Low Level of Colistin Resistance and mcr Genes Presence in Salmonella spp.: Evaluation of Isolates Collected between 2000 and 2020 from Animals and Environment
Abstract
:1. Introduction
2. Results
2.1. Evaluation of Minimum Inhibitory Concentration (MIC) for Colistin
2.2. Molecular Detection of mcr Genes
3. Discussion
4. Materials and Methods
4.1. Salmonella Strains Included in the Study
4.2. Evaluation of Minimum Inhibitory Concentration for Colistin
4.3. Molecular Detection of mcr Genes
4.4. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Poirel, L.; Jayol, A.; Nordmanna, P. Polymyxins: Antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin. Microbiol. Rev. 2017, 30, 557–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Sayed Ahmed, M.A.E.G.; Zhong, L.L.; Shen, C.; Yang, Y.; Doi, Y.; Tian, G.B. Colistin and its role in the Era of antibiotic resistance: An extended review (2000–2019). Emerg. Microbes Infect. 2020, 9, 868–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kempf, I.; Jouy, E.; Chauvin, C. Colistin use and colistin resistance in bacteria from animals. Int. J. Antimicrob. Agents 2016, 48, 598–606. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Kasiakou, S.K. Colistin: The Revival of Polymyxins for the Management of Multidrug-Resistant Gram-Negative Bacterial Infections. Clin. Infect. Dis. 2005, 40, 1333–1341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venter, H.; Henningsen, M.L.; Begg, S.L. Antimicrobial resistance in healthcare, agriculture and the environment: The biochemistry behind the headlines. Essays Biochem. 2017, 61, 1–10. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Partridge, S.R.; Di Pilato, V.; Doi, Y.; Feldgarden, M.; Haft, D.H.; Klimke, W.; Kumar-Singh, S.; Liu, J.H.; Malhotra-Kumar, S.; Prasad, A.; et al. Proposal for assignment of allele numbers for mobile colistin resistance (mcr) genes. J. Antimicrob. Chemother. 2018, 73, 2625–2630. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Zhang, R.; Schwarz, S.; Wu, C.; Shen, J.; Walsh, T.R.; Wang, Y. Farm animals and aquaculture: Significant reservoirs of mobile colistin resistance genes. Environ. Microbiol. 2020, 22, 2469–2484. [Google Scholar] [CrossRef] [Green Version]
- Nang, S.C.; Li, J.; Velkov, T. The rise and spread of mcr plasmid-mediated polymyxin resistance. Crit. Rev. Microbiol. 2019, 45, 131–161. [Google Scholar] [CrossRef]
- Macori, G.; Nguyen, S.V.; Naithani, A.; Hurley, D.; Bai, L.; Garch, F.E.; Woehrlé, F.; Miossec, C.; Roques, B.; O’gaora, P.; et al. Characterisation of early positive mcr-1 resistance gene and plasmidome in escherichia coli pathogenic strains associated with variable phylogroups under colistin selection. Antibiotics 2021, 10, 1041. [Google Scholar] [CrossRef]
- Fan, R.; Li, C.; Duan, R.; Qin, S.; Liang, J.; Xiao, M.; Lv, D.; Jing, H.; Wang, X. Retrospective Screening and Analysis of mcr-1 and blaNDM in Gram-Negative Bacteria in China, 2010–2019. Front. Microbiol. 2020, 11, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gharaibeh, M.H.; Shatnawi, S.Q. An overview of colistin resistance, mobilized colistin resistance genes dissemination, global responses, and the alternatives to colistin: A review. Vet. World 2019, 12, 1735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamel, M.; Rolain, J.M.; Baron, S.A. The History of Colistin Resistance Mechanisms in Bacteria: Progress and Challenges. Microorganisms 2021, 9, 442. [Google Scholar] [CrossRef] [PubMed]
- Lima, T.; Domingues, S.; DaSilva, G. Plasmid-mediated colistin resistance in salmonella enterica: A review. Microorganism 2019, 7, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pungpian, C.; Lee, S.; Trongjit, S.; Sinwat, N.; Angkititrakul, S.; Prathan, R.; Srisanga, S.; Chuanchuen, R. Colistin resistance and plasmid-mediated mcr genes in Escherichia coli and Salmonella isolated from pigs, pig carcass and pork in Thailand, Lao PDR and Cambodia border provinces. J. Vet. Sci. 2021, 22, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Sevilla, E.; Vico, J.P.; Delgado-Blas, J.F.; González-Zorn, B.; Marín, C.M.; Uruén, C.; Martín-Burriel, I.; Bolea, R.; Mainar-Jaime, R.C. Resistance to colistin and production of extended-spectrum β-lactamases and/or AmpC enzymes in Salmonella isolates collected from healthy pigs in Northwest Spain in two periods: 2008–2009 and 2018. Int. J. Food Microbiol. 2021, 338, 108967. [Google Scholar] [CrossRef] [PubMed]
- Carnevali, C.; Morganti, M.; Scaltriti, E.; Bolzoni, L.; Pongolini, S.; Casadei, G. Occurrence of mcr-1 in Colistin-Resistant Salmonella enterica Isolates Recovered from Humans and Animals in Italy, 2012 to 2015. Antimicrob. Agents Chemother. 2016, 60, 7532. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Graells, C.; De Keersmaecker, S.C.J.; Vanneste, K.; Pochet, B.; Vermeersch, K.; Roosens, N.; Dierick, K.; Botteldoorn, N. Detection of Plasmid-Mediated Colistin Resistance, mcr-1 and mcr-2 Genes, in Salmonella spp. Isolated from Food at Retail in Belgium from 2012 to 2015. Foodborne Pathog. Dis. 2018, 15, 114–117. [Google Scholar] [CrossRef]
- Luk-in, S.; Chatsuwan, T.; Kueakulpattana, N.; Rirerm, U.; Wannigama, D.L.; Plongla, R.; Lawung, R.; Pulsrikarn, C.; Chantaroj, S.; Chaichana, P.; et al. Occurrence of mcr-mediated colistin resistance in Salmonella clinical isolates in Thailand. Sci. Rep. 2021, 11, 14170. [Google Scholar] [CrossRef]
- Portes, A.B.; Rodrigues, G.; Leitão, M.P.; Ferrari, R.; Conte Junior, C.A.; Panzenhagen, P. Global distribution of plasmid-mediated colistin resistance mcr gene in Salmonella: A systematic review. J. Appl. Microbiol. 2021, 132, 872–889. [Google Scholar] [CrossRef] [PubMed]
- Arnott, A.; Wang, Q.; Bachmann, N.; Sadsad, R.; Biswas, C.; Sotomayor, C.; Howard, P.; Rockett, R.; Wiklendt, A.; Iredell, J.R.; et al. Multidrug-Resistant Salmonellaenterica 4,[5],12:i:- Sequence Type 34, New South Wales, Australia, 2016–2017. Emerg. Infect. Dis. 2018, 24, 751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, L.; Wang, J.; Gao, Y.; Liu, Y.; Doi, Y.; Wu, R.; Zeng, Z.; Liang, Z.; Liu, J.H. mcr-1−Harboring Salmonella enterica Serovar Typhimurium Sequence Type 34 in Pigs, China. Emerg. Infect. Dis. 2017, 23, 291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pilonieta, M.C.; Erickson, K.D.; Ernst, R.K.; Detweiler, C.S. A Protein Important for Antimicrobial Peptide Resistance, YdeI/OmdA, Is in the Periplasm and Interacts with OmpD/NmpC. J. Bacteriol. 2009, 191, 7243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baron, S.; Hadjadj, L.; Rolain, J.M.; Olaitan, A.O. Molecular mechanisms of polymyxin resistance: Knowns and unknowns. Int. J. Antimicrob. Agents 2016, 48, 583–591. [Google Scholar] [PubMed]
- EFSA, (European Food Safety Authority); ECDC, (European Centre for Disease Prevention and Control). The European Union One Health 2019 Zoonoses Report. EFSA J. 2021, 19, 6406. [Google Scholar]
- EFSA, (European Food Safety Authority); ECDC, (European Centre for Disease Prevention and Control). The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2018/2019. EFSA J. 2021, 19, 179. [Google Scholar]
- WHO (World Health Organization-Advisory Group on Integrated Surveillance of Antimicrobial Resistance). Critically Important Antimicrobials for Human Medicine, 6th Revision 2018; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Khondker, A.; Rheinstädter, M.C. How do bacterial membranes resist polymyxin antibiotics? Commun. Biol. 2020, 3, 77. [Google Scholar] [CrossRef] [PubMed]
- Moreno, L.Z.; Gomes, V.T.M.; Moreira, J.; de Oliveira, C.H.; Peres, B.P.; Silva, A.P.S.; Thakur, S.; La Ragione, R.M.; Moreno, A.M. First report of mcr-1-harboring Salmonella enterica serovar Schwarzengrund isolated from poultry meat in Brazil. Diagn. Microbiol. Infect. Dis. 2019, 93, 376–379. [Google Scholar] [CrossRef] [PubMed]
- Li, X.P.; Fang, L.X.; Song, J.Q.; Xia, J.; Huo, W.; Fang, J.T.; Liao, X.P.; Liu, Y.H.; Feng, Y.; Sun, J. Clonal spread of mcr-1 in PMQR-carrying ST34 Salmonella isolates from animals in China. Sci. Rep. 2016, 6, 38511. [Google Scholar] [CrossRef]
- Tyso, G.H.; Li, C.; Hsu, C.H.; Ayers, S.; Borenstein, S.; Mukherjee, S.; Tran, T.T.; McDermot, P.F.; Zhao, S. The mcr-9 gene of salmonella and escherichia coli is not associated with colistin resistance in the United States. Antimicrob. Agents Chemother. 2020, 64, e00573-20. [Google Scholar]
- Elbediwi, M.; Li, Y.; Paudyal, N.; Pan, H.; Li, X.; Xie, S.; Rajkovic, A.; Feng, Y.; Fang, W.; Rankin, S.C.; et al. Global burden of colistin-resistant bacteria: Mobilized colistin resistance genes study (1980–2018). Microorganisms 2019, 7, 461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cilia, G.; Turchi, B.; Fratini, F.; Ebani, V.V.; Turini, L.; Cerri, D.; Bertelloni, F. Phenotypic and genotypic resistance to colistin in E. coli isolated from wild boar (Sus scrofa) hunted in Italy. Eur. J. Wildl. Res. 2021, 67, 1–7. [Google Scholar] [CrossRef]
- CLSI (Clinical and Laboratory Standards Institute). M07-A10 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard, 10th ed.; CLSI Document M07-A10; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015. [Google Scholar]
- Aguirre, L.; Vidal, A.; Seminati, C.; Tello, M.; Redondo, N.; Darwich, L.; Martín, M. Antimicrobial resistance profile and prevalence of extended-spectrum beta-lactamases (ESBL), AmpC beta-lactamases and colistin resistance (mcr) genes in Escherichia coli from swine between 1999 and 2018. Porc. Health Manag. 2020, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- EUCAST, (The European Committee on Antimicrobial Susceptibility Testing). Breakpoint Tables for Interpretation of MICs and Zone Diameters; Version 10.0; The European Committee on Antimicrobial Susceptibility Testing: Basel, Switzerland, 2020. [Google Scholar]
- Borowiak, M.; Baumann, B.; Fischer, J.; Thomas, K.; Deneke, C.; Hammerl, J.A.; Szabo, I.; Malorny, B. Development of a Novel mcr-6 to mcr-9 Multiplex PCR and Assessment of mcr-1 to mcr-9 Occurrence in Colistin-Resistant Salmonella enterica Isolates From Environment, Feed, Animals and Food (2011–2018) in Germany. Front. Microbiol. 2020, 11, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rebelo, A.R.; Bortolaia, V.; Kjeldgaard, J.S.; Pedersen, S.K.; Leekitcharoenphon, P.; Hansen, I.M.; Guerra, B.; Malorny, B.; Borowiak, M.; Hammerl, J.A.; et al. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Eurosurveillance 2018, 23, 17-00672. [Google Scholar] [CrossRef]
Years of Isolation | MIC Values (µg/mL) | Total | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
≤0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | >256 | ||
2000–2005 | 30 | 26 | 39 | 14 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 112 |
2009–2014 | 16 | 26 | 19 | 10 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 72 |
2015–2020 | 12 | 8 | 16 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 50 |
Total | 58 | 61 | 75 | 33 | 1 | 1 | 0 | 0 | 0 | 1 | 6 | 58 |
MIC Values (µg/mL) | Total | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
≤0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | >256 | ||
Domestic animals | 43 | 48 | 54 | 22 | 1 | 1 | 0 | 0 | 0 | 1 | 4 | 174 |
Wild animals | 14 | 10 | 15 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 51 |
Environment | 1 | 3 | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 |
Total | 58 | 61 | 75 | 33 | 1 | 1 | 0 | 0 | 0 | 1 | 6 | 236 |
MIC Values (µg/mL) | Total | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
≤0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | >256 | ||
Arthropoda | 3 | 1 | 4 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13 |
Birds | 10 | 16 | 14 | 10 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 51 |
Mammals | 14 | 15 | 20 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 63 |
Reptiles | 30 | 26 | 31 | 9 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 98 |
Environment/ Feed | 1 | 3 | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 |
Total | 58 | 61 | 75 | 33 | 1 | 1 | 0 | 0 | 0 | 1 | 6 | 236 |
Subspecies | MIC Values (µg/mL) | Total | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
≤0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | >256 | ||
enterica | 48 | 59 | 61 | 30 | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 202 |
salamae | 3 | 0 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 |
diarizonae | 3 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 9 |
houtenae | 3 | 1 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 14 |
R phase | 1 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
Total | 58 | 61 | 75 | 33 | 1 | 1 | 0 | 0 | 0 | 1 | 6 | 236 |
Serovar | MIC Values (µg/mL) | Total | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
≤0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | >256 | ||
Derby | 4 | 8 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 16 |
Enteritidis | 0 | 3 | 3 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 10 |
Infantis | 1 | 2 | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 |
Newport | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
TMV | 0 | 5 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 |
Typhimurium | 9 | 5 | 9 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 29 |
Isolate | Subspecies | Serovar | Animal | Sample | Year | MIC (µg/mL) | mcr-1 | mcr-2 | mcr-4 | mcr-6 | mcr-8 |
---|---|---|---|---|---|---|---|---|---|---|---|
S356 | houtenae | 1,40:z4,z23:- | Donkey | Organs | 2019 | >256 | - | + | - | - | - |
S358 | houtenae | 1,40:z4,z23:- | Sheep | Organs | 2019 | >256 | - | + | - | - | - |
S374 | enterica | Napoli | Housefly | 2019 | 4 | - | + | + | - | - | |
S375 | R phase | Housefly | 2019 | 4 | - | - | + | - | - | ||
S378 | R phase | Housefly | 2019 | 4 | - | - | + | - | - | ||
S386 | diarizonae | 50:r:1,5,7 | Wild boar | Feces | 2019 | >256 | + | - | - | - | - |
R43 | enterica | Trimndon | Reptile | Feces | 2002 | ≤0.5 | - | - | - | + | - |
R108 | enterica | Memphis | Reptile | Feces | 2002 | ≤0.5 | - | + | - | - | - |
R164 | houtenae | 44:z4,z23:- | Reptile | Feces | 2002 | 2 | - | - | - | - | + |
R161 | houtenae | 44:z4,z23:- | Reptile | Feces | 2002 | 2 | - | + | - | - | - |
R173 | enterica | Senftenberg | Reptile | Feces | 2002 | ≤0.5 | - | - | - | - | + |
R300 | diarizonae | 50:z:z52 | Reptile | Feces | 2002 | 1 | + | - | + | - | - |
R112 | houtenae | 18:z36,z23:- | Reptile | Feces | 2002 | ≤0.5 | - | + | - | - | - |
R126 | diarizonae | 48:z4,z23:- | Reptile | Feces | 2002 | 2 | - | + | - | - | - |
Total | 2 | 7 | 4 | 1 | 2 |
Target Gene | Primer Name | Sequence (5′-3′) | Expected Size (bp) | Protocols | References | |
---|---|---|---|---|---|---|
Multiplex 1 | mcr-1 | mcr1_320bp_fw | AGTCCGTTTGTTCTTGTGGC | 320 | Initial denaturation at 95 °C for 10 min, 25 cycles: denaturation at 95 °C for 30 s, annealing at 58 °C for 90 s, elongation at 72 °C for 60 s, Final elongation at 72 °C for 10 min. | [38] |
mcr1_320bp_rev | AGATCCTTGGTCTCGGCTTG | |||||
mcr-2 | mcr2_700bp_fw | CAAGTGTGTTGGTCGCAGTT | 715 | |||
mcr2_700bp_rev | TCTAGCCCGACAAGCATACC | |||||
mcr-3 | mcr3_900bp_fw | AAATAAAAATTGTTCCGCTTATG | 929 | |||
mcr3_900bp_rev | AATGGAGATCCCCGTTTTT | |||||
mcr-4 | mcr4_1100bp_fw | TCACTTTCATCACTGCGTTG | 1116 | |||
mcr4_1100bp_rev | TTGGTCCATGACTACCAATG | |||||
mcr-5 | MCR5_fw | ATGCGGTTGTCTGCATTTATC | 1644 | |||
MCR5_rev | TCATTGTGGTTGTCCTTTTCTG | |||||
Multiplex 2 | mcr-6 | mcr-6_mp_fw | AGCTATGTCAATCCCGTGAT | 252 | Initial denaturation at 95 °C for 10 min, 30 cycles: denaturation at 95 °C for 30 s, annealing at 55 °C for 30 s, elongation at 72 °C for 60 s, Final elongation step at 72 °C for 10 min. | [37] |
mcr-6_mp_rev | ATTGGCTAGGTTGTCAATC | |||||
mcr-7 | mcr-7_mp_fw | GCCCTTCTTTTCGTTGTT | 551 | |||
mcr-7_mp_rev | GGTTGGTCTCTTTCTCGT | |||||
mcr-8 | mcr-8_mp_fw | TCAACAATTCTACAAAGCGTG | 856 | |||
mcr-8_mp_rev | AATGCTGCGCGAATGAAG | |||||
mcr-9 | mcr-9_mp_fw | TTCCCTTTGTTCTGGTTG | 1011 | |||
mcr-9_mp_rev | GCAGGTAATAAGTCGGTC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertelloni, F.; Cagnoli, G.; Turchi, B.; Ebani, V.V. Low Level of Colistin Resistance and mcr Genes Presence in Salmonella spp.: Evaluation of Isolates Collected between 2000 and 2020 from Animals and Environment. Antibiotics 2022, 11, 272. https://doi.org/10.3390/antibiotics11020272
Bertelloni F, Cagnoli G, Turchi B, Ebani VV. Low Level of Colistin Resistance and mcr Genes Presence in Salmonella spp.: Evaluation of Isolates Collected between 2000 and 2020 from Animals and Environment. Antibiotics. 2022; 11(2):272. https://doi.org/10.3390/antibiotics11020272
Chicago/Turabian StyleBertelloni, Fabrizio, Giulia Cagnoli, Barbara Turchi, and Valentina Virginia Ebani. 2022. "Low Level of Colistin Resistance and mcr Genes Presence in Salmonella spp.: Evaluation of Isolates Collected between 2000 and 2020 from Animals and Environment" Antibiotics 11, no. 2: 272. https://doi.org/10.3390/antibiotics11020272
APA StyleBertelloni, F., Cagnoli, G., Turchi, B., & Ebani, V. V. (2022). Low Level of Colistin Resistance and mcr Genes Presence in Salmonella spp.: Evaluation of Isolates Collected between 2000 and 2020 from Animals and Environment. Antibiotics, 11(2), 272. https://doi.org/10.3390/antibiotics11020272