Impact of COVID-19 on Antimicrobial Consumption and Spread of Multidrug-Resistance in Bacterial Infections
Abstract
:1. Introduction
2. Results
2.1. Comparison of Consumption of Antibiotic Agents
2.2. Prevalence of Infection Caused by MDR Bacteria
2.2.1. Methicillin-Resistant Staphylococcus Aureus
2.2.2. Vancomycin-Resistant Enterococcus
2.2.3. Carbapenem-Resistant Enterobacteriaceae
2.2.4. Carbapenem-Resistant Acinetobacter Baumannii
2.2.5. Carbapenem-Resistant Pseudomonas Aeruginosa
3. Discussion
3.1. Consumption of Antibiotic Agents in Pandemic
3.2. Prevalence of Infection Caused by MRSA
3.3. Prevalence of Infection Caused by VRE
3.4. Prevalence of Infection Caused by CRE
3.5. Prevalence of Infection Caused by CRAB
3.6. Prevalence of Infection Caused by CRPA
4. Materials and Methods
4.1. Study Design
4.2. Antibiotic Consumption
4.3. Identification of MDR Bacteria and Antimicrobial Susceptibility Testing
4.4. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 11 April 2022).
- KCDC Coronavirus (COVID-19) Dashboard. Available online: http://ncov.mohw.go.kr (accessed on 11 April 2021).
- Rawson, T.M.; Ming, D.; Ahmad, R.; Moore, L.S.P.; Holmes, A.H. Antimicrobial use, drug-resistant infections and COVID-19. Nat. Rev. Microbiol. 2020, 18, 409–410. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.C.; Yu, W.L. The COVID-19 pandemic and tuberculosis in Taiwan. J. Infect. 2020, 81, 159–161. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, H.; Ishikane, M.; Ueda, P. Seasonal Influenza Activity during the SARS-CoV-2 Outbreak in Japan. JAMA 2020, 323, 1969–1971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juan, H.C.; Chao, C.M.; Lai, C.C.; Tang, H.J. Decline in invasive pneumococcal disease during COVID-19 pandemic in Taiwan. J. Infect. 2021, 82, 282–327. [Google Scholar] [CrossRef]
- Ansari, S.; Hays, J.P.; Kemp, A.; Okechukwu, R.; Murugaiyan, J.; Ekwanzala, M.D.; Ruiz, A.; Paul-Satyaseela, M.; Iwu, C.D.; Balleste-Delpierre, C.; et al. The potential impact of the COVID-19 pandemic on global antimicrobial and biocide resistance: An AMR Insights global perspective. JAC-Antimicrob. Resist. 2021, 3, dlab038. [Google Scholar] [CrossRef]
- Lee, K.; Chang, C.L.; Lee, N.Y.; Kim, H.S.; Hong, K.S.; Cho, H.C. Korean nationwide surveillance of antimicrobial resistance of bacteria in 1998. Yonsei Med. J. 2000, 41, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.K. The nationwide surveillance system of nosocomial infection in Intensive care units. Korean J. Nosocom. Infect. Control 2011, 16, 7–13. [Google Scholar]
- Chong, Y.; Lee, K.; Park, Y.J.; Jeon, D.S.; Lee, M.H.; Kim, M.Y.; Chang, C.H.; Kim, E.C.; Lee, N.Y.; Kim, H.S.; et al. Korean nationwide surveillance of antimicrobial resistance of bacteria in 1997. Yonsei Med. J. 1998, 39, 569–577. [Google Scholar] [CrossRef]
- Lee, K.; Kim, Y.A.; Park, Y.J.; Lee, H.S.; Kim, M.Y.; Kim, E.C.; Yong, D.; Chong, Y. Increasing prevalence of vancomycin-resistant enterococci, and cefoxitin-, imipenem- and fluoroquinolone-resistant gram-negative bacilli: A KONSAR study in 2002. Yonsei Med. J. 2004, 45, 598–608. [Google Scholar] [CrossRef] [Green Version]
- Song, J.Y.; Cheong, H.J.; Jo, Y.M.; Choi, W.S.; Noh, J.Y.; Heo, J.Y.; Kim, W.J. Vancomycin-resistant Enterococcus colonization before admission to the intensive care unit: A clinicoepidemiologic analysis. Am. J. Infect. Control 2009, 37, 734–740. [Google Scholar] [CrossRef]
- Lee, K.; Lee, M.A.; Lee, C.H.; Lee, J.; Roh, K.H.; Kim, S.; Kim, J.J.; Koh, E.; Yong, D.; Chong, Y.; et al. Increase of ceftazidime- and fluoroquinolone-resistant Klebsiella pneumoniae and imipenem-resistant Acinetobacter spp. in Korea: Analysis of KONSAR study data from 2005 and 2007. Yonsei Med. J. 2010, 51, 901–911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neill, J. Review on Antimicrobial Resistance: Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. Available online: https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf (accessed on 25 January 2022).
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Wernli, D.; Jørgensen, P.S.; Harbarth, S.; Carroll, S.P.; Laxminarayan, R.; Levrat, N.; Røttingen, J.A.; Pittet, D. Antimicrobial resistance: The complex challenge of measurement to inform policy and the public. PLoS Med 2017, 14, e1002378. [Google Scholar] [CrossRef] [PubMed]
- de Kraker, M.E.A.; Stewardson, A.J.; Harbarth, S. Will 10 million People Die a Year due to Antimicrobial Resistance by 2050? PLoS Med. 2016, 13, e1002184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ventola, C.L. The Antibiotic Resistance Crisis. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- Mahendradhata, Y.; Andayani, N.L.P.E.; Hasri, E.T.; Arifi, M.D.; Siahaan, R.G.M.; Solikha, D.A.; Ali, P.B. The Capacity of the Indonesian Healthcare System to Respond to COVID-19. Front. Public Health 2021, 7, e649819. [Google Scholar] [CrossRef]
- Begun, J.W.; Jiang, H.J. Health Care Management during Covid-19: Insights from Complexity Science. NEJM Catalyst. Available online: https://catalyst.nejm.org/doi/full/10.1056/CAT.20.0541 (accessed on 19 January 2022).
- Clancy, C.J.; Buehrle, D.J.; Nguyen, M.H. PRO: The COVID-19 pandemic will result in increased antimicrobial resistance rates. JAC Antimicrob. Resist. 2020, 2, dlaa049. [Google Scholar] [CrossRef]
- Lucien, M.A.B.; Canarie, M.F.; Kilgore, P.E.; Jean-Denis, G.; Fenelon, N.; Pierre, M.; Cerpa, M.; Joseph, G.A.; Maki, G.; Zervos, M.J.; et al. Antibiotics and antimicrobial resistance in the COVID-19 era: Perspective from resource-limited settings. Int. J. Infect. Dis. 2021, 104, 250–254. [Google Scholar] [CrossRef]
- Rhouma, M.; Tessier, M.; Aenishaenslin, C.; Sanders, P.; Carabin, H. Should the Increased Awareness of the One Health Approach Brought by the COVID-19 Pandemic Be Used to Further Tackle the Challenge of Antimicrobial Resistance? Antibiotics 2021, 10, 464. [Google Scholar] [CrossRef]
- Lai, C.C.; Chen, S.Y.; Ko, W.C.; Hsueh, P.R. Increased antimicrobial resistance during the COVID-19 pandemic. Int. J. Antimicrob. Agents 2021, 57, 106324. [Google Scholar] [CrossRef]
- Ryu, S.; Hwang, Y.; Ali, S.T.; Kim, D.S.; Klein, E.Y.; Lau, E.H.Y.; Cowling, B.J. Decreased Use of Broad-Spectrum Antibiotics During the Coronavirus Disease 2019 Epidemic in South Korea. J. Infect. Dis. 2021, 224, 949–955. [Google Scholar] [CrossRef] [PubMed]
- Guisado-Gil, A.B.; Infante-Domínguez, C.; Peñalva, G.; Praena, J.; Roca, C.; Navarro-Amuedo, M.D.; Aguilar-Guisado, M.; Espinosa-Aguilera, N.; Poyato-Borrego, M.; Romero-Rodríguez, N.; et al. Impact of the COVID-19 Pandemic on Antimicrobial Consumption and Hospital-Acquired Candidemia and Multidrug-Resistant Bloodstream Infections. Antibiotics 2020, 9, 816. [Google Scholar] [CrossRef] [PubMed]
- Polemis, M.; Mandilara, G.; Pappa, O.; Argyropoulou, A.; Perivolioti, E.; Koudoumnakis, N.; Pournaras, S.; Vasilakopoulou, A.; Vourli, S.; Katsifa, H.; et al. COVID-19 and Antimicrobial Resistance: Data from the Greek Electronic System for the Surveillance of Antimicrobial Resistance-WHONET-Greece (January 2018–March 2021). Life 2021, 11, 996. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, H. Bacterial co-infections and antibiotic resistance in patients with COVID-19. GMS Hyg. Infect. Control 2020, 17, 35. [Google Scholar]
- De Pascale, G.; De Maio, F.; Carelli, S.; De Angelis, G.; Cacaci, M.; Montini, L.; Bello, G.; Cutuli, S.L.; Pintaudi, G.; Tanzarella, E.S.; et al. Staphylococcus aureus ventilator-associated pneumonia in patients with COVID-19: Clinical features and potential inference with lung dysbiosis. Crit. Care 2021, 25, 197. [Google Scholar] [CrossRef] [PubMed]
- Tiri, B.; Sensi, E.; Marsiliani, V.; Cantarini, M.; Priante, G.; Vernelli, C.; Martella, L.A.; Costantini, M.; Mariottini, A.; Andreani, P.; et al. Antimicrobial Stewardship Program, COVID-19, and Infection Control: Spread of Carbapenem-Resistant Klebsiella Pneumoniae Colonization in ICU COVID-19 Patients. What Did Not Work? J. Clin. Med. 2020, 9, 2744. [Google Scholar] [CrossRef]
- Canton, R.; Gijon, D.; Ruiz-Garbajosa, P. Antimicrobial resistance in ICUs: An update in the light of the COVID-19 pandemic. Curr. Opin. Crit. Care 2020, 26, 433–441. [Google Scholar] [CrossRef]
- Ruiz-Garbajosa, P.; Cantón, R. COVID-19: Impact on prescribing and antimicrobial resistance. Rev. Esp. Quimioter. 2021, 34 (Suppl. S1), 63–68. [Google Scholar] [CrossRef]
- O’Toole, R.F. The interface between COVID-19 and bacterial healthcare-associated infections. Clin. Microbiol. Infect. 2021, 27, 1772–1776. [Google Scholar] [CrossRef]
- Despotovic, A.; Milosevic, B.; Cirkovic, A.; Vujovic, A.; Cucanic, K.; Cucanic, T.; Stevanovic, G. The Impact of COVID-19 on the Profile of Hospital-Acquired Infections in Adult Intensive Care Units. Antibiotics 2021, 10, 1146. [Google Scholar] [CrossRef]
- Buehler, P.K.; Zinkernagel, A.S.; Hofmaenner, D.A.; Wendel Garcia, P.D.; Acevedo, C.T.; Gomez-Mejia, A.; Shambat, S.M.; Andreoni, F.; Maibach, M.A.; Bartussek, J.; et al. Bacterial pulmonary superinfections are associated with longer duration of ventilation in critically ill COVID-19 patients. Cell Rep. Med. 2021, 2, 100229. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Cai, Z.; Liu, Y.; Duan, X.; Han, S.; Liu, J.; Zhu, Y.; Jiang, Z.; Zhang, Y.; Zhuo, C.; et al. Persistent Bacterial Coinfection of a COVID-19 Patient Caused by a Genetically Adapted Pseudomonas aeruginosa Chronic Colonizer. Front. Cell. Infect. Microbiol. 2021, 11, 641920. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, J.M.; Patrick, D.M.; Marra, F.; Ng, H.; Bowie, W.R.; Heule, L.; Muscat, M.; Monnet, D.L. Measurement of antibiotic consumption: A practical guide to the use of the Anatomical Thgerapeutic Chemical classification and Definied Daily Dose system methodology in Canada. Can. J. Infect. Dis. 2004, 15, 29–35. [Google Scholar] [CrossRef]
- WHO Collaborating Centre for Drug Statistics Methodology: ATC/DDD Index. Available online: https://www.whocc.no (accessed on 9 October 2021).
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 27th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2016. [Google Scholar]
Ward | ICU | ||||||||
---|---|---|---|---|---|---|---|---|---|
Antibiotics | Hospital | March 2018 –September 2019 | March 2020 –September 2021 | % Change | p | March 2018 –September 2019 | March 2020 –September 2021 | % Change | p |
Penicillin with β-lactamase inhibitors | Total | 72.48 | 74.97 | +3.4 | <0.001 | 115.78 | 122.53 | +5.8 | <0.001 |
A | 69.60 | 106.17 | +52.5 | <0.001 | 195.13 | 258.44 | +32.4 | <0.001 | |
B | 32.07 | 28.65 | −10.7 | <0.001 | 23.44 | 22.79 | −2.8 | <0.001 | |
C | 75.37 | 72.71 | −3.5 | 0.385 | 124.60 | 125.42 | +0.7 | 0.847 | |
D | 95.91 | 100.43 | +4.7 | <0.001 | 170.19 | 185.46 | +9.0 | <0.001 | |
Vancomycin | Total | 11.58 | 13.52 | +16.7 | <0.001 | 49.35 | 47.37 | −4.0 | <0.001 |
A | 6.01 | 9.48 | +57.8 | <0.001 | 86.82 | 86.80 | −0.0 | 0.024 | |
B | 9.62 | 8.67 | −9.9 | <0.001 | 33.16 | 33.56 | +1.2 | 0.016 | |
C | 14.25 | 14.50 | +1.8 | <0.001 | 71.99 | 63.51 | −11.8 | 0.982 | |
D | 12.52 | 16.75 | +33.7 | <0.001 | 32.41 | 37.38 | +15.3 | <0.001 | |
Carbapenems | Total | 30.15 | 37.96 | +25.9 | <0.001 | 123.99 | 139.00 | +12.1 | <0.001 |
A | 14.72 | 6.39 | −56.6 | <0.001 | 163.53 | 120.45 | −26.3 | <0.001 | |
B | 19.68 | 26.77 | +36.0 | <0.001 | 95.24 | 127.94 | +34.3 | <0.001 | |
C | 42.16 | 58.30 | +38.3 | <0.001 | 195.83 | 182.31 | −6.9 | <0.001 | |
D | 32.42 | 36.39 | +12.2 | <0.001 | 77.99 | 111.57 | +43.1 | <0.001 |
Ward | ICU | ||||||||
---|---|---|---|---|---|---|---|---|---|
Organism | Hospital | March 2018 –September 2019 | March 2020 –September 2021 | % Change | p | March 2018 –September 2019 | March 2020 –September 2021 | % Change | p |
MRSA | Total | 0.86 | 0.90 | +4.7 | <0.001 | 6.27 | 4.30 | −31.4 | <0.001 |
A | 1.22 | 1.70 | +39.4 | <0.001 | 10.43 | 11.79 | +13.1 | 0.002 | |
B | 0.84 | 0.86 | +2.0 | 0.013 | 4.71 | 3.41 | −27.6 | 0.077 | |
C | 0.81 | 0.74 | −8.3 | 0.396 | 6.54 | 3.76 | −42.6 | <0.001 | |
D | 0.79 | 0.87 | +11.1 | 0.002 | 6.01 | 4.25 | −29.4 | 0.015 | |
VRE | Total | 0.46 | 0.69 | +49.0 | <0.001 | 1.51 | 1.91 | +26.7 | <0.001 |
A | 0.26 | 0.04 | −85.2 | 0.009 | 2.14 | 2.55 | +19.0 | 0.139 | |
B | 0.27 | 0.37 | +37.0 | 0.001 | 0.73 | 1.41 | +92.5 | <0.001 | |
C | 0.50 | 0.59 | +18.0 | 0.002 | 1.81 | 1.54 | −14.8 | 0.625 | |
D | 0.62 | 1.11 | +80.0 | <0.001 | 1.78 | 2.58 | +45.5 | 0.001 | |
CRE | Total | 0.23 | 0.28 | +22.4 | <0.001 | 1.03 | 1.40 | +36.4 | <0.001 |
A | 0.12 | 0.13 | +10.7 | 0.135 | 1.01 | 3.65 | +259.9 | <0.001 | |
B | 0.19 | 0.23 | +21.0 | 0.035 | 0.73 | 1.11 | +52.0 | 0.015 | |
C | 0.11 | 0.15 | +39.2 | 0.026 | 0.30 | 0.50 | +65.1 | 0.115 | |
D | 0.39 | 0.45 | +13.5 | 0.007 | 1.98 | 2.09 | +5.5 | 0.154 | |
CRAB | Total | 0.79 | 0.74 | −6.2 | 0.132 | 8.94 | 7.28 | −18.6 | 0.003 |
A | 0.78 | 0.97 | +24.6 | <0.001 | 16.03 | 18.10 | +13.0 | <0.001 | |
B | 0.45 | 0.62 | +38.5 | <0.001 | 6.33 | 7.70 | +21.7 | <0.001 | |
C | 0.58 | 0.73 | +25.8 | <0.001 | 7.15 | 5.25 | −26.5 | 0.008 | |
D | 1.15 | 0.78 | −32.7 | <0.001 | 10.32 | 6.81 | −34.0 | <0.001 | |
CRPA | Total | 0.41 | 0.49 | +20.1 | <0.001 | 2.95 | 2.20 | −25.7 | 0.005 |
A | 0.66 | 0.36 | −46.1 | 0.536 | 8.58 | 9.23 | +7.6 | 0.022 | |
B | 0.52 | 0.57 | +10.2 | 0.008 | 2.49 | 2.94 | +18.0 | 0.020 | |
C | 0.41 | 0.49 | +18.8 | 0.004 | 2.58 | 1.19 | −54.0 | <0.001 | |
D | 0.26 | 0.47 | +79.9 | <0.001 | 1.57 | 1.17 | −25.6 | 0.342 |
Ward | ICU | ||||||||
---|---|---|---|---|---|---|---|---|---|
Organism | Hospital | March 2018 –September 2019 | March 2020 –September 2021 | % Change | p | March 2018 –September 2019 | March 2020 –September 2021 | % Change | p |
MRSA | Total | 0.04 | 0.04 | −14.7 | 0.921 | 6.34 | 3.87 | −38.9 | <0.001 |
A | 0.01 | 0.03 | +77.1 | 0.274 | 2.68 | 1.46 | −45.6 | 0.218 | |
B | 0.02 | 0.01 | −33.9 | 1.000 | 9.85 | 7.80 | −20.8 | 0.157 | |
C | 0.08 | 0.06 | −29.9 | 0.546 | 2.34 | 0.57 | −75.6 | <0.001 | |
D | 0.04 | 0.04 | +2.9 | 0.662 | 7.56 | 3.87 | −48.9 | <0.001 | |
VRE | Total | 0.46 | 0.42 | −8.7 | 0.475 | 3.76 | 1.31 | −65.2 | <0.001 |
A | 0.25 | 0.17 | −34.2 | 0.829 | 1.97 | 1.94 | −1.1 | 0.482 | |
B | 0.92 | 0.47 | −48.9 | <0.001 | 9.14 | 1.60 | −82.4 | <0.001 | |
C | 0.64 | 0.88 | +37.7 | <0.001 | 1.98 | 2.07 | +4.5 | 0.445 | |
D | 0.10 | 0.08 | −21.6 | 0.634 | 0.55 | 0.20 | −63.0 | 0.021 | |
CRE | Total | 0.52 | 0.73 | +38.7 | <0.001 | 2.20 | 1.97 | −10.6 | 0.083 |
A | 0.19 | 0.44 | +131.6 | <0.001 | 3.28 | 5.47 | +66.9 | <0.001 | |
B | 0.37 | 0.55 | +49.2 | <0.001 | 3.84 | 5.21 | +35.7 | <0.001 | |
C | 0.23 | 0.31 | +38.2 | 0.002 | 1.54 | 1.78 | +15.8 | 0.201 | |
D | 0.51 | 0.70 | +36.1 | <0.001 | 4.99 | 3.55 | −28.8 | 0.033 | |
CRAB | Total | 0.01 | 0.01 | −40.5 | 0.319 | 3.13 | 2.36 | −24.6 | 0.012 |
A | 0.00 | 0.01 | +43.0 | 0.055 | 0.59 | 0.09 | −85.3 | 0.001 | |
B | 0 | 0.01 | 0.075 | 4.68 | 6.27 | +33.9 | <0.001 | ||
C | 0.02 | 0.00 | −77.6 | 0.248 | 6.76 | 5.73 | −15.3 | 0.304 | |
D | 0.04 | 0.01 | −70.6 | 0.040 | 5.76 | 2.11 | −63.3 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, K.; Jeong, S.; Lee, N.; Park, M.-J.; Song, W.; Kim, H.-S.; Kim, H.S.; Kim, J.-S. Impact of COVID-19 on Antimicrobial Consumption and Spread of Multidrug-Resistance in Bacterial Infections. Antibiotics 2022, 11, 535. https://doi.org/10.3390/antibiotics11040535
Jeon K, Jeong S, Lee N, Park M-J, Song W, Kim H-S, Kim HS, Kim J-S. Impact of COVID-19 on Antimicrobial Consumption and Spread of Multidrug-Resistance in Bacterial Infections. Antibiotics. 2022; 11(4):535. https://doi.org/10.3390/antibiotics11040535
Chicago/Turabian StyleJeon, Kibum, Seri Jeong, Nuri Lee, Min-Jeong Park, Wonkeun Song, Han-Sung Kim, Hyun Soo Kim, and Jae-Seok Kim. 2022. "Impact of COVID-19 on Antimicrobial Consumption and Spread of Multidrug-Resistance in Bacterial Infections" Antibiotics 11, no. 4: 535. https://doi.org/10.3390/antibiotics11040535
APA StyleJeon, K., Jeong, S., Lee, N., Park, M.-J., Song, W., Kim, H.-S., Kim, H. S., & Kim, J.-S. (2022). Impact of COVID-19 on Antimicrobial Consumption and Spread of Multidrug-Resistance in Bacterial Infections. Antibiotics, 11(4), 535. https://doi.org/10.3390/antibiotics11040535