Next Article in Journal
The RNA Polymerase Inhibitor Corallopyronin A Has a Lower Frequency of Resistance Than Rifampicin in Staphylococcus aureus
Next Article in Special Issue
Systematic Review and Meta-Analysis on the Frequency of Antibiotic-Resistant Clostridium Species in Saudi Arabia
Previous Article in Journal
Monitoring Carbapenem-Resistant Enterobacterales in the Environment to Assess the Spread in the Community
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Systematic Review

Plants with Antimicrobial Activity Growing in Italy: A Pathogen-Driven Systematic Review for Green Veterinary Pharmacology Applications

1
Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy
2
Interdepartmental Center Veterinary Service for Human and Animal Health, “Magna Græcia University” of Catanzaro, CISVetSUA, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy
3
Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FISH), “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy
4
Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Antibiotics 2022, 11(7), 919; https://doi.org/10.3390/antibiotics11070919
Submission received: 29 April 2022 / Revised: 28 June 2022 / Accepted: 30 June 2022 / Published: 8 July 2022

Abstract

:
Drug resistance threatening humans may be linked with antimicrobial and anthelmintic resistance in other species, especially among farm animals and, more in general, in the entire environment. From this perspective, Green Veterinary Pharmacology was proven successful for the control of parasites in small ruminants and for the control of other pests such as varroa in bee farming. As in anthelmintic resistance, antimicrobial resistance (AMR) represents one of the major challenges against the successful treatment of infectious diseases, and antimicrobials use in agriculture contributes to the spread of more AMR bacterial phenotypes, genes, and proteins. With this systematic review, we list Italian plants with documented antimicrobial activity against possible pathogenic microbes. Methods: The literature search included all the manuscripts published since 1990 in PubMed, Web of Science, and Scopus using the keywords (i) “antimicrobial, plants, Italy”; (ii) “antibacterial, plant, Italy”; (iii) “essential oil, antibacterial, Italy”; (iv) “essential oil, antimicrobial, Italy”; (v) “methanol extract, antibacterial, Italy”; (vi) “methanol extract, antimicrobial, Italy”. Results: In total, 105 manuscripts that documented the inhibitory effect of plants growing in Italy against bacteria were included. One hundred thirty-five plants were recorded as effective against Gram+ bacteria, and 88 against Gram−. This will provide a ready-to-use comprehensive tool to be further tested against the indicated list of pathogens and will suggest new alternative strategies against bacterial pathogens to be employed in Green Veterinary Pharmacology applications.

1. Introduction

Sustainable livestock management can achieve carbon neutrality thanks to greenhouse gas reabsorption by photosynthetic processes of plants used as feed [1]. However, carbon neutrality alone does not complete the circle of fully sustainable farming that still requires the use of chemically synthesized antimicrobial and anthelmintic drugs that may persist in the environment. To overcome this problem, Green Veterinary Pharmacology approaches promote the use of plants and natural products for pest control. These approaches have already been successfully applied for the control of parasites in small ruminants [2,3,4] and bee farming [5,6,7] providing a relevant alternative to conventionally used drugs whose efficacy is hampered by resistance phenomena [8,9].
After the current pandemics, the next challenge for humanity might be represented by antimicrobial resistance (AMR). The environment, including animals and animal products, is colonized by bacteria that are typical and specific to every different ecological niche. In these complex environments, natural and human-related ecological pressure promotes the selection and expression of genes related to AMR. AMR predates the clinical use of antibiotics, posing the question of whether AMR occurred earlier than human antibiotics production and spread [10,11]. For example, soil microorganisms are carriers of resistance genes to many classes of antibiotics independently from human-derived antimicrobial pressure. Naturally occurring AMR is related to the biological pressure of every ecological environment/niche that implicates the bacteria–bacteria competition or the bacteria–fungi competition. Therefore, bacteria–fungi co-existence may have been the driver for the initial production and synthesis of the early forms of beta-lactamases [10,11,12].
There are different possible intervention methods that can be used to avoid the spread and the threats related to antimicrobial resistance. At first, animals showing recurring resistance patterns in their microbiomes might be kept separated and culled. Another strategy may be represented by the intervention through Green Veterinary Pharmacology approaches by using crops and plants that produce molecules with antibacterial activity. Italian territory offers high biodiversity of endemic plants with the most diverse nutraceutical functions [13]. Part of this knowledge is embedded in the ancient traditions of rural territories and might be re-evaluated to scientifically confirm the eventual antimicrobial activity [14]. Another part is already recorded in the scientific literature and needs to be systematically resumed. Evaluating the effectiveness of these plants or their extracts on microbes that threaten the efficiency of animal production may represent a valid alternative to the common antimicrobial therapeutical procedures and may help reduce the development of further antibiotic resistance phenomena.
The aim of this review is to create a list (based on scientific knowledge) of the known autochthonous plants of Italian territory that could be used as alternative antimicrobial treatments in animal husbandry. This might represent the first step toward the use of natural products to contrast the growing phenomenon of antibiotic resistance in animal production.

2. Results

The literature search (see details in the methods section) yielded, in total, 577 entries that were filtered to 374 after duplicates and literature reviews were removed. Among those, 105 relevant articles were chosen through the Rayyan keywords filtering algorithm, manually validated, and included in the study. All the contributions (from 1990, publication date) involving virus, fungi, and other applications were discarded, and only experimental works involving Italian plant parts or extracts active against bacteria were included. The workflow was guided according to the PRISMA 2020 checklist as in Supplementary Material File S1.
Figure 1a shows the percentage of plants active against Gram+ bacterial, and Figure 1b shows the percentage of plants active against Gram− bacteria. Table 1 and Table 2 show the plants effective against each bacterial genera/species. Table 1 reviews the plants with documented antimicrobial activity on Gram+ bacteria, while Table 2 reviews the plants active towards Gram− bacteria. The results herein described were merged with the results presented in the systematic review published by Chassagne et al. in 2021 [15].
Among the plants effective against Gram+ bacteria, the major number of described species (39) was recorded for S. aureus (29%, Figure 1a), and, among these, four were specifically recorded as being effective against the MSSA strain. Twelve contributions (9%) were recorded for plants effective against S. epidermidis, 17 (13%) against B. cereus, and 21 (16%) against Listeria monocytogenes. Considering Gram−, 20 described plants were effective against Escherichia coli (23%), 23 against P. aeruginosa (26%), and 9 against K. pneumoniae (18%). Each percentage refers to the total number of plants effective against Gram+ or Gram− bacteria separately.
The most represented chemical classes included polyphenols (mainly tannins, 14 hits), terpenes (mainly limonene) with 6 relevant hits, flavonoids (24 hits), and alkaloids (6 hits).
Interestingly, plants were detected to be active against the growth of all ESKAPE pathogens, including Enterobacter spp., as reported in Table 2.

3. Discussion

Antimicrobial use in agriculture is partially responsible for the spread of AMR. Global deaths linked to AMR worldwide are estimated to increase up to 750,000 and are projected to reach as high as 10 million by the year 2050 [118].
Plant evolution developed strategies to ensure life adopting numerous effective defense mechanisms, such as the production of secondary metabolites to combat pests and pathogens [119,120], and these molecules could represent alternative solutions to go beyond the rise of antibiotic resistance.
Those secondary metabolites help plants fight stressor agents, interact with other organisms (herbivores, pathogens, neighboring plants, pollinators, and fruit dispersers), and are mainly part of three large chemical classes with relevant bioactivity as terpenes, phenols, and alkaloids. Among those, terpenoids represent one of the richest classes of molecules and include more than 50,000 known compounds. Many of these compounds have the function of defending the plant from possible bacterial pathogens.
With this review, we propose a pathogen-driven list of the plants that can grow in Italian territory with evidence of antibacterial activity. The list is ordered according to the bacterial pathogens to facilitate future studies for possible therapeutic approaches.

3.1. Plants Active against Gram+

B. cereus is of particular interest to public health because of food spoilage and toxin production [121]. Already in 2007, it was detected as a contaminant in cow feed, farm environment, and ultimately, in bulk milk [122]. As in Table 1, 17 plants or their extracts have been found to be effective against its growth, and most of those are very common and easy to find, such as Laurus nobilis [19], Malus domestica var. Annurca [21], Allium sativum L. [24], Rosmarinus officinalis L., Lavandula angustifolia Miller [25], Sage (Salvia officinalis), and Thymus vulgaris [28].
Clostridial diseases in farm animals may affect productivity and safety. Clostridium species are ubiquitous and populate the enteric flora of animals. They can be the cause of alimentary tract infections or be responsible for infections of tissues other than gastrointestinal [123,124]. Enterotoxemia type C, Enterotoxemia type D, and tetanus are common clostridial diseases affecting farm animals, and, in the Italian region, three plants (Angelica archangelica L. [41], Satureja montana [43], Echinophora spinosa [42] showed an inhibiting capability against C. perfrigens and C. difficile. The most abundant components of the EO extracted from E. spinosa plants growing in Italy are α-pinene (21.3%), δ-3-carene (16.5%), limonene (16.4%), and α-phellandrene (8.7%) [41].
Enterococci are bacteria that naturally colonize animals’ intestines. E. faecalis and E. faecium are part of the ESKAPE pathogens (E. faecium, S. aureus, Klebsiella pneumoniae, A. baumannii, P. aeruginosa, and Enterobacter species) and are relevant worldwide because they are responsible for an increasing number of nosocomial infections such as bacteremia and infectious endocarditis [125]. Pathogenic strains could carry that vanA gene cluster (Tn 1546) that encodes for vancomycin resistance [126] and, more in general, bacteria of the enterococci genus of animal origin are responsible for the flow of genes of antibiotic resistance from animals to humans [127]. As in Table 1, 12 different plants were recorded as being active against E. faecalis and E. faecium.
S. aureus infections in animals are mostly associated with mastitis in dairy-producing animals. Even if phylogenetic studies demonstrated that this pathogen tropism may be specific for animals and humans [128], antimicrobial pressure in livestock might lead to the selection of resistant strains and genes posing a risk for a jump of species [129]. According to our findings reported in Table 1, the Italian territory offers at least 39 plants with demonstrated activity against this pathogen. In addition, four plants (Crinum angustum Steud. [81], Limonium avei (De Not.) Brullo and Erben [31], Cytinus hypocistis [62], Chiliadenus lopadusanus [82]) were documented as active against the most pathogenic methicillin-resistant strain (MRSA).

3.2. Plants Active against Gram−

Another member of the ESKAPE pathogens is Acinetobacter baumannii. It represents a consistent cause of drug-resistant infections, and its resistance traits were found in many companion and food-producing animals such as dogs, cattle, sheep, and goats [130]. Three studies listed Daucus carota subsp. Maximus [95], Lavandula × intermedia [18] and Cytinus [62] as plants effective against the Acinetobacter genus, and another three studies documented Chiliadenus lopadusanus [82], Cistus creticus (CC), and Cistus salviifolius (CS) [93] as effective against A. baumannii. Among these, the Daucus carota plant is effective at a concentration ranging from 1.25 to 2.50 μL/mL, Lavandula × intermedia essential oil (pure) generated an inhibition zone of 47 mm, and Cytinus ethanolic and water extracts (0.5 mg/disc) showed an inhibition zone of around 10 mm.
Bacteria of the Klebsiella (K.) genus can be found in the environment, e.g., in soil and water [131]. K. pneumoniae is considered one of the most dangerous multi-drug resistant microorganisms [132] and, more than in the environment, it can be found in insects and in domestic and wild mammals [133].
Among farm animals, it can be the causative agent of pneumonia, epidemic metritis, cervicitis in mares, and septicemia in foals [134]. It can be the etiological agent of pneumonia and mastitis in bovines [135] and can cause losses in milk production, decreased milk quality, and higher mortality [136]. Its resistance gene products were found in bulk tank milk from a well-managed research facility at the University of Milan [137].
As in Table 2, nine different plants growing in Italian soil are effective against the growth of this dangerous pathogen. Among those, Arbutus unedo [105], Myrtus comunis [107] and Pistacia lentiscus [108] are certainly easy-to-find and recognized plants that could be used to improve animal welfare and help the fight against this pathogen.
Animals can be the reservoir of P. aeruginosa multi-drug resistant strains. Interestingly, the detected strains were found to be resistant to carbapenems even though that class of molecules was not employed for animal use [138]. Being able to control such infections may be useful to avoid the jump of those strains from animals to humans. Our work highlighted 23 different plants growing in Italian soil that could be used to counteract this pathogen. Among those plants, there are Citrus spp., which easily and commonly grow in the south of the Italian peninsula.

3.3. Pharmacodynamics of Plant Extracts

Phytocomplexes, by definition, represent a mixture of bioactive compounds that can act in synergy by targeting multiple receptors, facilitating the molecules towards their target, or slowing active molecule degradation [139,140].
The higher effectiveness of plant phytocomplexes rather than single molecules is demonstrated by the reduced activity after fractionation [139,140]. Moreover, it is now mainly accepted that there is a necessity for compounds that synergize with existing antibiotics to be used against drug-resistant bacteria [141,142,143].
Plant-based compound extracts can be helpful in the fight against antibiotic resistance. However, their eventual application should be carefully regulated and controlled to avoid the development of the growing resistance mechanisms to less specific biocides (antiseptics, disinfectants, and preservatives) [144].

4. Materials and Methods

All the literature entries, including the abstracts, were collected from PubMed, Web of Science, and Scopus. Every different database was queried with the following keywords: (i) “antimicrobial, plants, Italy”; (ii) “antibacterial, plant, Italy”; (iii) “essential oil, antibacterial, Italy”; (iv) “essential oil, antimicrobial, Italy”; (v) “methanol extract, antibacterial, Italy”; (vi) “methanol extract, antimicrobial, Italy”. The search parameters included all the documents published since 1990, and the keywords searches were restricted to the titles and the abstracts.
The results from the “PubMed” database were downloaded in the “PubMed” format. The results obtained using Scopus and Web of Science were downloaded in the RIS format.
All the output files were uploaded in the rayyan Systematics Reviews research tool (https://www.rayyan.ai/, accessed on 13 May 2022). The auto duplicates tool was used to remove duplicate entries, the reviews were excluded from the databases via the exclusion tool of rayyan, and obtained results were uploaded as new files to keep the review entries out. The remaining abstracts were manually evaluated for the inclusion decision. Only scientific products, including experimental work performed with plants or plant extracts documenting the bacterial growth inhibition potential, were included.

5. Conclusions

Plants and natural products have been widely used in the past against bacterial pathogens. Most of this knowledge is part of tradition and has been recently re-evaluated to gather complementary or alternative methods in place of antibiotic treatments. From this perspective, antimicrobial products of plant origin may represent a relevant solution to antibiotic resistance because of the simultaneous presence of diverse, active molecules such as secondary metabolites, terpenoids, alkaloids, and/or tannins. This heterogeneity of chemical compounds exploits its pharmacodynamic action via a multi-targeted approach [139] making the generation of resistance mechanisms more difficult.
This review collects, through a systematic approach, the knowledge about the plants growing in Italian territory active against bacterial pathogens. This tool may be useful to rapidly use the listed plants as possible candidates for further research purposes and for the treatment of bacterial infections of veterinary interest.

Supplementary Materials

The following are available online at https://www.mdpi.com/article/10.3390/antibiotics11070919/s1, File S1: PRISMA 2020 Checklist.

Author Contributions

Conceptualization, C.P. and B.T.; methodology, C.P. and B.T.; software, C.P.; formal analysis, C.P. and B.T.; investigation, C.P.; resources, C.P., D.B. and P.R.; data curation, C.P.; writing—original draft preparation, C.P. and B.T.; writing—review and editing, C.P., B.T., F.C., P.R., D.B. and E.P.; supervision, C.P., P.R., D.B. and E.P.; project administration, C.P., D.B. and E.P.; funding acquisition, C.P., P.R., D.B. and E.P. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by Magna Græcia University and “Brains to South”, Fondazione CON IL SUD, 2018-PDR-00912, “Quality assessment and characterization of Calabrian dairy products through Omics profiling”.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. De Vivo, R.; Zicarelli, L. Influence of carbon fixation on the mitigation of greenhouse gas emissions from livestock activities in Italy and the achievement of carbon neutrality. Transl. Anim. Sci. 2021, 5, txab042. [Google Scholar] [CrossRef] [PubMed]
  2. Castagna, F.; Piras, C.; Palma, E.; Musolino, V.; Lupia, C.; Bosco, A.; Rinaldi, L.; Cringoli, G.; Musella, V.; Britti, D. Green veterinary pharmacology applied to parasite control: Evaluation of punica granatum, artemisia campestris, salix caprea aqueous macerates against gastrointestinal nematodes of sheep. Vet. Sci. 2021, 8, 237. [Google Scholar] [CrossRef] [PubMed]
  3. Ahmed, A.H.; Ejo, M.; Feyera, T.; Regassa, D.; Mummed, B.; Huluka, S.A. In Vitro Anthelmintic Activity of Crude Extracts of Artemisia herba-alba and Punica granatum against Haemonchus contortus. J. Parasitol. Res. 2020, 2020, 4950196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  4. Dkhil, M.A. Anti-coccidial, anthelmintic and antioxidant activities of pomegranate (Punica granatum) peel extract. Parasitol. Res. 2013, 112, 2639–2646. [Google Scholar] [CrossRef]
  5. Conti, B.; Bocchino, R.; Cosci, F.; Ascrizzi, R.; Flamini, G.; Bedini, S. Essential oils against Varroa destructor: A soft way to fight the parasitic mite of Apis mellifera. J. Apic. Res. 2020, 59, 774–782. [Google Scholar] [CrossRef]
  6. Dahlgren, L.; Johnson, R.M.; Siegfried, R.D.; Ellis, M.D. Comparative toxicity of acaricides to honey bee (Hymenoptera: Apidae) workers and queens. J. Econ. Entomol. 2012, 105, 1895–1902. [Google Scholar] [CrossRef]
  7. Bava, R.; Castagna, F.; Piras, C.; Palma, E.; Cringoli, G.; Musolino, V.; Lupia, C.; Perri, M.R.; Statti, G.; Britti, D.; et al. In vitro evaluation of acute toxicity of five citrus spp. Essential oils towards the parasitic mite varroa destructor. Pathogens 2021, 10, 1182. [Google Scholar] [CrossRef]
  8. Rinkevich, F.D. Detection of amitraz resistance and reduced treatment efficacy in the Varroa Mite, Varroa destructor, within commercial beekeeping operations. PLoS ONE 2020, 15, e0227264. [Google Scholar] [CrossRef] [Green Version]
  9. Charlier, J.; Bartley, D.J.; Sotiraki, S.; Martinez-Valladares, M.; Claerebout, E.; von Samson-Himmelstjerna, G.; Thamsborg, S.M.; Hoste, H.; Morgan, E.R.; Rinaldi, L. Anthelmintic resistance in ruminants: Challenges and solutions. Adv. Parasitol. 2022, 115, 171–227. [Google Scholar] [CrossRef]
  10. Bhullar, K.; Waglechner, N.; Pawlowski, A.; Koteva, K.; Banks, E.D.; Johnston, M.D.; Barton, H.A.; Wright, G.D. Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS ONE 2012, 7, e34953. [Google Scholar] [CrossRef]
  11. Kashuba, E.; Dmitriev, A.A.; Kamal, S.M.; Melefors, O.; Griva, G.; Römling, U.; Ernberg, I.; Kashuba, V.; Brouchkov, A. Ancient permafrost staphylococci carry antibiotic resistance genes. Microb. Ecol. Health Dis. 2017, 28, 1345574. [Google Scholar] [CrossRef] [PubMed]
  12. D’Costa, V.M.; King, C.E.; Kalan, L.; Morar, M.; Sung, W.W.L.; Schwarz, C.; Froese, D.; Zazula, G.; Calmels, F.; Debruyne, R. Antibiotic resistance is ancient. Nature 2011, 477, 457–461. [Google Scholar] [CrossRef] [PubMed]
  13. Leporatti, M.L.; Impieri, M. Ethnobotanical notes about some uses of medicinal plants in Alto Tirreno Cosentino area (Calabria, Southern Italy). J. Ethnobiol. Ethnomed. 2007, 3, 34. [Google Scholar] [CrossRef] [Green Version]
  14. Passalacqua, N.G.; Guarrera, P.M.; De Fine, G. Contribution to the knowledge of the folk plant medicine in Calabria region (Southern Italy). Fitoterapia 2007, 78, 52–68. [Google Scholar] [CrossRef]
  15. Chassagne, F.; Samarakoon, T.; Porras, G.; Lyles, J.T.; Dettweiler, M.; Marquez, L.; Salam, A.M.; Shabih, S.; Farrokhi, D.R.; Quave, C.L. A systematic review of plants with antibacterial activities: A taxonomic and phylogenetic perspective. Front. Pharmacol. 2021, 11, 586548. [Google Scholar] [CrossRef] [PubMed]
  16. Badalamenti, N.; Modica, A.; Ilardi, V.; Bruno, M.; Maresca, V.; Zanfardino, A.; Di Napoli, M.; Castagliuolo, G.; Varcamonti, M.; Basile, A. Daucus carota subsp. maximus (Desf.) Ball from Pantelleria, Sicily (Italy): Isolation of essential oils and evaluation of their bioactivity. Nat. Prod. Res. 2021, 1–6. [Google Scholar] [CrossRef] [PubMed]
  17. Argentieri, M.P.; Madeo, M.; Avato, P.; Iriti, M.; Vitalini, S. Polyphenol content and bioactivity of Achillea moschata from the Italian and Swiss Alps. Z. Fur Naturforsch. Sect. C J. Biosci. 2020, 75, 57–64. [Google Scholar] [CrossRef]
  18. Garzoli, S.; Turchetti, G.; Giacomello, P.; Tiezzi, A.; Masci, V.L.; Ovidi, E. Liquid and vapour phase of lavandin (Lavandula × intermedia) Essential Oil: Chemical composition and antimicrobial activity. Molecules 2019, 24, 2701. [Google Scholar] [CrossRef] [Green Version]
  19. Caputo, L.; Nazzaro, F.; Souza, L.F.; Aliberti, L.; De Martino, L.; Fratianni, F.; Coppola, R.; De Feo, V. Laurus nobilis: Composition of essential oil and its biological activities. Molecules 2017, 22, 930. [Google Scholar] [CrossRef]
  20. Casiglia, S.; Bruno, M.; Senatore, F. Volatile constituents of Dianthus rupicola Biv. from Sicily: Activity against microorganisms affecting cellulosic objects. Nat. Prod. Res. 2014, 28, 1739–1746. [Google Scholar] [CrossRef]
  21. Fratianni, F.; Coppola, R.; Nazzaro, F. Phenolic composition and antimicrobial and antiquorum sensing activity of an ethanolic extract of peels from the apple cultivar annurca. J. Med. Food 2011, 14, 957–963. [Google Scholar] [CrossRef]
  22. Sadeghi, Z.; Yang, J.L.; Venditti, A.; Moridi Farimani, M. A review of the phytochemistry, ethnopharmacology and biological activities of Teucrium genus (Germander). Nat. Prod. Res. 2021, 1–18. [Google Scholar] [CrossRef] [PubMed]
  23. Carlo Tenore, G.; Troisi, J.; Di Fiore, R.; Basile, A.; Novellino, E. Chemical composition, antioxidant and antimicrobial properties of Rapa Catozza Napoletana (Brassica rapa L. var. rapa DC.) seed meal, a promising protein source of Campania region (southern Italy) horticultural germplasm. J. Sci. Food Agric. 2012, 92, 1716–1724. [Google Scholar] [CrossRef] [PubMed]
  24. Fratianni, F.; Riccardi, R.; Spigno, P.; Ombra, M.N.; Cozzolino, A.; Tremonte, P.; Coppola, R.; Nazzaro, F. Biochemical Characterization and Antimicrobial and Antifungal Activity of Two Endemic Varieties of Garlic (Allium sativum L.) of the Campania Region, Southern Italy. J. Med. Food 2016, 19, 686–691. [Google Scholar] [CrossRef] [PubMed]
  25. Garzoli, S.; Masci, V.L.; Franceschi, S.; Tiezzi, A.; Giacomello, P.; Ovidi, E. Headspace/gc–ms analysis and investigation of antibacterial, antioxidant and cytotoxic activity of essential oils and hydrolates from rosmarinus officinalis l. And lavandula angustifolia miller. Foods 2021, 10, 1768. [Google Scholar] [CrossRef] [PubMed]
  26. Hemeg, H.A.; Moussa, I.M.; Ibrahim, S.; Dawoud, T.M.; Alhaji, J.H.; Mubarak, A.S.; Kabli, S.A.; Alsubki, R.A.; Tawfik, A.M.; Marouf, S.A. Antimicrobial effect of different herbal plant extracts against different microbial population. Saudi J. Biol. Sci. 2020, 27, 3221–3227. [Google Scholar] [CrossRef]
  27. Covino, S.; D’ellena, E.; Tirillini, B.; Angeles, G.; Arcangeli, A.; Bistocchi, G.; Venanzoni, R.; Angelini, P. Characterization of biological activities of methanol extract of Fuscoporia torulosa (Basidiomycetes) from Italy. Int. J. Med. Mushrooms 2019, 21, 1051–1063. [Google Scholar] [CrossRef]
  28. Mancini, E.; Senatore, F.; Del Monte, D.; De Martino, L.; Grulova, D.; Scognamiglio, M.; Snoussi, M.; De Feo, V. Studies on chemical composition, antimicrobial and antioxidant activities of five Thymus vulgaris L. essential oils. Molecules 2015, 20, 12016–12028. [Google Scholar] [CrossRef] [Green Version]
  29. Cerulli, A.; Lauro, G.; Masullo, M.; Cantone, V.; Olas, B.; Kontek, B.; Nazzaro, F.; Bifulco, G.; Piacente, S. Cyclic Diarylheptanoids from Corylus avellana Green Leafy Covers: Determination of Their Absolute Configurations and Evaluation of Their Antioxidant and Antimicrobial Activities. J. Nat. Prod. 2017, 80, 1703–1713. [Google Scholar] [CrossRef]
  30. Della Pepa, T.; Elshafie, H.S.; Capasso, R.; De Feo, V.; Camele, I.; Nazzaro, F.; Scognamiglio, M.R.; Caputo, L. Antimicrobial and phytotoxic activity of origanum heracleoticum and O. Majorana essential oils growing in cilento (Southern Italy). Molecules 2019, 24, 2576. [Google Scholar] [CrossRef] [Green Version]
  31. Nostro, A.; Filocamo, A.; Giovannini, A.; Catania, S.; Costa, C.; Marino, A.; Bisignano, G. Antimicrobial activity and phenolic content of natural site and micropropagated Limonium avei (De Not.) Brullo & Erben plant extracts. Nat. Prod. Res. 2012, 26, 2132–2136. [Google Scholar] [CrossRef] [PubMed]
  32. Turchetti, G.; Garzoli, S.; Masci, V.L.; Sabia, C.; Iseppi, R.; Giacomello, P.; Tiezzi, A.; Ovidi, E. Antimicrobial testing of schinus molle (l.) leaf extracts and fractions followed by gc-ms investigation of biological active fractions. Molecules 2020, 25, 1977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  33. Mykhailenko, O.; Bezruk, I.; Ivanauskas, L.; Georgiyants, V. Comparative analysis of apocarotenoids and phenolic constituents of Crocus sativus stigmas from 11 countries: Ecological impact. Arch. Pharm. 2022, 355, e2100468. [Google Scholar] [CrossRef] [PubMed]
  34. Astaf’eva, O.V.; Sukhenko, L.T. Comparative analysis of antibacterial properties and chemical composition of Glycyrrhiza glabra L. from Astrakhan region (Russia) and Calabria region (Italy). Bull. Exp. Biol. Med. 2014, 156, 829–832. [Google Scholar] [CrossRef] [PubMed]
  35. Caprari, C.; Fantasma, F.; Divino, F.; Bucci, A.; Iorizzi, M.; Naclerio, G.; Ranalli, G.; Saviano, G. Chemical Profile, In Vitro Biological Activity and Comparison of Essential Oils from Fresh and Dried Flowers of Lavandula angustifolia L. Molecules 2021, 26, 5317. [Google Scholar] [CrossRef] [PubMed]
  36. Maggi, F.; Cecchini, C.; Cresci, A.; Coman, M.M.; Tirillini, B.; Sagratini, G.; Papa, F.; Vittori, S. Chemical composition and antimicrobial activity of the essential oils from several Hypericum taxa (Guttiferae) growing in central Italy (Appennino Umbro-Marchigiano). Chem. Biodivers. 2010, 7, 447–466. [Google Scholar] [CrossRef] [PubMed]
  37. Casiglia, S.; Bruno, M.; Senatore, F.; Senatore, F. Chemical composition of the essential oil of bupleurum fontanesii (Apiaceae) growing wild in sicily and its activity on microorganisms affecting historical art crafts. Nat. Prod. Commun. 2016, 11, 105–108. [Google Scholar] [CrossRef] [Green Version]
  38. Flamini, G.; Mastrorilli, E.; Cioni, P.L.; Morelli, I. Essential oil from crithmum maritimum grown in liguria (Italy): Seasonal variation and antimicrobial activity. J. Essent. Oil Res. 1999, 11, 788–792. [Google Scholar] [CrossRef]
  39. Maggi, F.; Tirillini, B.; Papa, F.; Sagratini, G.; Vittori, S.; Cresci, A.; Coman, M.M.; Cecchini, C. Chemical composition and antimicrobial activity of the essential oil of Ferulago campestris (Besser) Grecescu growing in central Italy. Flavour Fragr. J. 2009, 24, 309–315. [Google Scholar] [CrossRef]
  40. Biondi, D.; Cianci, P.; Geraci, C.; Ruberto, G.; Piattelli, M. Antimicrobial activity and chemical composition of essential oils from sicilian aromatic plants. Flavour Fragr. J. 1993, 8, 331–337. [Google Scholar] [CrossRef]
  41. Fraternale, D.; Flamini, G.; Ricci, D. Essential oil composition and antimicrobial activity of Angelica archangelica L. (Apiaceae) roots. J. Med. Food 2014, 17, 1043–1047. [Google Scholar] [CrossRef] [PubMed]
  42. Fraternale, D.; Genovese, S.; Ricci, D. Essential oil composition and antimicrobial activity of aerial parts and ripe fruits of Echinophora spinosa (Apiaceae) from Italy. Nat. Prod. Commun. 2013, 8, 527–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  43. De Oliveira, T.L.C.; de Araújo Soares, R.; Ramos, E.M.; das Graças Cardoso, M.; Alves, E.; Piccoli, R.H. Antimicrobial activity of Satureja montana L. essential oil against Clostridium perfringens type A inoculated in mortadella-type sausages formulated with different levels of sodium nitrite. Int. J. Food Microbiol. 2011, 144, 546–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  44. Maisetta, G.; Batoni, G.; Caboni, P.; Esin, S.; Rinaldi, A.C.; Zucca, P. Tannin profile, antioxidant properties, and antimicrobial activity of extracts from two Mediterranean species of parasitic plant Cytinus. BMC Complement. Altern. Med. 2019, 19, 82. [Google Scholar] [CrossRef] [Green Version]
  45. Bottoni, M.; Milani, F.; Mozzo, M.; Kolloffel, D.A.R.; Papini, A.; Fratini, F.; Maggi, F.; Santagostini, L. Sub-tissue localization of phytochemicals in Cinnamomum camphora (L.) j. presl. growing in northern Italy. Plants 2021, 10, 1008. [Google Scholar] [CrossRef]
  46. Nabavizadeh, M.; Abbaszadegan, A.; Gholami, A.; Sheikhiani, R.; Shokouhi, M.; Shams, M.S.; Ghasemi, Y. Chemical constituent and antimicrobial effect of essential oil from Myrtus communis leaves on microorganisms involved in persistent endodontic infection compared to two common endodontic irrigants: An in vitro study. J. Conserv. Dent. JCD 2014, 17, 449. [Google Scholar]
  47. Kivçak, B.; Mert, T.; Denizci, A.A. Antimicrobial activity of Arbutus unedo L. Fabad J. Pharm. Sci. 2001, 26, 125–128. [Google Scholar]
  48. Najar, B.; Pistelli, L.; Mancini, S.; Fratini, F. Chemical composition and in vitro antibacterial activity of essential oils from different species of Juniperus (section Juniperus). Flavour Fragr. J. 2020, 35, 623–638. [Google Scholar] [CrossRef]
  49. Aissani, N.; Coroneo, V.; Fattouch, S.; Caboni, P. Inhibitory effect of carob (Ceratonia siliqua) leaves methanolic extract on Listeria monocytogenes. J. Agric. Food Chem. 2012, 60, 9954–9958. [Google Scholar] [CrossRef]
  50. El Menyiy, N.; Guaouguaou, F.E.; El Baaboua, A.; El Omari, N.; Taha, D.; Salhi, N.; Shariati, M.A.; Aanniz, T.; Benali, T.; Zengin, G.; et al. Phytochemical properties, biological activities and medicinal use of Centaurium erythraea Rafn. J. Ethnopharmacol. 2021, 276, 114171. [Google Scholar] [CrossRef]
  51. Tardugno, R.; Serio, A.; Purgatorio, C.; Savini, V.; Paparella, A.; Benvenuti, S. Thymus vulgarisL. essential oils from Emilia Romagna Apennines (Italy): Phytochemical composition and antimicrobial activity on food-borne pathogens. Nat. Prod. Res. 2022, 36, 837–842. [Google Scholar] [CrossRef] [PubMed]
  52. Marini, E.; Magi, G.; Ferretti, G.; Bacchetti, T.; Giuliani, A.; Pugnaloni, A.; Rippo, M.R.; Facinelli, B. Attenuation of Listeria monocytogenes virulence by Cannabis sativa L. Essential oil. Front. Cell. Infect. Microbiol. 2018, 8, 293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  53. Tardugno, R.; Serio, A.; Pellati, F.; D’Amato, S.; Chaves López, C.; Bellardi, M.G.; Di Vito, M.; Savini, V.; Paparella, A.; Benvenuti, S. Lavandula x intermedia and Lavandula angustifolia essential oils: Phytochemical composition and antimicrobial activity against foodborne pathogens. Nat. Prod. Res. 2019, 33, 3330–3335. [Google Scholar] [CrossRef] [PubMed]
  54. Caputo, L.; Amato, G.; Fratianni, F.; Coppola, R.; Candido, V.; De Feo, V.; Nazzaro, F. Chemical characterization and antibiofilm activities of bulbs and leaves of two aglione (Allium ampeloprasum var. holmense asch. et Graebn.) landraces grown in southern italy. Molecules 2020, 25, 5486. [Google Scholar] [CrossRef]
  55. Fratianni, F.; Cozzolino, A.; de Feo, V.; Coppola, R.; Ombra, M.N.; Nazzaro, F. Polyphenols, Antioxidant, Antibacterial, and Biofilm Inhibitory Activities of Peel and Pulp of Citrus medica L., Citrus bergamia, and Citrus medica cv. Salò cultivated in southern Italy. Molecules 2019, 24, 4577. [Google Scholar] [CrossRef] [Green Version]
  56. Di Napoli, M.; Varcamonti, M.; Basile, A.; Bruno, M.; Maggi, F.; Zanfardino, A. Anti-Pseudomonas aeruginosa activity of hemlock (Conium maculatum, Apiaceae) essential oil. Nat. Prod. Res. 2019, 33, 3436–3440. [Google Scholar] [CrossRef]
  57. Aliberti, L.; Caputo, L.; De Feo, V.; De Martino, L.; Nazzaro, F.; Souza, L.F. Chemical composition and in vitro antimicrobial, cytotoxic, and central nervous system activities of the essential oils of Citrus medica L. cv. ‘Liscia’ and C. medica cv. ‘Rugosa’ cultivated in Southern Italy. Molecules 2016, 21, 1244. [Google Scholar] [CrossRef] [Green Version]
  58. Said, M.E.-A.E.; Militello, M.; Saia, S.; Settanni, L.; Aleo, A.; Mammina, C.; Bombarda, I.; Vanloot, P.; Roussel, C.; Dupuy, N.; et al. Artemisia arborescens Essential Oil Composition, Enantiomeric Distribution, and Antimicrobial Activity from Different Wild Populations from the Mediterranean Area. Chem. Biodivers. 2016, 13, 1095–1102. [Google Scholar] [CrossRef]
  59. Ferrazzano, G.F.; Scioscia, E.; Sateriale, D.; Pastore, G.; Colicchio, R.; Pagliuca, C.; Cantile, T.; Alcidi, B.; Coda, M.; Ingenito, A.; et al. In vitro antibacterial activity of pomegranate juice and peel extracts on cariogenic bacteria. Biomed Res. Int. 2017, 2017, 2152749. [Google Scholar] [CrossRef] [Green Version]
  60. Sharifi-Rad, J.; Dey, A.; Koirala, N.; Shaheen, S.; El Omari, N.; Salehi, B.; Goloshvili, T.; Cirone Silva, N.C.; Bouyahya, A.; Vitalini, S.; et al. Cinnamomum Species: Bridging Phytochemistry Knowledge, Pharmacological Properties and Toxicological Safety for Health Benefits. Front. Pharmacol. 2021, 12, 600139. [Google Scholar] [CrossRef]
  61. Mastino, P.M.; Marchetti, M.; Costa, J.; Juliano, C.; Usai, M. Analytical Profiling of Phenolic Compounds in Extracts of Three Cistus Species from Sardinia and Their Potential Antimicrobial and Antioxidant Activity. Chem. Biodivers. 2021, 18, e2100053. [Google Scholar] [CrossRef]
  62. Zucca, P.; Pintus, M.; Manzo, G.; Nieddu, M.; Steri, D.; Rinaldi, A.C. Antimicrobial, antioxidant and anti-tyrosinase properties of extracts of the Mediterranean parasitic plant Cytinus hypocistis. BMC Res. Notes 2015, 8, 562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  63. Sanna, C.; Maxia, A.; Fenu, G.; Loi, M.C. So uncommon and so singular, but underexplored: An updated overview on ethnobotanical uses, biological properties and phytoconstituents of sardinian endemic plants. Plants 2020, 9, 958. [Google Scholar] [CrossRef] [PubMed]
  64. Mir, M.A.; Bashir, N.; Alfaify, A.; Oteef, M.D.Y. Gc-ms analysis of myrtus communis extract and its antibacterial activity against gram-positive bacteria. BMC Complement. Med. Ther. 2020, 20, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  65. de Souza, E.L.; de Barros, J.C.; de Oliveira, C.E.V.; da Conceição, M.L. Influence of Origanum vulgare L. essential oil on enterotoxin production, membrane permeability and surface characteristics of Staphylococcus aureus. Int. J. Food Microbiol. 2010, 137, 308–311. [Google Scholar] [CrossRef] [PubMed]
  66. Mezni, F.; Aouadhi, C.; Khouja, M.L.; Khaldi, A.; Maaroufi, A. In vitro antimicrobial activity of Pistacia lentiscus L. edible oil and phenolic extract. Nat. Prod. Res. 2015, 29, 565–570. [Google Scholar] [CrossRef]
  67. Pulaj, B.; Mustafa, B.; Nelson, K.; Quave, C.L.; Hajdari, A. Chemical composition and in vitro antibacterial activity of Pistacia terebinthus essential oils derived from wild populations in Kosovo. BMC Complement. Altern. Med. 2016, 16, 147. [Google Scholar] [CrossRef] [Green Version]
  68. Nakagawa, S.; Hillebrand, G.G.; Nunez, G. Rosmarinus officinalis l. (rosemary) extracts containing carnosic acid and carnosol are potent quorum sensing inhibitors of staphylococcus aureus virulence. Antibiotics 2020, 9, 149. [Google Scholar] [CrossRef] [Green Version]
  69. Farahpour, M.R.; Pirkhezr, E.; Ashrafian, A.; Sonboli, A. Accelerated healing by topical administration of Salvia officinalis essential oil on Pseudomonas aeruginosa and Staphylococcus aureus infected wound model. Biomed. Pharmacother. 2020, 128, 110120. [Google Scholar] [CrossRef]
  70. Juliano, C.; Mattana, A.; Usai, M. Composition and in vitro antimicrobial activity of the essential oil of thymus herba-barona loisel growing wild in sardinia. J. Essent. Oil Res. 2000, 12, 516–522. [Google Scholar] [CrossRef]
  71. de Carvalho, R.J.; de Souza, G.T.; Honório, V.G.; de Sousa, J.P.; da Conceição, M.L.; Maganani, M.; de Souza, E.L. Comparative inhibitory effects of Thymus vulgaris L. essential oil against Staphylococcus aureus, Listeria monocytogenes and mesophilic starter co-culture in cheese-mimicking models. Food Microbiol. 2015, 52, 59–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  72. D’Agostino, G.; Badalamenti, N.; Franco, P.; Bruno, M.; Gallo, G. The chemical composition of the flowers essential oil of Inula crithmoides (Asteraceae) growing in aeolian islands, Sicily (Italy) and its biocide properties on microorganisms affecting historical art crafts. Nat. Prod. Res. 2022, 36, 2993–3001. [Google Scholar] [CrossRef] [PubMed]
  73. Ouassou, H.; Bouhrim, M.; Kharchoufa, L.; Imtara, H.; Daoudi, N.E.; Benoutman, A.; Bencheikh, N.; Ouahhoud, S.; Elbouzidi, A.; Bnouham, M. Caralluma europaea (Guss) N.E.Br.: A review on ethnomedicinal uses, phytochemistry, pharmacological activities, and toxicology. J. Ethnopharmacol. 2021, 273, 113769. [Google Scholar] [CrossRef] [PubMed]
  74. Najar, B.; Nardi, V.; Cervelli, C.; Mancianti, F.; Nardoni, S.; Ebani, V.V.; Pistelli, L. Helichrysum araxinum Takht. ex Kirp. grown in Italy: Volatiloma composition and in vitro antimicrobial activity. Z. Fur Naturforsch. Sect. C J. Biosci. 2020, 75, 265–270. [Google Scholar] [CrossRef]
  75. Zengin, G.; Menghini, L.; Di Sotto, A.; Mancinelli, R.; Sisto, F.; Carradori, S.; Cesa, S.; Fraschetti, C.; Filippi, A.; Angiolella, L.; et al. Chromatographic analyses, in vitro biological activities, and cytotoxicity of Cannabis sativa L. Essential oil: A multidisciplinary study. Molecules 2018, 23, 3266. [Google Scholar] [CrossRef] [Green Version]
  76. Quave, C.L.; Estévez-Carmona, M.; Compadre, C.M.; Hobby, G.; Hendrickson, H.; Beenken, K.E.; Smeltzer, M.S. Ellagic acid derivatives from Rubus ulmifolius inhibit Staphylococcus aureus biofilm formation and improve response to antibiotics. PLoS ONE 2012, 7, e28737. [Google Scholar] [CrossRef] [Green Version]
  77. Pellegrini, M.; Ricci, A.; Serio, A.; Chaves-López, C.; Mazzarrino, G.; D’Amato, S.; Lo Sterzo, C.; Paparella, A. Characterization of essential oils obtained from Abruzzo autochthonous plants: Antioxidant and antimicrobial activities assessment for food application. Foods 2018, 7, 19. [Google Scholar] [CrossRef] [Green Version]
  78. Loy, G.; Cottiglia, F.; Garau, D.; Deidda, D.; Pompei, R.; Bonsignore, L. Chemical composition and cytotoxic and antimicrobial activity of Calycotome villosa (Poiret) Link leaves. FARMACO 2001, 56, 433–436. [Google Scholar] [CrossRef]
  79. Angioni, A.; Barra, A.; Russo, M.T.; Coroneo, V.; Dessí, S.; Cabras, P. Chemical composition of the essential oils of Juniperus from ripe and unripe berries and leaves and their antimicrobial activity. J. Agric. Food Chem. 2003, 51, 3073–3078. [Google Scholar] [CrossRef]
  80. Mazzanti, G.; Battinelli, L.; Salvatore, G. Antimicrobial properties of the linalol-rich essential oil of Hyssopos officinalis L. var decumbens (Lamiaceae). Flavour Fragr. J. 1998, 13, 289–294. [Google Scholar] [CrossRef]
  81. Coqueiro, A.; Regasini, L.O.; Stapleton, P.; Da Silva Bolzani, V.; Gibbons, S. In vitro antibacterial activity of prenylated guanidine alkaloids from Pterogyne nitens and synthetic analogues. J. Nat. Prod. 2014, 77, 1972–1975. [Google Scholar] [CrossRef] [PubMed]
  82. Masi, M.; Roscetto, E.; Cimmino, A.; Catania, M.R.; Surico, G.; Evidente, A. Farnesane-type sesquiterpenoids with antibiotic activity from chiliadenus lopadusanus. Antibiotics 2021, 10, 148. [Google Scholar] [CrossRef] [PubMed]
  83. Ferreira, S.; Santos, J.; Duarte, A.; Duarte, A.P.; Queiroz, J.A.; Domingues, F.C. Screening of antimicrobial activity of Cistus ladanifer and Arbutus unedo extracts. Nat. Prod. Res. 2012, 26, 1558–1560. [Google Scholar] [CrossRef] [PubMed]
  84. Bouamama, H.; Noël, T.; Villard, J.; Benharref, A.; Jana, M. Antimicrobial activities of the leaf extracts of two Moroccan Cistus L. species. J. Ethnopharmacol. 2006, 104, 104–107. [Google Scholar] [CrossRef] [PubMed]
  85. Zalegh, I.; Akssira, M.; Bourhia, M.; Mellouki, F.; Rhallabi, N.; Salamatullah, A.M.; Alkaltham, M.S.; Khalil Alyahya, H.; Mhand, R.A. A review on cistus sp.: Phytochemical and antimicrobial activities. Plants 2021, 10, 1214. [Google Scholar] [CrossRef]
  86. Bisio, A.; Schito, A.M.; Ebrahimi, S.N.; Hamburger, M.; Mele, G.; Piatti, G.; Romussi, G.; Dal Piaz, F.; De Tommasi, N. Antibacterial compounds from Salvia adenophora Fernald (Lamiaceae). Phytochemistry 2015, 110, 120–132. [Google Scholar] [CrossRef]
  87. Khaoukha, G.; Ben Jemia, M.; Amira, S.; Laouer, H.; Bruno, M.; Scandolera, E.; Senatore, F. Characterisation and antimicrobial activity of the volatile components of the flowers of Magydaris tomentosa (Desf.) DC. collected in Sicily and Algeria. Nat. Prod. Res. 2014, 28, 1152–1158. [Google Scholar] [CrossRef]
  88. Magi, G.; Marini, E.; Facinelli, B. Antimicrobial activity of essential oils and carvacrol, and synergy of carvacrol and erythromycin, against clinical, erythromycin-resistant Group A Streptococci. Front. Microbiol. 2015, 6, 165. [Google Scholar] [CrossRef] [Green Version]
  89. Vasconcelos, L.C.D.S.; Sampaio, F.C.; Sampaio, M.C.C.; Pereira, M.D.S.V.; Higino, J.S.; Peixoto, M.H.P. Minimum inhibitory concentration of adherence of Punica granatum Linn (pomegranate) gel against S. mutans, S. mitis and C. albicans. Braz. Dent. J. 2006, 17, 223–227. [Google Scholar] [CrossRef] [Green Version]
  90. Gulube, Z.; Patel, M. Effect of Punica granatum on the virulence factors of cariogenic bacteria Streptococcus mutans. Microb. Pathog. 2016, 98, 45–49. [Google Scholar] [CrossRef]
  91. Vahid-Dastjerdi, E.; Monadi, E.; Khalighi, H.R.; Torshabi, M. Down-regulation of glycosyl transferase genes in Streptococcus mutans by Punica granatum L. Flower and Rhus coriaria L. Fruit water extracts. Iran. J. Pharm. Res. 2016, 15, 513–519. [Google Scholar] [PubMed]
  92. Maggi, F.; Bramucci, M.; Cecchini, C.; MM, C.; Cresci, A.; Cristalli, G.; Lupidi, G.; Papa, F.; Quassinti, L.; Sagratini, G.; et al. Composition and biological activity of essential oil of Achillea ligustica All. (Asteraceae) naturalized in central Italy: Ideal candidate for anti-cariogenic formulations. Fitoterapia 2009, 80, 313–319. [Google Scholar] [CrossRef] [PubMed]
  93. Carev, I.; Maravić, A.; Ilić, N.; Čulić, V.Č.; Politeo, O.; Zorić, Z.; Radan, M. UPLC-MS/MS phytochemical analysis of two Croatian cistus species and their biological activity. Life 2020, 10, 112. [Google Scholar] [CrossRef]
  94. Aleksic Sabo, V.; Svircev, E.; Mimica-Dukic, N.; Orcic, D.; Narancic, J.; Knezevic, P. Anti-Acinetobacter baumannii activity of Rumex crispus L. And Rumex sanguineus L. extracts. Asian Pac. J. Trop. Biomed. 2020, 10, 172–182. [Google Scholar]
  95. Gaglio, R.; Barbera, M.; Aleo, A.; Lommatzsch, I.; La Mantia, T.; Settanni, L. Inhibitory Activity and Chemical Characterization of Daucus carota subsp. maximus Essential Oils. Chem. Biodivers. 2017, 14, e1600477. [Google Scholar] [CrossRef] [Green Version]
  96. Pľuchtová, M.; Gervasi, T.; Benameur, Q.; Pellizzeri, V.; Gruľová, D.; Campone, L.; Sedlák, V.; Cicero, N.; Pl’uchtova, M.; Gervasi, T.; et al. Antimicrobial activity of two mentha species essential oil and its dependence on different origin and chemical diversity. Nat. Prod. Commun. 2018, 13, 1051–1054. [Google Scholar]
  97. Miceli, N.; Cavò, E.; Ragusa, S.; Cacciola, F.; Dugo, P.; Mondello, L.; Marino, A.; Cincotta, F.; Condurso, C.; Taviano, M.F. Phytochemical Characterization and Biological Activities of a Hydroalcoholic Extract Obtained from the Aerial Parts of Matthiola incana (L.) R.Br. subsp. incana (Brassicaceae) Growing Wild in Sicily (Italy). Chem. Biodivers. 2019, 16, e1800677. [Google Scholar] [CrossRef] [PubMed]
  98. Miceli, N.; Filocamo, A.; Ragusa, S.; Cacciola, F.; Dugo, P.; Mondello, L.; Celano, M.; Maggisano, V.; Taviano, M.F. Chemical Characterization and Biological Activities of Phenolic-Rich Fraction from Cauline Leaves of Isatis tinctoria L. (Brassicaceae) Growing in Sicily, Italy. Chem. Biodivers. 2017, 14, e1700073. [Google Scholar] [CrossRef] [PubMed]
  99. Gelmini, F.; Squillace, P.; Testa, C.; Sparacino, A.C.; Angioletti, S.; Beretta, G. GC-MS characterisation and biological activity of essential oils from different vegetative organs of Plectranthus barbatus and Plectranthus caninus cultivated in north Italy. Nat. Prod. Res. 2015, 29, 993–998. [Google Scholar] [CrossRef]
  100. Cottiglia, F.; Loy, G.; Garau, D.; Floris, C.; Casu, M.; Pompei, R.; Bonsignore, L. Antimicrobial evaluation of coumarins and flavonoids from the stems of Daphne gnidium L. Phytomedicine 2001, 8, 302–305. [Google Scholar] [CrossRef]
  101. Tuberoso, C.I.; Kowalczyk, A.; Coroneo, V.; Russo, M.T.; Dessì, S.; Cabras, P. Chemical composition and antioxidant, antimicrobial, and antifungal activities of the essential oil of Achillea ligustica all. J. Agric. Food Chem. 2005, 53, 10148–10153. [Google Scholar]
  102. Romeo, F.V.; Fabroni, S.; Ballistreri, G.; Muccilli, S.; Spina, A.; Rapisarda, P. Characterization and antimicrobial activity of alkaloid extracts from seeds of different genotypes of Lupinus spp. Sustainability 2018, 10, 788. [Google Scholar] [CrossRef] [Green Version]
  103. Mandalari, G.; Bisignano, C.; Cirmi, S.; Navarra, M. Effectiveness of Citrus Fruits on Helicobacter pylori. Evid.-Based Complement. Altern. Med. 2017, 2017, 8379262. [Google Scholar] [CrossRef] [Green Version]
  104. Menghini, L.; Leporini, L.; Tirillini, B.; Epifano, F.; Genovese, S. Chemical composition and inhibitory activity against helicobacter pylori of the essential oil of Apium nodiflorum (Apiaceae). J. Med. Food 2010, 13, 228–230. [Google Scholar] [CrossRef] [PubMed]
  105. Miguel, M.G.; Faleiro, M.L.; Guerreiro, A.C.; Antunes, M.D. Arbutus unedo L.: Chemical and biological properties. Molecules 2014, 19, 15799–15823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  106. Sanjust, E.; Rinaldi, A.C. Cytinus under the microscope: Disclosing the secrets of a parasitic plant. Plants 2021, 10, 146. [Google Scholar] [CrossRef]
  107. Man, A.; Santacroce, L.; Iacob, R.; Mare, A.; Man, L. Antimicrobial activity of six essential oils against a group of human pathogens: A comparative study. Pathogens 2019, 8, 108, Pathogens Erratum in Pathogens 2019, 8, 15. [Google Scholar] [CrossRef] [Green Version]
  108. Milia, E.; Bullitta, S.M.; Mastandrea, G.; Szotáková, B.; Schoubben, A.; Langhansová, L.; Quartu, M.; Bortone, A.; Eick, S. Leaves and fruits preparations of pistacia lentiscus l.: A review on the ethnopharmacological uses and implications in inflammation and infection. Antibiotics 2021, 10, 425. [Google Scholar] [CrossRef]
  109. Çoban, E.P.; Biyik, H.H.; Törün, B.; Yaman, F. Evaluation the antimicrobial effects of Pistacia terebinthus L. and Papaver rhoeas L. extracts against some pathogen microorganisms. Indian J. Pharm. Educ. Res. 2017, 51, S377–S380. [Google Scholar] [CrossRef] [Green Version]
  110. Iannello, C.; Bastida, J.; Bonvicini, F.; Antognoni, F.; Gentilomi, G.A.; Poli, F. Chemical composition, and in vitro antibacterial and antifungal activity of an alkaloid extract from Crinum angustum Steud. Nat. Prod. Res. 2014, 28, 704–710. [Google Scholar]
  111. Bonvicini, F.; Mandrone, M.; Antognoni, F.; Poli, F.; Gentilomi, G.A. Ethanolic extracts of Tinospora cordifolia and Alstonia scholaris show antimicrobial activity towards clinical isolates of methicillin-resistant and carbapenemase-producing bacteria. Nat. Prod. Res. 2014, 28, 1438–1445. [Google Scholar] [CrossRef] [PubMed]
  112. Vecchio, G.L.; Cicero, N.; Nava, V.; Macrì, A.; Gervasi, C.; Capparucci, F.; Sciortino, M.; Avellone, G.; Benameur, Q.; Santini, A.; et al. Chemical Characterization, Antibacterial Activity, and Embryo Acute Toxicity of Rhus coriaria L. Genotype from Sicily (Italy). Foods 2022, 11, 538. [Google Scholar] [CrossRef] [PubMed]
  113. Iseppi, R.; Di Cerbo, A.; Aloisi, P.; Manelli, M.; Pellesi, V.; Provenzano, C.; Camellini, S.; Messi, P.; Sabia, C. In vitro activity of essential oils against planktonic and biofilm cells of extended-spectrum β-lactamase (ESBL)/carbapenamase-producing gram-negative bacteria involved in human nosocomial infections. Antibiotics 2020, 9, 272. [Google Scholar] [CrossRef] [PubMed]
  114. Di Vito, M.; Cacaci, M.; Barbanti, L.; Martini, C.; Sanguinetti, M.; Benvenuti, S.; Tosi, G.; Fiorentini, L.; Scozzoli, M.; Bugli, F.; et al. Origanum vulgare essential oil vs. A commercial mixture of essential oils: In vitro effectiveness on salmonella spp. from poultry and swine intensive livestock. Antibiotics 2020, 9, 763. [Google Scholar] [CrossRef] [PubMed]
  115. Militaru, D.; Popa, V.; Botus, D.; Stirbu, B.; Caplan, E.M. In vitro evaluation of the potential antibacterial effect of artemisinin on Campylobacter jejuni. Rom. Biotechnol. Lett. 2015, 20, 10221–10227. [Google Scholar]
  116. Milia, E.; Usai, M.; Szotáková, B.; Elstnerová, M.; Králová, V.; D’hallewin, G.; Spissu, Y.; Barberis, A.; Marchetti, M.; Bortone, A.; et al. The pharmaceutical ability of Pistacia lentiscus L. Leaves essential oil against periodontal bacteria and Candida sp. and its anti-inflammatory potential. Antibiotics 2020, 9, 281. [Google Scholar] [CrossRef]
  117. Palmieri, S.; Maggio, F.; Pellegrini, M.; Ricci, A.; Serio, A.; Paparella, A.; Lo Sterzo, C. Effect of the Distillation Time on the Chemical Composition, Antioxidant Potential and Antimicrobial Activity of Essential Oils from Different Cannabis sativa L. Cultivars. Molecules 2021, 26, 4770. [Google Scholar] [CrossRef]
  118. Price, R. O’Neill report on antimicrobial resistance: Funding for antimicrobial specialists should be improved. Eur. J. Hosp. Pharm. 2016, 23, 245–247. [Google Scholar] [CrossRef]
  119. Magallón, S.; Hilu, K.W. Land plants (embryophyta). In The Timetree of Life; Hedges, S.B., Kumar, S., Eds.; Oxford University Press: New York, NY, USA, 2009; pp. 133–137. [Google Scholar]
  120. Clarke, J.T.; Warnock, R.C.M.; Donoghue, P.C.J. Establishing a time-scale for plant evolution. New Phytol. 2011, 192, 266–301. [Google Scholar] [CrossRef]
  121. Owusu-Kwarteng, J.; Wuni, A.; Akabanda, F.; Tano-Debrah, K.; Jespersen, L. Prevalence, virulence factor genes and antibiotic resistance of Bacillus cereus sensu lato isolated from dairy farms and traditional dairy products. BMC Microbiol. 2017, 17, 65. [Google Scholar] [CrossRef] [Green Version]
  122. Magnusson, M.; Christiansson, A.; Svensson, B. Bacillus cereus spores during housing of dairy cows: Factors affecting contamination of raw milk. J. Dairy Sci. 2007, 90, 2745–2754. [Google Scholar] [CrossRef]
  123. Otter, A.; Uzal, F.A. Clostridial diseases in farm animals: 2. Histotoxic and neurotoxic diseases. Practice 2020, 42, 279–288. [Google Scholar] [CrossRef]
  124. Otter, A.; Uzal, F.A. Clostridial diseases in farm animals: 1. Enterotoxaemias and other alimentary tract infections. Practice 2020, 42, 219–232. [Google Scholar] [CrossRef]
  125. Arias, C.A.; Murray, B.E. Emergence and management of drug-resistant enterococcal infections. Expert Rev. Anti. Infect. Ther. 2008, 6, 637–655. [Google Scholar] [CrossRef]
  126. Hammerum, A.M. Enterococci of animal origin and their significance for public health. Clin. Microbiol. Infect. 2012, 18, 619–625. [Google Scholar] [CrossRef]
  127. Torres, C.; Alonso, C.A.; Ruiz-Ripa, L.; León-Sampedro, R.; Del Campo, R.; Coque, T.M. Antimicrobial resistance in Enterococcus spp. of animal origin. Microbiol. Spectr. 2018, 6, 4–6. [Google Scholar] [CrossRef]
  128. Shepheard, M.A.; Fleming, V.M.; Connor, T.R.; Corander, J.; Feil, E.J.; Fraser, C.; Hanage, W.P. Historical zoonoses and other changes in host tropism of Staphylococcus aureus, identified by phylogenetic analysis of a population dataset. PLoS ONE 2013, 8, e62369. [Google Scholar] [CrossRef] [Green Version]
  129. Smith, T.C. Livestock-associated Staphylococcus aureus: The United States experience. PLoS Pathog. 2015, 11, e1004564. [Google Scholar] [CrossRef] [PubMed]
  130. Nocera, F.P.; Attili, A.-R.; De Martino, L. Acinetobacter baumannii: Its clinical significance in human and veterinary medicine. Pathogens 2021, 10, 127. [Google Scholar] [CrossRef]
  131. Melo-Nascimento, A.O.D.S.; Treumann, C.; Neves, C.; Andrade, E.; Andrade, A.C.; Edwards, R.; Dinsdale, E.; Bruce, T. Functional characterization of ligninolytic Klebsiella spp. strains associated with soil and freshwater. Arch. Microbiol. 2018, 200, 1267–1278. [Google Scholar] [CrossRef]
  132. Santajit, S.; Indrawattana, N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed. Res. Int. 2016, 2016, 2475067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  133. Guo, Y.; Zhou, H.; Qin, L.; Pang, Z.; Qin, T.; Ren, H.; Pan, Z.; Zhou, J. Frequency, antimicrobial resistance and genetic diversity of Klebsiella pneumoniae in food samples. PLoS ONE 2016, 11, e0153561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  134. Kikuchi, N.; Blakeslee, J.R.; Hiramune, T. Plasmid profiles of Klebsiella pneumoniae isolated from horses. J. Vet. Med. Sci. 1995, 57, 113–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  135. Saishu, N.; Ozaki, H.; Murase, T. CTX-M-type extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolated from cases of bovine mastitis in Japan. J. Vet. Med. Sci. 2014, 76, 1153–1156. [Google Scholar] [CrossRef] [Green Version]
  136. Hertl, J.A.; Schukken, Y.H.; Welcome, F.L.; Tauer, L.W.; Gröhn, Y.T. Pathogen-specific effects on milk yield in repeated clinical mastitis episodes in Holstein dairy cows. J. Dairy Sci. 2014, 97, 1465–1480. [Google Scholar] [CrossRef] [Green Version]
  137. Piras, C.; Greco, V.; Gugliandolo, E.; Soggiu, A.; Tilocca, B.; Bonizzi, L.; Zecconi, A.; Cramer, R.; Britti, D.; Urbani, A.; et al. Raw cow milk bacterial consortium as bioindicator of circulating anti-microbial resistance (Amr). Animals 2020, 10, 2378. [Google Scholar] [CrossRef]
  138. Haenni, M.; Bour, M.; Châtre, P.; Madec, J.-Y.; Plésiat, P.; Jeannot, K. Resistance of animal strains of Pseudomonas aeruginosa to carbapenems. Front. Microbiol. 2017, 8, 1847. [Google Scholar] [CrossRef]
  139. Buriani, A.; Fortinguerra, S.; Sorrenti, V.; Caudullo, G.; Carrara, M. Essential oil phytocomplex activity, a review with a focus on multivariate analysis for a network pharmacology-informed phytogenomic approach. Molecules 2020, 25, 1833. [Google Scholar] [CrossRef] [Green Version]
  140. Gilbert, B.; Alves, L. Synergy in plant medicines. Curr. Med. Chem. 2003, 10, 13–20. [Google Scholar] [CrossRef]
  141. Abreu, A.C.; McBain, A.J.; Simoes, M. Plants as sources of new antimicrobials and resistance-modifying agents. Nat. Prod. Rep. 2012, 29, 1007–1021. [Google Scholar] [CrossRef]
  142. Abreu, A.C.; Coqueiro, A.; Sultan, A.R.; Lemmens, N.; Kim, H.K.; Verpoorte, R.; Van Wamel, W.J.B.; Simões, M.; Choi, Y.H. Looking to nature for a new concept in antimicrobial treatments: Isoflavonoids from Cytisus striatus as antibiotic adjuvants against MRSA. Sci. Rep. 2017, 7, 3777. [Google Scholar] [CrossRef] [PubMed]
  143. Dettweiler, M.; Melander, R.J.; Porras, G.; Risener, C.; Marquez, L.; Samarakoon, T.; Melander, C.; Quave, C.L. A clerodane diterpene from Callicarpa americana resensitizes methicillin-resistant Staphylococcus aureus to β-lactam antibiotics. ACS Infect. Dis. 2020, 6, 1667–1673. [Google Scholar] [CrossRef] [PubMed]
  144. Russell, A.D. Bacterial resistance to disinfectants: Present knowledge and future problems. J. Hosp. Infect. 1999, 43, S57–S68. [Google Scholar] [CrossRef]
Figure 1. Pie chart showing the percentage of plants active against Gram+ (a) and Gram− (b).
Figure 1. Pie chart showing the percentage of plants active against Gram+ (a) and Gram− (b).
Antibiotics 11 00919 g001
Table 1. Plants active against Gram+ bacteria.
Table 1. Plants active against Gram+ bacteria.
Bacterium (Gram+)Number of Plant SpeciesPlant Name
Bacillus cereus17Daucus carota subsp. maximus (Desf.)Ball [16]; Achillea moschata [17]; Lavandula × intermedia [18]; Laurus nobilis [19]; Dianthus rupicola [20]; Malus domestica var. Annurca [21]; Teucrium genus (Germander) [22]; Rapa Catozza Napoletana (Brassica rapa L. var. rapa DC.) [23]; Allium sativum L. [24]; Rosmarinus officinalis L. and Lavandula angustifolia Miller [25]; Guava (Psidium guajava), Sage (Salvia officinalis), Rhamnus (Ziziphusspina Christi), Mulberry (Morusalba L.), and Olive (Oleaeuropaea L.) [26]; Fuscoporia torulosa [27]; Thymus vulgaris [28]; Corylus avellana [29]
Bacillus megaterium2Origanum heracleoticum and O. majorana [30]
Bacillus subtilis16Limonium avei (De Not.) Brullo and Erben [31]; Schinus molle (L.) [32]; Thymus vulgaris [28]; Crocus sativus L. [33]; Glycyrrhiza glabra [34]; Dianthus rupicola [20]; Lavandula angustifolia L. [35]; Hypericum taxa (Guttiferae) [36]; Fuscoporia torulosa (Basidiomycetes) [27]; Fuscoporia torulosa [27]; Thymus vulgaris [28]; Bupleurum fontanesii [37]; Crithmum maritimum [38]; Ferulago campestris [39]; Origanum onites and Thymus capitatus [40]
Clostridium difficile2Angelica archangelica L. [41]; Echinophora spinosa (Apiaceae) [42]
Clostridium perfringens3Angelica archangelica L. (Apiaceae) [41]; Satureja montana L. [43]; Echinophora spinosa (Apiaceae) [42]
Enterococcus faecium2Cytinus hypocistis, Cytinus ruber [44]
Enterococcus faecalis10Schinus molle (L.) [32]; Achillea moschata [17]; Angelica archangelica L. (Apiaceae) [41]; Rapa Catozza Napoletana (Brassica rapa L. var. rapa DC.) [23]; Cinnamomum camphora (L.) [45]; Myrtus communis [46]; Arbutus unedo L. [47]; Echinophora spinosa (Apiaceae) [42]; Ferulago campestris [39]; Juniperus spp. [48]
Listeria monocytogenes21Ceratonia siliqua L. [49]; Daucus carota subsp. maximus (Desf.) Ball [16]; Limonium avei (De Not.) Brullo and Erben [31]; Centaurium erythraea [50]; Thymus vulgaris L. [51]; Cannabis sativa [52]; Lavandula × intermedia and Lavandula angustifolia [53]; Rapa Catozza Napoletana (Brassica rapa L. var. rapa DC.) [23]; Cinnamomum camphora (L.) [45]; Allium ampeloprasum [54]; Citrus taxa-Citrus medica, Citrus bergamia [55]; Conium maculatum, Apiaceae [56]; Allium sativum L. [24]; Schinus molle (L.) [32]; Cytinus [44]; Citrus medica L. [57]; Achillea moschata [17]; Crithmum maritimum [38]; Artemisia arborescens [58]
Rothia dentocariosa1Punica granatum L. [59]
Staphylococcus aureus39Cinnamomum [60]; Cinnamomum camphora (L.) [45]; Cistus monspeliensis L. [61]; Cistus salviifolius L. [61]; Cytinus hypocistis (L.) L. [62]; Limonium morisianum Arrigoni [63]; Myrtus communis L. [64]; Origanum vulgare L. [65]; Pistacia lentiscus L. [66]; Pistacia terebinthus L. [67]; Rosmarinus officinalis L. [68]; Salvia officinalis L. [69]; Thymus herba-barona Loise L. [70]; Thymus vulgaris L. [71]; Inula crithmoides [72]; Caralluma europaea [73]; Crocus sativus [33]; Helichrysum araxinum [74]; Schinus molle (L.) [32]; Cannabis sativa [75]; Centaurium erythraea [50]; Citrus medica L., Citrus bergamia, and Citrus medica [55]; Laurus nobilis [19]; Rubus ulmifolius [76]; Malus domestica var. Annurca [21]; Teucrium genus (Germander) [22]; Daucus carota subsp. maximus (Desf.) [16]; Cytinus [44]; T. vulgaris, S. montana and C. sativum [77]; Garlic (Allium sativum L.) [24]; Thymus vulgaris L. [28]; Rapa Catozza Napoletana (Brassica rapa L. var. rapa DC.) [23]; Calycotome villosa (Poiret) [78]; Juniperus spp. [79]; Hyssopus officinalis [80]
Staphylococcus aureus (MRSA)4Crinum angustum Steud. [81]; Limonium avei (De Not.) Brullo and Erben [31]; Cytinus hypocistis [62]; Chiliadenus lopadusanus [82]
Staphylococcus epidermidis12Arbutus unedo L. [83]; Cistus monspeliensis L. [84]; Cistus salviifolius L. [85]; Cytinus hypocistis (L.) L. [62]; Limonium avei (De Not.) Brullo and Erben [31]; Limonium morisianum Arrigoni [63]; Myrtus communis L. [46]; Pistacia lentiscus L. [66]; Cytinus. [44]; Thymus vulgaris L. [28]; Salvia adenophora [86]; Magydaris tomentosa [87];
Staphylococcus warneri1Daucus carota subsp. maximus (Desf.) Ball [16]
Group A Streptococci2Origanum and Thymus [88]
Streptococcus pyogens1Teucrium genus [22]
Streptococcus faecalis1Thymus vulgaris L. [28]
Streptococcus mutans1Punica granatum L. [89,90,91]; Achillea ligustica [92]
Table 2. Plants active against Gram− bacteria.
Table 2. Plants active against Gram− bacteria.
Bacterium (Gram−)Number of Plant SpeciesPlant Name
Acinetobacter baumannii5Chiliadenus lopadusanus [82]; Cistus creticus (CC) and Cistus salviifolius (CS) [93]; Rumex crispus L. and Rumex sanguineus [94]
Acinetobacter spp.3Daucus carota subsp. maximus [95]; Lavandula × intermedia [18]; Cytinus hypocistis [62]
Enterobacter cloacae1Mentha spp. [96]
Escherichia coli20Daucus carota subsp. Maximus [16]; Cytinus hypocistis [62]; Matthiola incana (L.) R.Br. subsp. incana (Brassicaceae) [97]; Lavandula × intermedia [18]; Laurus nobilis [19]; Glycyrrhiza glabra L. [34]; Malus domestica var. Annurca [21]; Teucrium genus (Germander) [22]; Daucus carota subsp. maximus (Desf.) [16]; Isatis tinctoria L. (Brassicaceae) [98]; Garlic (Allium sativum L.) [24]; Thymus vulgaris L. [28]; Plectranthus barbatus and Plectranthus caninus [99]; Rapa Catozza Napoletana (Brassica rapa L. var. rapa DC.) [23]; Daphne gnidium L. [100]; Calycotome villosa [78]; Hyssopos officinalis L. [80]; Achillea ligustica [101]; Lupinus spp. [102];
Helicobacter pylori3Citrus spp. [103]; Cannabis sativa L. [75]; Apium nodiflorum (Apiaceae). [104]
Klebsiella pneumoniae16Arbutus unedo [105]; Cistus spp. [93]; Cytinus hypocistis [62,106]; Myrtus comunis [107]; Pistacia lentiscus [108]; Teucrium genus (Germander) [22]; Cytinus. [44]; Thymus vulgaris L. [28]; Pistacia terebinthus [109]; Rapa Catozza Napoletana (Brassica rapa L. var. rapa DC.) [23]; Crinum angustum [110]; Tinospora cordifolia and Alstonia scholaris [111]; Rhus coriaria L. [112]; Calycotome villosa [78]; Melaleuca alternifolia [113]; Mentha spp. [96]
Salmonella spp.6Origanum vulgare [114]; Lavandula × intermedia and Lavandula angustifolia [53]; Thymus vulgaris L. [28]; Rapa Catozza Napoletana (Brassica rapa L. var. rapa DC.) [23]; Mentha spp. [96]
Campylobacter jejuni1Artemisia annua [115]
Porphyromonas gingivalis1Pistacia lentiscus L. [116]
Pseudomonas aeruginosa23Cinnamomum camphora [45]; Allium ampeloprasum var. holmense Asch. et Graebn. [54]; Schinus molle (L.) [32]; Achillea moschata [17]; Citrus medica L., Citrus bergamia, and Citrus medica [55]; Centaurium erythraea [50]; Laurus nobilis [19]; Teucrium genus (Germander) [22]; Cytinus. [44]; Conium maculatum, Apiaceae [56]; Garlic (Allium sativum L.) [24]; Five Thymus vulgaris L. [28]; Rapa Catozza Napoletana (Brassica rapa L. var. rapa DC.) [23]; Lupinus spp. [102]; Calycotome villosa [78]; Juniperus spp. [79]; Allium ampeloprasum [54]; Allium sativum [24]; Melaleuca alternifolia [113]; Conium maculatum [56]; Achillea ligustica [101]
Proteus mirabilis2Rapa Catozza Napoletana (Brassica rapa L. var. rapa DC.) [23]; Hyssopos officinalis L. [80]
Proteus vulgaris2Thymus vulgaris L. [28]
Rapa Catozza Napoletana (Brassica rapa L. var. rapa DC.) [23]
Pseudomonas fluorescens4Lavandula × intermedia [18]; Origanum heracleoticum and O. majorana [30]; Cannabis sativa [117]
Pasteurella multocida1Morus alba [26]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Piras, C.; Tilocca, B.; Castagna, F.; Roncada, P.; Britti, D.; Palma, E. Plants with Antimicrobial Activity Growing in Italy: A Pathogen-Driven Systematic Review for Green Veterinary Pharmacology Applications. Antibiotics 2022, 11, 919. https://doi.org/10.3390/antibiotics11070919

AMA Style

Piras C, Tilocca B, Castagna F, Roncada P, Britti D, Palma E. Plants with Antimicrobial Activity Growing in Italy: A Pathogen-Driven Systematic Review for Green Veterinary Pharmacology Applications. Antibiotics. 2022; 11(7):919. https://doi.org/10.3390/antibiotics11070919

Chicago/Turabian Style

Piras, Cristian, Bruno Tilocca, Fabio Castagna, Paola Roncada, Domenico Britti, and Ernesto Palma. 2022. "Plants with Antimicrobial Activity Growing in Italy: A Pathogen-Driven Systematic Review for Green Veterinary Pharmacology Applications" Antibiotics 11, no. 7: 919. https://doi.org/10.3390/antibiotics11070919

APA Style

Piras, C., Tilocca, B., Castagna, F., Roncada, P., Britti, D., & Palma, E. (2022). Plants with Antimicrobial Activity Growing in Italy: A Pathogen-Driven Systematic Review for Green Veterinary Pharmacology Applications. Antibiotics, 11(7), 919. https://doi.org/10.3390/antibiotics11070919

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop