD, United Arab Emirates, Urs Arnet, is an employee of MSD, Switzerland, and Emre Yücel is an employee of Merck & Co., Inc., Rahway, NJ, USA, who may own stock and/or hold stock options in Merck & Co., Inc., Rahway, NJ, USA. Michal Piotrowski is an employee of Proper Medical Writing Sp. z o.o., Warsaw, Poland, who was hired by Merck Sharp & Dohme LLC, a subsidiary of Merck & Co., Inc., Rahway, NJ, USA, to provide editorial/writing support for this manuscript.

References

  1. Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
  2. O’Neill, J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations; The Review on Antimicrobial Resistance: London, UK, 2014; pp. 1–20. Available online: https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf (accessed on 29 November 2023).
  3. Mestrovic, T.; Robles Aguilar, G.; Swetschinski, L.R.; Ikuta, K.S.; Gray, A.P.; Davis Weaver, N.; Han, C.; Wool, E.E.; Gershberg Hayoon, A.; Hay, S.I.; et al. The burden of bacterial antimicrobial resistance in the WHO European region in 2019: A cross-country systematic analysis. Lancet Public Health 2022, 7, e897–e913. [Google Scholar] [CrossRef] [PubMed]
  4. Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef] [PubMed]
  5. Kaye, K.S.; Pogue, J.M. Infections Caused by Resistant Gram-Negative Bacteria: Epidemiology and Management. Pharmacotherapy 2015, 35, 949–962. [Google Scholar] [CrossRef]
  6. Paniagua-García, M.; Bravo-Ferrer, J.M.; Pérez-Galera, S.; Kostyanev, T.; de Kraker, M.E.A.; Feifel, J.; Palacios-Baena, Z.R.; Schotsman, J.; Cantón, R.; Daikos, G.L.; et al. Attributable mortality of infections caused by carbapenem-resistant Enterobacterales: Results from a prospective, multinational case-control-control matched cohorts study (EURECA). Clin. Microbiol. Infect. 2024, 30, 223–230. [Google Scholar] [CrossRef]
  7. CDC. Antibiotic Resistance Threats in the United States; U.S. Department of Health and Human Services, CDC: Atlanta, GA, USA, 2019. [Google Scholar] [CrossRef]
  8. Spellberg, B.; Blaser, M.; Guidos, R.J.; Boucher, H.W.; Bradley, J.S.; Eisenstein, B.I.; Gerding, D.; Lynfield, R.; Reller, L.B.; Rex, J.; et al. Combating antimicrobial resistance: Policy recommendations to save lives. Clin. Infect. Dis. 2011, 52 (Suppl. S5), S397–S428. [Google Scholar] [CrossRef]
  9. Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
  10. Aurilio, C.; Sansone, P.; Barbarisi, M.; Pota, V.; Giaccari, L.G.; Coppolino, F.; Barbarisi, A.; Passavanti, M.B.; Pace, M.C. Mechanisms of Action of Carbapenem Resistance. Antibiotics 2022, 11, 421. [Google Scholar] [CrossRef]
  11. Suay-García, B.; Pérez-Gracia, M.T. Present and Future of Carbapenem-resistant Enterobacteriaceae (CRE) Infections. Antibiotics 2019, 8, 122. [Google Scholar] [CrossRef]
  12. Grundmann, H.; Glasner, C.; Albiger, B.; Aanensen, D.M.; Tomlinson, C.T.; Andrasević, A.T.; Cantón, R.; Carmeli, Y.; Friedrich, A.W.; Giske, C.G.; et al. Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): A prospective, multinational study. Lancet Infect. Dis. 2017, 17, 153–163. [Google Scholar] [CrossRef]
  13. Chatzidimitriou, M.; Kavvada, A.; Kavvadas, D.; Kyriazidi, M.A.; Eleftheriadis, K.; Varlamis, S.; Papaliagkas, V.; Mitka, S. Carbapenem-resistant Klebsiella pneumoniae in the Balkans: Clonal distribution and associated resistance determinants. Acta Microbiol. Immunol. Hung. 2024, 71, 10–24. [Google Scholar] [CrossRef] [PubMed]
  14. Antimicrobial Resistance Surveillance in Europe 2023–2021 Data; Cataloguing-in-Publication (CIP) Data; European Centre for Disease Prevention and Control and World Health Organization: Stockholm, Sweden, 2023; Available online: http://apps.who.int/iris (accessed on 5 February 2024).
  15. Fritzenwanker, M.; Imirzalioglu, C.; Herold, S.; Wagenlehner, F.M.; Zimmer, K.P.; Chakraborty, T. Treatment Options for Carbapenem-Resistant Gram-Negative Infections. Dtsch. Arztebl. Int. 2018, 115, 345–352. [Google Scholar] [CrossRef] [PubMed]
  16. Paul, M.; Carrara, E.; Retamar, P.; Tängdén, T.; Bitterman, R.; Bonomo, R.A.; de Waele, J.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine). Clin. Microbiol. Infect. 2022, 28, 521–547. [Google Scholar] [CrossRef] [PubMed]
  17. Drugs.com. Recarbrio FDA Approval History. Available online: https://www.drugs.com/history/recarbrio.html (accessed on 29 November 2023).
  18. Lob, S.H.; Hawser, S.P.; Siddiqui, F.; Alekseeva, I.; DeRyke, C.A.; Young, K.; Motyl, M.R.; Sahm, D.F. Activity of ceftolozane/tazobactam and imipenem/relebactam against clinical gram-negative isolates from Czech Republic, Hungary, and Poland-SMART 2017–2020. Eur. J. Clin. Microbiol. Infect. Dis. 2023, 42, 365–370. [Google Scholar] [CrossRef]
  19. Karlowsky, J.A.; Lob, S.H.; Hawser, S.P.; Kothari, N.; Siddiqui, F.; Alekseeva, I.; DeRyke, C.A.; Young, K.; Motyl, M.R. Activity of ceftolozane/tazobactam and imipenem/relebactam against clinical isolates of Enterobacterales and P. aeruginosa collected in Greece and Italy: SMART 2017–2021. In Proceedings of the 33rd European Congress of Clinical Microbiology and Infectious Diseases (ECCMID), Copenhagen, Denmark, 15–18 April 2023. Poster P0194. [Google Scholar]
  20. Baraniak, A.; Machulska, M.; Żabicka, D.; Literacka, E.; Izdebski, R.; Urbanowicz, P.; Bojarska, K.; Herda, M.; Kozińska, A.; Hryniewicz, W.; et al. Towards endemicity: Large-scale expansion of the NDM-1-producing Klebsiella pneumoniae ST11 lineage in Poland, 2015–2016. J. Antimicrob. Chemother. 2019, 74, 3199–3204. [Google Scholar] [CrossRef]
  21. Biedrzycka, M.; Izdebski, R.; Urbanowicz, P.; Polańska, M.; Hryniewicz, W.; Gniadkowski, M.; Literacka, E. MDR carbapenemase-producing Klebsiella pneumoniae of the hypervirulence-associated ST23 clone in Poland, 2009–2019. J. Antimicrob. Chemother. 2022, 77, 3367–3375. [Google Scholar] [CrossRef]
  22. Biedrzycka, M.; Urbanowicz, P.; Żabicka, D.; Hryniewicz, W.; Gniadkowski, M.; Izdebski, R. Country-wide expansion of a VIM-1 carbapenemase-producing Klebsiella oxytoca ST145 lineage in Poland, 2009–2019. Eur. J. Clin. Microbiol. Infect. Dis. 2023, 42, 1449–1457. [Google Scholar] [CrossRef]
  23. Brauncajs, M.; Bielec, F.; Macieja, A.; Pastuszak-Lewandoska, D. Carbapenem-Resistant Gram-Negative Fermenting and Non-Fermenting Rods Isolated from Hospital Patients in Poland-What Are They Susceptible to? Biomedicines 2022, 10, 3049. [Google Scholar] [CrossRef]
  24. Brauncajs, M.; Bielec, F.; Macieja, A.; Pastuszak-Lewandoska, D. In Vitro Activity of Eravacycline against Carbapenemase-Producing Gram-Negative Bacilli Clinical Isolates in Central Poland. Biomedicines 2023, 11, 1784. [Google Scholar] [CrossRef]
  25. Celejewski-Marciniak, P.; Wolinowska, R.; Wróblewska, M. Molecular Characterization of Class 1, 2 and 3 Integrons in Serratia spp. Clinical Isolates in Poland-Isolation of a New Plasmid and Identification of a Gene for a Novel Fusion Protein. Infect. Drug Resist. 2021, 14, 4601–4610. [Google Scholar] [CrossRef]
  26. Chmielarczyk, A.; Pomorska-Wesołowska, M.; Romaniszyn, D.; Wójkowska-Mach, J. Healthcare-Associated Laboratory-Confirmed Bloodstream Infections-Species Diversity and Resistance Mechanisms, a Four-Year Retrospective Laboratory-Based Study in the South of Poland. Int. J. Environ. Res. Public Health 2021, 18, 2785. [Google Scholar] [CrossRef]
  27. Guzek, A.; Rybicki, Z.; Tomaszewski, D. An Analysis of the Type and Antimicrobial Resistance of Carbapenemase-Producing Enterobacteriaceae Isolated at the Military Institute of Medicine in Warsaw. Jundishapur J. Microbiol. 2019, 12, e67823. [Google Scholar]
  28. Guzek, A.; Rybicki, Z.; Woźniak-Kosek, A.; Tomaszewski, D. Bloodstream Infections in the Intensive Care Unit: A Single-Center Retrospective Bacteriological Analysis Between 2007 and 2019. Pol. J. Microbiol. 2022, 71, 263–277. [Google Scholar] [CrossRef] [PubMed]
  29. Kowalska-Krochmal, B.; Mączyńska, B.; Rurańska-Smutnicka, D.; Secewicz, A.; Krochmal, G.; Bartelak, M.; Górzyńska, A.; Laufer, K.; Woronowicz, K.; Łubniewska, J.; et al. Assessment of the Susceptibility of Clinical Gram-Negative and Gram-Positive Bacterial Strains to Fosfomycin and Significance of This Antibiotic in Infection Treatment. Pathogens 2022, 11, 1441. [Google Scholar] [CrossRef] [PubMed]
  30. Kuch, A.; Zieniuk, B.; Żabicka, D.; Van de Velde, S.; Literacka, E.; Skoczyńska, A.; Hryniewicz, W. Activity of temocillin against ESBL-, AmpC-, and/or KPC-producing Enterobacterales isolated in Poland. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 1185–1191. [Google Scholar] [CrossRef] [PubMed]
  31. Mączyńska, B.; Jama-Kmiecik, A.; Sarowska, J.; Woronowicz, K.; Choroszy-Król, I.; Piątek, D.; Frej-Mądrzak, M. Changes in Antibiotic Resistance of Acinetobacter baumannii and Pseudomonas aeruginosa Clinical Isolates in a Multi-Profile Hospital in Years 2017–2022 in Wroclaw, Poland. J. Clin. Med. 2023, 12, 5020. [Google Scholar] [CrossRef]
  32. Mrowiec, P.; Klesiewicz, K.; Małek, M.; Skiba-Kurek, I.; Sowa-Sierant, I.; Skałkowska, M.; Budak, A.; Karczewska, E. Antimicrobial susceptibility and prevalence of extended-spectrum beta-lactamases in clinical strains of Klebsiella pneumoniae isolated from pediatric and adult patients of two Polish hospitals. New Microbiol. 2019, 42, 197–204. [Google Scholar]
  33. Ochońska, D.; Klamińska-Cebula, H.; Dobrut, A.; Bulanda, M.; Brzychczy-Włoch, M. Clonal Dissemination of KPC-2, VIM-1, OXA-48-Producing Klebsiella pneumoniae ST147 in Katowice, Poland. Pol. J. Microbiol. 2021, 70, 107–116. [Google Scholar] [CrossRef]
  34. Ojdana, D.; Gutowska, A.; Sacha, P.; Majewski, P.; Wieczorek, P.; Tryniszewska, E. Activity of Ceftazidime-Avibactam Alone and in Combination with Ertapenem, Fosfomycin, and Tigecycline Against Carbapenemase-Producing Klebsiella pneumoniae. Microb. Drug Resist. 2019, 25, 1357–1364. [Google Scholar] [CrossRef]
  35. Pawłowska, I.; Ziółkowski, G.; Jachowicz-Matczak, E.; Stasiowski, M.; Gajda, M.; Wójkowska-Mach, J. Colonization and Healthcare-Associated Infection of Carbapenem-Resistant Enterobacteriaceae, Data from Polish Hospital with High Incidence of Carbapenem-Resistant Enterobacteriaceae, Does Active Target Screening Matter? Microorganisms 2023, 11, 437. [Google Scholar] [CrossRef]
  36. Poletajew, S.; Pawlik, K.; Bonder-Nowicka, A.; Pakuszewski, A.; Nyk, Ł.; Kryst, P. Multi-Drug Resistant Bacteria as Aetiological Factors of Infections in a Tertiary Multidisciplinary Hospital in Poland. Antibiotics 2021, 10, 1232. [Google Scholar] [CrossRef] [PubMed]
  37. Pruss, A.; Kwiatkowski, P.; Sienkiewicz, M.; Masiuk, H.; Łapińska, A.; Kot, B.; Kilczewska, Z.; Giedrys-Kalemba, S.; Dołęgowska, B. Similarity Analysis of Klebsiella pneumoniae Producing Carbapenemases Isolated from UTI and Other Infections. Antibiotics 2023, 12, 1224. [Google Scholar] [CrossRef] [PubMed]
  38. Sarowska, J.; Choroszy-Krol, I.; Jama-Kmiecik, A.; Mączyńska, B.; Cholewa, S.; Frej-Madrzak, M. Occurrence and Characteristics of Carbapenem-Resistant Klebsiella pneumoniae Strains Isolated from Hospitalized Patients in Poland—A Single Centre Study. Pathogens 2022, 11, 859. [Google Scholar] [CrossRef] [PubMed]
  39. Sękowska, A.; Chudy, M.; Gospodarek-Komkowska, E. Emergence of colistin-resistant Klebsiella pneumoniae in Poland. Acta Microbiol. Immunol. Hung. 2019, 67, 18–22. [Google Scholar] [CrossRef] [PubMed]
  40. Sękowska, A.; Grabowska, M.; Bogiel, T. Satisfactory In Vitro Activity of Ceftolozane-Tazobactam against Carbapenem-Resistant Pseudomonas aeruginosa But Not against Klebsiella pneumoniae Isolates. Medicina 2023, 59, 518. [Google Scholar] [CrossRef] [PubMed]
  41. Stefaniuk, E.M.; Kozińska, A.; Waśko, I.; Baraniak, A.; Tyski, S. Occurrence of Beta-Lactamases in Colistin-Resistant Enterobacterales Strains in Poland—A Pilot Study. Pol. J. Microbiol. 2021, 70, 283–288. [Google Scholar] [CrossRef]
  42. Urbanowicz, P.; Izdebski, R.; Baraniak, A.; Żabicka, D.; Hryniewicz, W.; Gniadkowski, M. Molecular and genomic epidemiology of VIM/IMP-like metallo-β-lactamase-producing Pseudomonas aeruginosa genotypes in Poland. J. Antimicrob. Chemother. 2021, 76, 2273–2284. [Google Scholar] [CrossRef]
  43. Wanke-Rytt, M.; Sobierajski, T.; Lachowicz, D.; Seliga-Gąsior, D.; Podsiadły, E. Analysis of Etiology of Community-Acquired and Nosocomial Urinary Tract Infections and Antibiotic Resistance of Isolated Strains: Results of a 3-Year Surveillance (2020–2022) at the Pediatric Teaching Hospital in Warsaw. Microorganisms 2023, 11, 1438. [Google Scholar] [CrossRef]
  44. Zalas-Więcek, P.; Michalska-Foryszewska, A.; Polak, A.; Orczykowska-Kotyna, M.; Pojnar, Ł.; Zając, M.; Patzer, J.; Głowacka, E.; Bogiel, M. Aktywność ceftazydymu z awibaktamem oraz innych antybiotyków stosowanych wobec Enterobacterales i Pseudomonas aeruginosa w Polsce w oparciu o dane z programu ATLAS zebrane w 2020 r. oraz porównanie ich z danymi uzyskanymi w latach 2015–2019. Forum Zakażeń 2022, 13, 147–159. [Google Scholar] [CrossRef]
  45. Zalas-Więcek, P.; Prażyńska, M.; Pojnar, Ł.; Pałka, A.; Żabicka, D.; Orczykowska-Kotyna, M.; Polak, A.; Możejko-Pastewka, B.; Głowacka, E.A.; Pieniążek, I.; et al. Ceftazidime/Avibactam and Other Commonly Used Antibiotics Activity Against Enterobacterales and Pseudomonas aeruginosa Isolated in Poland in 2015–2019. Infect. Drug Resist. 2022, 15, 1289–1304. [Google Scholar] [CrossRef]
  46. Afolayan, A.O.; Rigatou, A.; Grundmann, H.; Pantazatou, A.; Daikos, G.; Reuter, S. Three Klebsiella pneumoniae lineages causing bloodstream infections variably dominated within a Greek hospital over a 15 year period. Microb. Genom. 2023, 9, 001082. [Google Scholar] [CrossRef]
  47. Bhagwat, S.S.; Legakis, N.J.; Skalidis, T.; Loannidis, A.; Goumenopoulos, C.; Joshi, P.R.; Shrivastava, R.; Palwe, S.R.; Periasamy, H.; Patel, M.V.; et al. In vitro activity of cefepime/zidebactam (WCK 5222) against recent Gram-negative isolates collected from high resistance settings of Greek hospitals. Diagn. Microbiol. Infect. Dis. 2021, 100, 115327. [Google Scholar] [CrossRef] [PubMed]
  48. Chatzidimitriou, M.; Chatzivasileiou, P.; Sakellariou, G.; Kyriazidi, M.; Kavvada, A.; Chatzidimitriou, D.; Chatzopoulou, F.; Meletis, G.; Mavridou, M.; Rousis, D.; et al. Ceftazidime/avibactam and eravacycline susceptibility of carbapenem-resistant Klebsiella pneumoniae in two Greek tertiary teaching hospitals. Acta Microbiol. Immunol. Hung. 2021, 68, 65–72. [Google Scholar] [CrossRef] [PubMed]
  49. Galani, I.; Antoniadou, A.; Karaiskos, I.; Kontopoulou, K.; Giamarellou, H.; Souli, M. Genomic characterization of a KPC-23-producing Klebsiella pneumoniae ST258 clinical isolate resistant to ceftazidime-avibactam. Clin. Microbiol. Infect. 2019, 25, 763.e5–763.e8. [Google Scholar] [CrossRef]
  50. Galani, I.; Karaiskos, I.; Karantani, I.; Papoutsaki, V.; Maraki, S.; Papaioannou, V.; Kazila, P.; Tsorlini, H.; Charalampaki, N.; Toutouza, M.; et al. Epidemiology and resistance phenotypes of carbapenemase-producing Klebsiella pneumoniae in Greece, 2014 to 2016. Eur. Surveill. 2018, 23, 1700775. [Google Scholar] [CrossRef]
  51. Galani, I.; Nafplioti, K.; Adamou, P.; Karaiskos, I.; Giamarellou, H.; Souli, M. Correction to: Nationwide epidemiology of carbapenem resistant Klebsiella pneumoniae isolates from Greek hospitals, with regards to plazomicin and aminoglycoside resistance. BMC Infect. Dis. 2019, 19, 230. [Google Scholar] [CrossRef]
  52. Galani, I.; Souli, M.; Nafplioti, K.; Adamou, P.; Karaiskos, I.; Giamarellou, H.; Antoniadou, A. In vitro activity of imipenem-relebactam against non-MBL carbapenemase-producing Klebsiella pneumoniae isolated in Greek hospitals in 2015–2016. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1143–1150. [Google Scholar] [CrossRef]
  53. Hamel, M.; Chatzipanagiotou, S.; Hadjadj, L.; Petinaki, E.; Papagianni, S.; Charalampaki, N.; Tsiplakou, S.; Papaioannou, V.; Skarmoutsou, N.; Spiliopoulou, I.; et al. Inactivation of mgrB gene regulator and resistance to colistin is becoming endemic in carbapenem-resistant Klebsiella pneumoniae in Greece: A nationwide study from 2014 to 2017. Int. J. Antimicrob. Agents 2020, 55, 105930. [Google Scholar] [CrossRef]
  54. Karampatakis, T.; Zarras, C.; Pappa, S.; Vagdatli, E.; Iosifidis, E.; Roilides, E.; Papa, A. Emergence of ST39 carbapenem-resistant Klebsiella pneumoniae producing VIM-1 and KPC-2. Microb. Pathog. 2022, 162, 105373. [Google Scholar] [CrossRef]
  55. Kontopoulou, Κ.; Meletis, G.; Pappa, S.; Zotou, S.; Tsioka, K.; Dimitriadou, P.; Antoniadou, E.; Papa, A. Spread of NDM-producing Klebsiella pneumoniae in a tertiary Greek hospital. Acta Microbiol. Immunol. Hung. 2021, 68, 162–168. [Google Scholar] [CrossRef]
  56. Malli, E.; Florou, Z.; Tsilipounidaki, K.; Voulgaridi, I.; Stefos, A.; Xitsas, S.; Papagiannitsis, C.C.; Petinaki, E. Evaluation of rapid polymyxin NP test to detect colistin-resistant Klebsiella pneumoniae isolated in a tertiary Greek hospital. J. Microbiol. Methods 2018, 153, 35–39. [Google Scholar] [CrossRef] [PubMed]
  57. Manolitsis, I.; Feretzakis, G.; Katsimperis, S.; Angelopoulos, P.; Loupelis, E.; Skarmoutsou, N.; Tzelves, L.; Skolarikos, A. A 2-Year Audit on Antibiotic Resistance Patterns from a Urology Department in Greece. J. Clin. Med. 2023, 12, 3180. [Google Scholar] [CrossRef] [PubMed]
  58. Maraki, S.; Mavromanolaki, V.E.; Magkafouraki, E.; Moraitis, P.; Stafylaki, D.; Kasimati, A.; Scoulica, E. Epidemiology and in vitro activity of ceftazidime-avibactam, meropenem-vaborbactam, imipenem-relebactam, eravacycline, plazomicin, and comparators against Greek carbapenemase-producing Klebsiella pneumoniae isolates. Infection 2022, 50, 467–474. [Google Scholar] [CrossRef]
  59. Maraki, S.; Mavromanolaki, V.E.; Stafylaki, D.; Scoulica, E. In vitro activity of newer β-lactam/β-lactamase inhibitor combinations, cefiderocol, plazomicin and comparators against carbapenemase-producing Klebsiella pneumoniae isolates. J. Chemother. 2023, 35, 596–600. [Google Scholar] [CrossRef] [PubMed]
  60. Mavroidi, A.; Katsiari, M.; Likousi, S.; Palla, E.; Roussou, Z.; Nikolaou, C.; Mathas, C.; Merkouri, E.; Platsouka, E.D. Changing Characteristics and In Vitro Susceptibility to Ceftazidime/Avibactam of Bloodstream Extensively Drug-Resistant Klebsiella pneumoniae from a Greek Intensive Care Unit. Microb. Drug Resist. 2020, 26, 28–37. [Google Scholar] [CrossRef]
  61. Papadimitriou-Olivgeris, M.; Bartzavali, C.; Karachalias, E.; Spiliopoulou, A.; Tsiata, E.; Siakallis, G.; Assimakopoulos, S.F.; Kolonitsiou, F.; Marangos, M. A Seven-Year Microbiological and Molecular Study of Bacteremias Due to Carbapenemase-Producing Klebsiella Pneumoniae: An Interrupted Time-Series Analysis of Changes in the Carbapenemase Gene’s Distribution after Introduction of Ceftazidime/Avibactam. Antibiotics 2022, 11, 1414. [Google Scholar] [CrossRef]
  62. Papadimitriou-Olivgeris, M.; Bartzavali, C.; Lambropoulou, A.; Solomou, A.; Tsiata, E.; Anastassiou, E.D.; Fligou, F.; Marangos, M.; Spiliopoulou, I.; Christofidou, M. Reversal of carbapenemase-producing Klebsiella pneumoniae epidemiology from blaKPC- to blaVIM-harbouring isolates in a Greek ICU after introduction of ceftazidime/avibactam. J. Antimicrob. Chemother. 2019, 74, 2051–2054. [Google Scholar] [CrossRef]
  63. Polemis, M.; Mandilara, G.; Pappa, O.; Argyropoulou, A.; Perivolioti, E.; Koudoumnakis, N.; Pournaras, S.; Vasilakopoulou, A.; Vourli, S.; Katsifa, H.; et al. COVID-19 and Antimicrobial Resistance: Data from the Greek Electronic System for the Surveillance of Antimicrobial Resistance-WHONET-Greece (January 2018–March 2021). Life 2021, 11, 996. [Google Scholar] [CrossRef]
  64. Tansarli, G.S.; Papaparaskevas, J.; Balaska, M.; Samarkos, M.; Pantazatou, A.; Markogiannakis, A.; Mantzourani, M.; Polonyfi, K.; Daikos, G.L. Colistin resistance in carbapenemase-producing Klebsiella pneumoniae bloodstream isolates: Evolution over 15 years and temporal association with colistin use by time series analysis. Int. J. Antimicrob. Agents 2018, 52, 397–403. [Google Scholar] [CrossRef]
  65. Tsilipounidaki, K.; Athanasakopoulou, Z.; Müller, E.; Burgold-Voigt, S.; Florou, Z.; Braun, S.D.; Monecke, S.; Gatselis, N.K.; Zachou, K.; Stefos, A.; et al. Plethora of Resistance Genes in Carbapenem-Resistant Gram-Negative Bacteria in Greece: No End to a Continuous Genetic Evolution. Microorganisms 2022, 10, 159. [Google Scholar] [CrossRef]
  66. Tsilipounidaki, K.; Florou, Z.; Skoulakis, A.; Fthenakis, G.C.; Miriagou, V.; Petinaki, E. Diversity of Bacterial Clones and Plasmids of NDM-1 Producing Escherichia coli Clinical Isolates in Central Greece. Microorganisms 2023, 11, 516. [Google Scholar] [CrossRef] [PubMed]
  67. Tsilipounidaki, K.; Gkountinoudis, C.-G.; Florou, Z.; Fthenakis, G.C.; Miriagou, V.; Petinaki, E. First Detection and Molecular Characterization of Pseudomonas aeruginosa blaNDM-1 ST308 in Greece. Microorganisms 2023, 11, 2159. [Google Scholar] [CrossRef]
  68. Tsolaki, V.; Mantzarlis, K.; Mpakalis, A.; Malli, E.; Tsimpoukas, F.; Tsirogianni, A.; Papagiannitsis, C.; Zygoulis, P.; Papadonta, M.E.; Petinaki, E.; et al. Ceftazidime-Avibactam To Treat Life-Threatening Infections by Carbapenem-Resistant Pathogens in Critically Ill Mechanically Ventilated Patients. Antimicrob. Agents Chemother. 2020, 64, e02320-19. [Google Scholar] [CrossRef] [PubMed]
  69. Zarras, C.; Pappa, S.; Zarras, K.; Karampatakis, T.; Vagdatli, E.; Mouloudi, E.; Iosifidis, E.; Roilides, E.; Papa, A. Changes in molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae in the intensive care units of a Greek hospital, 2018–2021. Acta Microbiol. Immunol. Hung. 2022, 69, 104–108. [Google Scholar] [CrossRef]
  70. Arbune, M.; Decusară, M.; Macovei, L.; Romila, A.; Iancu, A.; Indrei, L.; Pavel, L.; Raftu, G. Surveillance of Antibiotic Resistance Among Enterobacteriaceae Strains Isolated in an Infectious Diseases Hospital from Romania. Rev. Chim. 2018, 69, 1240–1243. [Google Scholar] [CrossRef]
  71. Arbune, M.; Gurau, G.; Niculet, E.; Iancu, A.V.; Lupasteanu, G.; Fotea, S.; Vasile, M.C.; Tatu, A.L. Prevalence of Antibiotic Resistance of ESKAPE Pathogens Over Five Years in an Infectious Diseases Hospital from South-East of Romania. Infect. Drug Resist. 2021, 14, 2369–2378. [Google Scholar] [CrossRef]
  72. Baicus, A.; Lixandru, B.; Cîrstoiu, M.-M.; Usein, C.-R.; Cirstoiu, C. Antimicrobial susceptibility and molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae strains isolated in an emergency university hospital. Rom. Biotechnol. Lett. 2018, 23, 13525–13529. [Google Scholar] [CrossRef]
  73. Farkas, A.; Tarco, E.; Butiuc-Keul, A. Antibiotic resistance profiling of pathogenic Enterobacteriaceae from Cluj-Napoca, Romania. Germs 2019, 9, 17–27. [Google Scholar] [CrossRef]
  74. Főldes, A.; Bilca, D.-V.; Székely, E. Phenotypic and molecular identification of carbapenemase-producing Enterobacteriaceae-challenges in diagnosis and treatment. Rev. Romana Med. Lab. 2018, 26, 221–230. [Google Scholar] [CrossRef]
  75. Főldes, A.; Oprea, M.; Székely, E.; Usein, C.R.; Dobreanu, M. Characterization of Carbapenemase-Producing Klebsiella pneumoniae Isolates from Two Romanian Hospitals Co-Presenting Resistance and Heteroresistance to Colistin. Antibiotics 2022, 11, 1171. [Google Scholar] [CrossRef]
  76. Ghenea, A.E.; Zlatian, O.M.; Cristea, O.M.; Ungureanu, A.; Mititelu, R.R.; Balasoiu, A.T.; Vasile, C.M.; Salan, A.I.; Iliuta, D.; Popescu, M.; et al. TEM,CTX-M,SHV Genes in ESBL-Producing Escherichia coli and Klebsiella pneumoniae Isolated from Clinical Samples in a County Clinical Emergency Hospital Romania-Predominance of CTX-M-15. Antibiotics 2022, 11, 503. [Google Scholar] [CrossRef] [PubMed]
  77. Golli, A.L.; Cristea, O.M.; Zlatian, O.; Glodeanu, A.D.; Balasoiu, A.T.; Ionescu, M.; Popa, S. Prevalence of Multidrug-Resistant Pathogens Causing Bloodstream Infections in an Intensive Care Unit. Infect. Drug Resist. 2022, 15, 5981–5992. [Google Scholar] [CrossRef] [PubMed]
  78. Manciuc, C. Resistance Profile of Multidrug-Resistant Urinary Tract Infections and Their Susceptibility to Carbapenems. Farmacia 2020, 68, 715–721. [Google Scholar] [CrossRef]
  79. Miftode, I.L.; Leca, D.; Miftode, R.S.; Roşu, F.; Plesca, C.; Loghin, I.; Timpau, A.S.; Mitu, I.; Mititiuc, I.; Dorneanu, O.; et al. The Clash of the Titans: COVID-19, Carbapenem-Resistant Enterobacterales, and First mcr-1-Mediated Colistin Resistance in Humans in Romania. Antibiotics 2023, 12, 324. [Google Scholar] [CrossRef] [PubMed]
  80. Molnár, S.; Flonta, M.M.M.; Almaş, A.; Buzea, M.; Licker, M.; Rus, M.; Földes, A.; Székely, E. Dissemination of NDM-1 carbapenemase-producer Providencia stuartii strains in Romanian hospitals: A multicentre study. J. Hosp. Infect. 2019, 103, 165–169. [Google Scholar] [CrossRef]
  81. Tompa, M.; Iancu, M.; Pandrea, S.L.; Grigorescu, M.; Ciontea, M.; Tompa, R.; Pandrea, S.; Junie, L. Carbapenem resistance determinants in Klebsiella pneumoniae strains isolated from blood cultures-comparative analysis of molecular and phenotypic methods. Rev. Romana Med. Lab. 2022, 30, 315–326. [Google Scholar] [CrossRef]
  82. Coșeriu, R.L.; Mare, A.D.; Toma, F.; Vintilă, C.; Ciurea, C.N.; Togănel, R.O.; Cighir, A.; Simion, A.; Man, A. Uncovering the Resistance Mechanisms in Extended-Drug-Resistant Pseudomonas aeruginosa Clinical Isolates: Insights from Gene Expression and Phenotypic Tests. Microorganisms 2023, 11, 2211. [Google Scholar] [CrossRef]
  83. Muntean, D.; Horhat, F.G.; Bădițoiu, L.; Dumitrașcu, V.; Bagiu, I.C.; Horhat, D.I.; Coșniță, D.A.; Krasta, A.; Dugăeşescu, D.; Licker, M. Multidrug-Resistant Gram-Negative Bacilli: A Retrospective Study of Trends in a Tertiary Healthcare Unit. Medicina 2018, 54, 92. [Google Scholar] [CrossRef]
  84. Baditoiu, L.; Axente, C.; Lungeanu, D.; Muntean, D.; Horhat, F.; Moldovan, R.; Hogea, E.; Bedreag, O.; Sandesc, D.; Licker, M. Intensive care antibiotic consumption and resistance patterns: A cross-correlation analysis. Ann. Clin. Microbiol. Antimicrob. 2017, 16, 71. [Google Scholar] [CrossRef]
  85. Miftode, I.-L.; Pasare, M.-A.; Miftode, R.-S.; Nastase, E.; Plesca, C.E.; Lunca, C.; Miftode, E.-G.; Timpau, A.-S.; Iancu, L.S.; Dorneanu, O.S. What Doesn’t Kill Them Makes Them Stronger: The Impact of the Resistance Patterns of Urinary Enterobacterales Isolates in Patients from a Tertiary Hospital in Eastern Europe. Antibiotics 2022, 11, 548. [Google Scholar] [CrossRef]
  86. Bandić-Pavlović, D.; Zah-Bogović, T.; Žižek, M.; Bielen, L.; Bratić, V.; Hrabač, P.; Slačanac, D.; Mihaljević, S.; Bedenić, B. Gram-negative bacteria as causative agents of ventilator-associated pneumonia and their respective resistance mechanisms. J. Chemother. 2020, 32, 344–358. [Google Scholar] [CrossRef] [PubMed]
  87. Bedenić, B.; Likić, S.; Žižek, M.; Bratić, V.; D’Onofrio, V.; Cavrić, G.; Pavliša, G.; Vodanović, M.; Gyssens, I.; Barišić, I. Causative agents of bloodstream infections in two Croatian hospitals and their resistance mechanisms. J. Chemother. 2023, 35, 281–291. [Google Scholar] [CrossRef]
  88. Bedenić, B.; Luxner, J.; Car, H.; Sardelić, S.; Bogdan, M.; Varda-Brkić, D.; Šuto, S.; Grisold, A.; Beader, N.; Zarfel, G. Emergence and Spread of Enterobacterales with Multiple Carbapenemases after COVID-19 Pandemic. Pathogens 2023, 12, 677. [Google Scholar] [CrossRef] [PubMed]
  89. Bedenić, B.; Pešorda, L.; Krilanović, M.; Beader, N.; Veir, Z.; Schoenthaler, S.; Bandić-Pavlović, D.; Frančula-Zaninović, S.; Barišić, I. Evolution of Beta-Lactamases in Urinary Klebsiella pneumoniae Isolates from Croatia; from Extended-Spectrum Beta-Lactamases to Carbapenemases and Colistin Resistance. Curr. Microbiol. 2022, 79, 355. [Google Scholar] [CrossRef] [PubMed]
  90. Bedenić, B.; Sardelić, S.; Bogdanić, M.; Zarfel, G.; Beader, N.; Šuto, S.; Krilanović, M.; Vraneš, J. Klebsiella pneumoniae carbapenemase (KPC) in urinary infection isolates. Arch. Microbiol. 2021, 203, 1825–1831. [Google Scholar] [CrossRef]
  91. Bielen, L.; Likić, R.; Erdeljić, V.; Mareković, I.; Firis, N.; Grgić-Medić, M.; Godan, A.; Tomić, I.; Hunjak, B.; Markotić, A.; et al. Activity of fosfomycin against nosocomial multiresistant bacterial pathogens from Croatia: A multicentric study. Croat. Med. J. 2018, 59, 56–64. [Google Scholar] [CrossRef] [PubMed]
  92. D’Onofrio, V.; Conzemius, R.; Varda-Brkić, D.; Bogdan, M.; Grisold, A.; Gyssens, I.C.; Bedenić, B.; Barišić, I. Epidemiology of colistin-resistant, carbapenemase-producing Enterobacteriaceae and Acinetobacter baumannii in Croatia. Infect. Genet. Evol. 2020, 81, 104263. [Google Scholar] [CrossRef] [PubMed]
  93. Jelić, M.; Škrlin, J.; Bejuk, D.; Košćak, I.; Butić, I.; Gužvinec, M.; Tambić-Andrašević, A. Characterization of Isolates Associated with Emergence of OXA-48-Producing Klebsiella pneumoniae in Croatia. Microb. Drug Resist. 2018, 24, 973–979. [Google Scholar] [CrossRef] [PubMed]
  94. Jurić, I.; Bošnjak, Z.; Ćorić, M.; Lešin, J.; Mareković, I. In vitro susceptibility of carbapenem-resistant Enterobacterales to eravacycline—The first report from Croatia. J. Chemother. 2022, 34, 67–70. [Google Scholar] [CrossRef]
  95. Tomić Paradžik, M.; Drenjančević, D.; Presečki-Stanko, A.; Kopić, J.; Talapko, J.; Zarfel, G.; Bedenić, B. Hidden Carbapenem Resistance in OXA-48 and Extended-Spectrum β-Lactamase-Positive Escherichia coli. Microb. Drug Resist. 2019, 25, 696–702. [Google Scholar] [CrossRef]
  96. Bedenić, B.; Bratić, V.; Mihaljević, S.; Lukić, A.; Vidović, K.; Reiner, K.; Schöenthaler, S.; Barišić, I.; Zarfel, G.; Grisold, A. Multidrug-Resistant Bacteria in a COVID-19 Hospital in Zagreb. Pathogens 2023, 12, 117. [Google Scholar] [CrossRef] [PubMed]
  97. Ćirković, I.; Marković-Denić, L.; Bajčetić, M.; Dragovac, G.; Đorđević, Z.; Mioljević, V.; Urošević, D.; Nikolić, V.; Despotović, A.; Krtinić, G.; et al. Microbiology of Healthcare-Associated Infections: Results of a Fourth National Point Prevalence Survey in Serbia. Antibiotics 2022, 11, 1161. [Google Scholar] [CrossRef] [PubMed]
  98. Djordjevic, Z.; Folic, M.; Gajović, N.; Jankovic, S. Risk Factors for Carbapenem-Resistant Klebsiella pneumoniae Hospital Infection in the Intensive Care Unit. Serbian J. Exp. Clin. Res. 2018, 19, 190–198. [Google Scholar] [CrossRef]
  99. Djordjevic, Z.M.; Folic, M.M.; Jankovic, S.M. Previous Antibiotic Exposure and Antimicrobial Resistance Patterns of Acinetobacter spp. and Pseudomonas aeruginosa Isolated from Patients with Nosocomial Infections. Balk. Med. J. 2017, 34, 527–533. [Google Scholar] [CrossRef]
  100. Djuric, O.; Markovic-Denic, L.; Jovanovic, B.; Bumbasirevic, V. High incidence of multiresistant bacterial isolates from bloodstream infections in trauma emergency department and intensive care unit in Serbia. Acta Microbiol. Immunol. Hung. 2019, 66, 307–325. [Google Scholar] [CrossRef]
  101. Folic, M.M.; Djordjevic, Z.; Folic, N.; Radojevic, M.Z.; Jankovic, S.M. Epidemiology and risk factors for healthcare-associated infections caused by Pseudomonas aeruginosa. J. Chemother. 2021, 33, 294–301. [Google Scholar] [CrossRef]
  102. Kabic, J.; Fortunato, G.; Vaz-Moreira, I.; Kekic, D.; Jovicevic, M.; Pesovic, J.; Ranin, L.; Opavski, N.; Manaia, C.M.; Gajic, I. Dissemination of Metallo-β-Lactamase-Producing Pseudomonas aeruginosa in Serbian Hospital Settings: Expansion of ST235 and ST654 Clones. Int. J. Mol. Sci. 2023, 24, 1519. [Google Scholar] [CrossRef]
  103. Milojković, M.; Nenadović, Ž.; Stanković, S.; Božić, D.D.; Nedeljković, N.S.; Ćirković, I.; Petrović, M.; Dimkić, I. Phenotypic and genetic properties of susceptible and multidrug-resistant Pseudomonas aeruginosa isolates in Southern Serbia. Arh. Hig. Rada Toksikol. 2020, 71, 231–250. [Google Scholar] [CrossRef]
  104. Palmieri, M.; D’Andrea, M.M.; Pelegrin, A.C.; Mirande, C.; Brkic, S.; Cirkovic, I.; Goossens, H.; Rossolini, G.M.; van Belkum, A. Genomic Epidemiology of Carbapenem- and Colistin-Resistant Klebsiella pneumoniae Isolates From Serbia: Predominance of ST101 Strains Carrying a Novel OXA-48 Plasmid. Front. Microbiol. 2020, 11, 294. [Google Scholar] [CrossRef]
  105. Zornic, S.; Petrovic, I.; Lukovic, B. In vitro activity of imipenem/relebactam and ceftazidime/avibactam against carbapenem-resistant Klebsiella pneumoniae from blood cultures in a University hospital in Serbia. Acta Microbiol. Immunol. Hung. 2023, 70, 187–192. [Google Scholar] [CrossRef]
  106. Dobreva, E.; Ivanov, I.; Donchev, D.; Ivanova, K.; Hristova, R.; Dobrinov, V.; Sabtcheva, S.; Kantardjiev, T. In vitro Investigation of Antibiotic Combinations against Multi- and Extensively Drug-Resistant Klebsiella pneumoniae. Maced. J. Med. Sci. 2022, 10, 1308–1314. [Google Scholar] [CrossRef]
  107. Kostyanev, T.; Nguyen, M.N.; Markovska, R.; Stankova, P.; Xavier, B.B.; Lammens, C.; Marteva-Proevska, Y.; Velinov, T.; Cantón, R.; Goossens, H.; et al. Emergence of ST654 Pseudomonas aeruginosa co-harbouring bla(NDM-1) and bla(GES-5) in novel class I integron In1884 from Bulgaria. J. Glob. Antimicrob. Resist. 2020, 22, 672–673. [Google Scholar] [CrossRef] [PubMed]
  108. Markovska, R.; Stoeva, T.; Boyanova, L.; Stankova, P.; Schneider, I.; Keuleyan, E.; Mihova, K.; Murdjeva, M.; Sredkova, M.; Lesseva, M.; et al. Multicentre investigation of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in Bulgarian hospitals—Interregional spread of ST11 NDM-1-producing K. pneumoniae. Infect. Genet. Evol. 2019, 69, 61–67. [Google Scholar] [CrossRef] [PubMed]
  109. Petrova, A.; Feodorova, Y.; Miteva-Katrandzhieva, T.; Petrov, M.; Murdjeva, M. First detected OXA-50 carbapenem-resistant clinical isolates Pseudomonas aeruginosa from Bulgaria and interplay between the expression of main efflux pumps, OprD and intrinsic AmpC. J. Med. Microbiol. 2019, 68, 1723–1731. [Google Scholar] [CrossRef] [PubMed]
  110. Petrova, A.P.; Stanimirova, I.D.; Ivanov, I.N.; Petrov, M.M.; Miteva-Katrandzhieva, T.M.; Grivnev, V.I.; Kardjeva, V.S.; Kantardzhiev, T.V.; Murdjeva, M.A. Carbapenemase Production of Clinical Isolates Acinetobacter baumannii and Pseudomonas aeruginosa from a Bulgarian University Hospital. Folia Med. (Plovdiv.) 2017, 59, 413–422. [Google Scholar] [CrossRef]
  111. Savov, E.; Politi, L.; Spanakis, N.; Trifonova, A.; Kioseva, E.; Tsakris, A. NDM-1 Hazard in the Balkan States: Evidence of the First Outbreak of NDM-1-Producing Klebsiella pneumoniae in Bulgaria. Microb. Drug Resist. 2018, 24, 253–259. [Google Scholar] [CrossRef]
  112. Savova, D.; Niyazi, D.; Bozhkova, M.; Stoeva, T. Molecular epidemiology of carbapenem-resistant Enterobacteriaceae isolated from patients in COVID-19 wards and ICUs in a Bulgarian University Hospital. Acta Microbiol. Immunol. Hung. 2023, 70, 142–146. [Google Scholar] [CrossRef]
  113. Chudejova, K.; Kraftova, L.; Mattioni Marchetti, V.; Hrabak, J.; Papagiannitsis, C.C.; Bitar, I. Genetic Plurality of OXA/NDM-Encoding Features Characterized from Enterobacterales Recovered From Czech Hospitals. Front. Microbiol. 2021, 12, 641415. [Google Scholar] [CrossRef]
  114. Kukla, R.; Chudejova, K.; Papagiannitsis, C.C.; Medvecky, M.; Habalova, K.; Hobzova, L.; Bolehovska, R.; Pliskova, L.; Hrabak, J.; Zemlickova, H. Characterization of KPC-Encoding Plasmids from Enterobacteriaceae Isolated in a Czech Hospital. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef]
  115. Papagiannitsis, C.C.; Medvecky, M.; Chudejova, K.; Skalova, A.; Rotova, V.; Spanelova, P.; Jakubu, V.; Zemlickova, H.; Hrabak, J. Molecular Characterization of Carbapenemase-Producing Pseudomonas aeruginosa of Czech Origin and Evidence for Clonal Spread of Extensively Resistant Sequence Type 357 Expressing IMP-7 Metallo-β-Lactamase. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef]
  116. Paskova, V.; Medvecky, M.; Skalova, A.; Chudejova, K.; Bitar, I.; Jakubu, V.; Bergerova, T.; Zemlickova, H.; Papagiannitsis, C.C.; Hrabak, J. Characterization of NDM-Encoding Plasmids from Enterobacteriaceae Recovered from Czech Hospitals. Front. Microbiol. 2018, 9, 1549. [Google Scholar] [CrossRef] [PubMed]
  117. Gajdács, M. Carbapenem-Resistant but Cephalosporin-Susceptible Pseudomonas aeruginosa in Urinary Tract Infections: Opportunity for Colistin Sparing. Antibiotics 2020, 9, 153. [Google Scholar] [CrossRef] [PubMed]
  118. Gajdács, M.; Ábrók, M.; Lázár, A.; Jánvári, L.; Tóth, Á.; Terhes, G.; Burián, K. Detection of VIM, NDM and OXA-48 producing carbapenem resistant Enterobacterales among clinical isolates in Southern Hungary. Acta Microbiol. Immunol. Hung. 2020, 67, 209–215. [Google Scholar] [CrossRef] [PubMed]
  119. O’Neall, D.; Juhász, E.; Tóth, Á.; Urbán, E.; Szabó, J.; Melegh, S.; Katona, K.; Kristóf, K. Ceftazidime-avibactam and ceftolozane-tazobactam susceptibility of multidrug resistant Pseudomonas aeruginosa strains in Hungary. Acta Microbiol. Immunol. Hung. 2020, 67, 61–65. [Google Scholar] [CrossRef] [PubMed]
  120. Jalali, Y.; Sturdik, I.; Jalali, M.; Payer, J. Isolated carbapenem resistant bacteria, their multidrug resistant profile, percentage of healthcare associated infection and associated mortality, in hospitalized patients in a University Hospital in Bratislava. Bratisl. Lek. Listy 2021, 122, 379–385. [Google Scholar] [CrossRef]
  121. Gagaletsios, L.A.; Papagiannitsis, C.C.; Petinaki, E. Prevalence and analysis of CRISPR/Cas systems in Pseudomonas aeruginosa isolates from Greece. Mol. Genet. Genom. 2022, 297, 1767–1776. [Google Scholar] [CrossRef]
  122. Ten Threats to Global Health in 2019. In WHO/Newsroom/Spotlight; World Health Organization: Geneva, Switzerland, 2019; Available online: https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019 (accessed on 3 February 2024).
  123. Health Union: Identifying Top 3 Priority Health Threats; European Commission: Brussels, Belgium, 2022; Available online: https://health.ec.europa.eu/system/files/2022-07/hera_factsheet_health-threat_mcm.pdf (accessed on 3 February 2024).
  124. Coppry, M.; Jeanne-Leroyer, C.; Noize, P.; Dumartin, C.; Boyer, A.; Bertrand, X.; Dubois, V.; Rogues, A.-M. Antibiotics associated with acquisition of carbapenem-resistant Pseudomonas aeruginosa in ICUs: A multicentre nested case–case–control study. J. Antimicrob. Chemother. 2019, 74, 503–510. [Google Scholar] [CrossRef]
  125. Woerther, P.-L.; Lepeule, R.; Burdet, C.; Decousser, J.-W.; Ruppé, É.; Barbier, F. Carbapenems and alternative β-lactams for the treatment of infections due to extended-spectrum β-lactamase-producing Enterobacteriaceae: What impact on intestinal colonisation resistance? Int. J. Antimicrob. Agents 2018, 52, 762–770. [Google Scholar] [CrossRef]
  126. Versporten, A.; Zarb, P.; Caniaux, I.; Gros, M.-F.; Drapier, N.; Miller, M.; Jarlier, V.; Nathwani, D.; Goossens, H.; Koraqi, A. Antimicrobial consumption and resistance in adult hospital inpatients in 53 countries: Results of an internet-based global point prevalence survey. Lancet Glob. Health 2018, 6, e619–e629. [Google Scholar] [CrossRef]
  127. WHO Regional Office for Europe; European Centre for Disease Prevention and Control. Surveillance of Antimicrobial Resistance in Europe, 2022 Data: Executive Summary; WHO Regional Office for Europe: Copenhagen, Denmark, 2023. [Google Scholar]
  128. Doi, Y. Treatment Options for Carbapenem-resistant Gram-negative Bacterial Infections. Clin. Infect. Dis. 2019, 69, S565–S575. [Google Scholar] [CrossRef]
  129. Thwaites, M.; Hall, D.; Stoneburner, A.; Shinabarger, D.; Serio, A.W.; Krause, K.M.; Marra, A.; Pillar, C. Activity of plazomicin in combination with other antibiotics against multidrug-resistant Enterobacteriaceae. Diagn. Microbiol. Infect. Dis. 2018, 92, 338–345. [Google Scholar] [CrossRef] [PubMed]
  130. Li, Y.; Cui, L.; Xue, F.; Wang, Q.; Zheng, B. Synergism of eravacycline combined with other antimicrobial agents against carbapenem-resistant Enterobacteriaceae and Acinetobacter baumannii. J. Glob. Antimicrob. Resist. 2022, 30, 56–59. [Google Scholar] [CrossRef] [PubMed]
  131. KS, S.; Pallam, G.; Mandal, J.; Jindal, B. Use of fosfomycin combination therapy to treat multidrug-resistant urinary tract infection among paediatric surgical patients—A tertiary care centre experience. Access Microbiol. 2020, 2, acmi000163. [Google Scholar] [CrossRef]
  132. Dyar, O.J.; Huttner, B.; Schouten, J.; Pulcini, C. What is antimicrobial stewardship? Clin. Microbiol. Infect. 2017, 23, 793–798. [Google Scholar] [CrossRef] [PubMed]
  133. Magill, S.S.; Edwards, J.R.; Bamberg, W.; Beldavs, Z.G.; Dumyati, G.; Kainer, M.A.; Lynfield, R.; Maloney, M.; McAllister-Hollod, L.; Nadle, J.; et al. Multistate point-prevalence survey of health care-associated infections. N. Engl. J. Med. 2014, 370, 1198–1208. [Google Scholar] [CrossRef]
  134. Dellit, T.H.; Owens, R.C.; McGowan, J.E., Jr.; Gerding, D.N.; Weinstein, R.A.; Burke, J.P.; Huskins, W.C.; Paterson, D.L.; Fishman, N.O.; Carpenter, C.F.; et al. Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin. Infect. Dis. 2007, 44, 159–177. [Google Scholar] [CrossRef]
Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow chart of the study selection process.
Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow chart of the study selection process.
Antibiotics 13 00978 g001
Figure 2. Carbapenem-resistant Enterobacterales rate in analyzed countries. Created with mapchart.net.
Figure 2. Carbapenem-resistant Enterobacterales rate in analyzed countries. Created with mapchart.net.
Antibiotics 13 00978 g002
Figure 3. Carbapenem-resistant P. aeruginosa rate in analyzed countries. Created with mapchart.net.
Figure 3. Carbapenem-resistant P. aeruginosa rate in analyzed countries. Created with mapchart.net.
Antibiotics 13 00978 g003
Table 1. Carbapenem-resistant Enterobacterales and resistance mechanisms reported in the included studies (n, %).
Table 1. Carbapenem-resistant Enterobacterales and resistance mechanisms reported in the included studies (n, %).
CountryNo. of IsolatesCR Rate
n (%)
Prevalence of KPC Mechanism a
(n/N, %)
Prevalence of MBL Mechanism a
(n/N, %)
Prevalence of OXA-48 Mechanism a
(n/N, %)
References
Bulgaria188188 (100)85/162 (52.5)NDM: 87/188 (46.3)
VIM: 16/150 (10.7)
OXA-48: 3/150 (2)[106,111]
Croatia588583 (99.2)57/474 (12.0)VIM: 149/504 (26.6)
NDM: 26/428 (6.1)
OXA-48: 83/474 (17.5)[86,87,88,90,91,92,93,94,96]
Czechia33 33 (100)10/33 (30.3)NDM: 23/33 (69.7)OXA-48: 4/11 (36.4)[113,114,116]
Greece72574819 (66.4)2328/3872 (60.1)NDM: 417/3469 (12)
VIM: 317/3440 (9.2)
OXA-48: 154/3872 (4.0)[46,47,49,50,51,52,53,54,55,56,57,58,59,60,61,62,65,66,67,68,69]
Hungary147427 (1.8) -VIM: 21/27 (77.8)
NDM: 2/27 (7.4)
OXA-48: 6/27 (22.2)[18,118]
Poland69683324 (47.7)202/743 (27.2)NDM: 2263/2986 (75.8)
VIM: 137/850 (16.1)
OXA-48: 359/743 (48.3)[20,21,22,23,24,25,27,29,30,32,33,34,35,37,38,39,40,41,43,44,45]
Romania3396790 (23.2) 24/220 (10.9)NDM: 103/268 (38.4)
VIM: 7/112 (6.3)
OXA-48: 96/220 (43.6)[70,71,72,73,74,75,76,77,78,79,80,81,85]
Serbia 2724703 (25.8)24/188 (12.8)NDM: 14/188 (7.4)OXA-48: 123/188 (65.4)[97,98,100,105]
Slovakia14100 (100) NDNDND[120]
a—not every strain tested; CR—carbapenem-resistant; KPC—K. pneumoniae carbapenemase; MBL—metallo-β-lactamase; ND—no data; NDM—New Delhi metallo-β-lactamases; VIM—Verona integron-encoded metallo-β-lactamases.
Table 2. Activity of imipenem/relebactam and ceftazidime/avibactam against Enterobacterales and resistance mechanisms in the included studies.
Table 2. Activity of imipenem/relebactam and ceftazidime/avibactam against Enterobacterales and resistance mechanisms in the included studies.
CountryPathogenNo. of CR StrainsIMI/REL Resistance (%)CAZ/AVI Resistance (%)Resistance Mechanisms (%) aReference
CroatiaEnterobacterales1010050OXA-48: 100
NDM: 50
KPC: 20
VIM: 10
[88]
GreeceK. pneumoniae3147.30.3KPC: 94
OXA-48: 6
[52]
GreeceK. pneumoniae2662420.3KPC: 75.6
NDM: 11.7
VIM: 5.6
OXA-48: 4.1
[58]
GreeceK. pneumoniae11034.533.7KPC: 64.6
NDM: 20.9
VIM: 8.2
OXA-48: 2.7
[59]
GreeceEnterobacterales42239.840.2KPC: 57.3
MBL: 44
OXA-48: 8.8
[47]
PolandKlebsiella spp.10682.682.6VIM: 100[22]
RomaniaK. pneumoniae105020OXA-48: 40
KPC: 40
NDM: 20
[75]
SerbiaK. pneumoniae14351.825.9OXA-48: 60
NDM: 8.2
KPC: 16.5
[105]
a—a single strain may have more than one resistance mechanism; CAZ/AVI—ceftazidime/avibactam; CR—carbapenem-resistant; IMI/REL—imipenem/relebactam.
Table 3. Carbapenem-resistant P. aeruginosa resistance mechanisms in the included studies.
Table 3. Carbapenem-resistant P. aeruginosa resistance mechanisms in the included studies.
CountryNo. of IsolatesCR Rate, n (%) MBL Mechanism Prevalence a, n/N (%)Other Mechanisms a, n/N (%)Reference
Bulgaria8074 (92.5) NDM: 5/5 (100)OXA-50: 3/32 (9.3)[107,109,110]
Croatia7054 (77.1) VIM: 8/8 (100)GES: 5/5 (100)[86,87,91]
Czechia289167 (57.9) VIM: 15/138 (10.9)
IMP: 119/138 (86.2)
GES: 4/138 (2.9)[115]
Greece1179376 (31.9)VIM: 13/39 (33.3)
NDM: 9/39 (23.1)
ND[57,65,67,121]
Hungary2284436 (19.1)VIM: 64/77 (83.1)
NDM: 7/65 (10.8)
ND[18,117,119]
Poland1555805 (51.8) MBL: 486/489 (99.4)ND[23,24,26,40,42,43,44,45]
Romania386179 (46.4)NDND[71,77]
Serbia 1111593 (53.4)NDM: 31/138 (22.5)ND[100,101,102]
Slovakia1616 (100) NDND[120]
a—not every strain tested; CR—carbapenem-resistant; MBL—metallo-β-lactamase; ND—no data.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Piotrowski, M.; Alekseeva, I.; Arnet, U.; Yücel, E. Insights into the Rising Threat of Carbapenem-Resistant Enterobacterales and Pseudomonas aeruginosa Epidemic Infections in Eastern Europe: A Systematic Literature Review. Antibiotics 2024, 13, 978. https://doi.org/10.3390/antibiotics13100978

AMA Style

Piotrowski M, Alekseeva I, Arnet U, Yücel E. Insights into the Rising Threat of Carbapenem-Resistant Enterobacterales and Pseudomonas aeruginosa Epidemic Infections in Eastern Europe: A Systematic Literature Review. Antibiotics. 2024; 13(10):978. https://doi.org/10.3390/antibiotics13100978

Chicago/Turabian Style

Piotrowski, Michal, Irina Alekseeva, Urs Arnet, and Emre Yücel. 2024. "Insights into the Rising Threat of Carbapenem-Resistant Enterobacterales and Pseudomonas aeruginosa Epidemic Infections in Eastern Europe: A Systematic Literature Review" Antibiotics 13, no. 10: 978. https://doi.org/10.3390/antibiotics13100978

APA Style

Piotrowski, M., Alekseeva, I., Arnet, U., & Yücel, E. (2024). Insights into the Rising Threat of Carbapenem-Resistant Enterobacterales and Pseudomonas aeruginosa Epidemic Infections in Eastern Europe: A Systematic Literature Review. Antibiotics, 13(10), 978. https://doi.org/10.3390/antibiotics13100978

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop