Molecular and Genomic Insights of mcr-1-Producing Escherichia coli Isolates from Piglets
Abstract
:1. Introduction
2. Results
2.1. Occurrence of Colistin Resistance on a Swine Farm
2.2. Plasmid Analysis of mcr-1-Harboring E. coli Isolates
2.3. Whole Genome Analysis of mcr-1-Producing E. coli Isolates
2.4. In Vitro and In Silico Analysis of Phage Carrying mcr-1
2.5. Phages and Prophages Carrying mcr-1 Gene in Public Databases
3. Discussion
4. Material and Methods
4.1. Sampling and Bacterial Selection
4.2. Identification of Colistin Resistant and Screening of Colistin and Cephalosporin Resistant Genes
4.3. Antimicrobial Susceptibility Testing
4.4. PFGE Analysis
4.5. Plasmid Profile Determination, Mating and Transformation Experiments
4.6. Whole Genome Sequencing and In Silico Analysis
4.7. Comparative Analysis of mcr-1 E. coli Isolates
4.8. In Silico Identification of Phages and Prophages Carrying mcr-1 Genes
4.9. Bacteriophage Induction
4.10. Nucleotide Accession Numbers
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poirel, L.; Jayol, A.; Nordmann, P. Polymyxins: Antibacterial Activity, Susceptibility Testing, and Resistance Mechanisms Encoded by Plasmids or Chromosomes. Clin. Microbiol. Rev. 2017, 30, 557–596. [Google Scholar] [CrossRef] [Green Version]
- Olaitan, A.O.; Morand, S.; Rolain, J.-M. Mechanisms of polymyxin resistance: Acquired and intrinsic resistance in bacteria. Front. Microbiol. 2014, 5, 643. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Feng, Y.; Liu, F.; Jiang, H.; Qu, Z.; Lei, M.; Wang, J.; Zhang, B.; Hu, Y.; Ding, J.; et al. A Phage-Like IncY Plasmid Carrying the mcr-1 Gene in Escherichia coli from a Pig Farm in China. Antimicrob. Agents Chemother. 2017, 61, e02035-16. [Google Scholar] [CrossRef] [Green Version]
- Al-Mir, H.; Osman, M.; Drapeau, A.; Hamze, M.; Madec, J.-Y.; Haenni, M. WGS Analysis of Clonal and Plasmidic Epidemiology of Colistin-Resistance Mediated by mcr Genes in the Poultry Sector in Lebanon. Front. Microbiol. 2021, 12, 624194. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Feng, Y.; Liu, L.; Wei, L.; Kang, M.; Zong, Z. Identification of novel mobile colistin resistance gene mcr-10. Emerg. Microbes Infect. 2020, 9, 508–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Santiago, J.; Cornejo-Juárez, P.; Silva-Sánchez, J.; Garza-Ramos, U. Polymyxin resistance in Enterobacterales: Overview and epidemiology in the Americas. Int. J. Antimicrob. Agents 2021, 58, 106426. [Google Scholar] [CrossRef] [PubMed]
- Anjum, M.F.; Duggett, N.A.; AbuOun, M.; Randall, L.; Nunez-Garcia, J.; Ellis, R.J.; Rogers, J.; Horton, R.; Brena, C.; Williamson, S.; et al. Colistin resistance in Salmonella and Escherichia coli isolates from a pig farm in Great Britain. J. Antimicrob. Chemother. 2016, 71, 2306–2313. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.-Y.; Wang, Y.; Walsh, T.R.; Yi, L.-X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, F.; Lin, I.Y.C.; Gao, G.F.; Zhu, B. Dissemination of the mcr-1 colistin resistance gene. Lancet Infect. Dis. 2016, 16, 146–147. [Google Scholar] [CrossRef] [Green Version]
- Touchon, M.; Moura de Sousa, J.A.; Rocha, E.P. Embracing the enemy: The diversification of microbial gene repertoires by phage-mediated horizontal gene transfer. Curr. Opin. Microbiol. 2017, 38, 66–73. [Google Scholar] [CrossRef]
- Oliver, A.; Coque, T.M.; Alonso, D.; Valverde, A.; Baquero, F.; Cantón, R. CTX-M-10 Linked to a Phage-Related Element Is Widely Disseminated among Enterobacteriaceae in a Spanish Hospital. Antimicrob. Agents Chemother. 2005, 49, 1567–1571. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Liu, L.; Feng, Y.; Zong, Z. A P7 Phage-Like Plasmid Carrying mcr-1 in an ST15 Klebsiella pneumoniae Clinical Isolate. Front. Microbiol. 2018, 9, 11. [Google Scholar] [CrossRef] [PubMed]
- Merida-Vieyra, J.; De Colsa-Ranero, A.; Arzate-Barbosa, P.; Arias-de la Garza, E.; Mendez-Tenorio, A.; Murcia-Garzon, J.; Aquino-Andrade, A. First clinical isolate of Escherichia coli harboring mcr-1 gene in Mexico. PLoS ONE 2019, 14, e0214648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garza-Ramos, U.; Tamayo-Legorreta, E.; Arellano-Quintanilla, D.M.; Rodriguez-Medina, N.; Silva-Sanchez, J.; Catalan-Najera, J.; Rocha-Martínez, M.K.; Bravo-Díaz, M.A.; Alpuche-Aranda, C. Draft Genome Sequence of a Multidrug- and Colistin-Resistant mcr-1-Producing Escherichia coli Isolate from a Swine Farm in Mexico. Genome Announc. 2018, 6, e00102-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Garza, J.; Franco-Frias, E.; Garcia-Heredia, A.; Garcia, S.; Leon, J.S.; Jaykus, L.A.; Heredia, N. The Cantaloupe Farm Environment Has a Diverse Genetic Pool of Antibiotic-Resistance and Virulence Genes. Foodborne Pathog. Dis. 2021, 18, 469–476. [Google Scholar] [CrossRef]
- Li, X.-P.; Sun, R.Y.; Song, J.Q.; Fang, L.X.; Zhang, R.M.; Lian, X.L.; Liao, X.P.; Liu, Y.H.; Lin, J.; Sun, J. Within-host heterogeneity and flexibility of mcr-1 transmission in chicken gut. Int. J. Antimicrob. Agents 2020, 2020 55, 105806. [Google Scholar] [CrossRef]
- Mikhayel, M.; Leclercq, S.O.; Sarkis, D.K.; Doublet, B. Occurrence of the Colistin Resistance Gene mcr-1 and Additional Antibiotic Resistance Genes in ESBL/AmpC-Producing Escherichia coli from Poultry in Lebanon: A Nationwide Survey. Microbiol. Spectr. 2021, 9, e0002521. [Google Scholar] [CrossRef]
- Rodríguez-Medina, N.; Barrios-Camacho, H.; Duran-Bedolla, J.; Garza-Ramos, U. Klebsiella variicola: An emerging pathogen in humans. Emerg. Microbes Infect. 2019, 8, 973–988. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Dong, N.; Liu, C.; Zeng, Y.; Sun, Q.; Zhou, H.; Hu, Y.; Chen, S.; Shen, Z.; Zhang, R. Prevalence and molecular epidemiology of mcr-1-positive Klebsiella pneumoniae in healthy adults from China. J. Antimicrob. Chemother. 2020, 75, 2485–2494. [Google Scholar] [CrossRef]
- Da Silva, G.J.; Mendonca, N. Association between antimicrobial resistance and virulence in Escherichia coli. Virulence 2012, 3, 18–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markland, S.M.; LeStrange, K.J.; Sharma, M.; Kniel, K.E. Old Friends in New Places: Exploring the Role of Extraintestinal E. coli in Intestinal Disease and Foodborne Illness. Zoonoses Public Health 2015, 62, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Sarowska, J.; Futoma-Koloch, B.; Jama-Kmiecik, A.; Frej-Madrzak, M.; Ksiazczyk, M.; Bugla-PLoSkonska, G.; Choroszy-Krol, I. Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: Recent reports. Gut Pathog. 2019, 11, 10. [Google Scholar] [CrossRef] [Green Version]
- Navarro-Garcia, F.; Ruiz-Perez, F.; Cataldi, A.; Larzabal, M. Type VI Secretion System in Pathogenic Escherichia coli: Structure, Role in Virulence, and Acquisition. Front. Microbiol. 2019, 10, 1965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubelová, M.; Koláčková, I.; Gelbíčová, T.; Florianová, M.; Kalová, A.; Karpíšková, R. Virulence Properties of mcr-1-Positive Escherichia coli Isolated from Retail Poultry Meat. Microorganisms 2021, 9, 308. [Google Scholar] [CrossRef] [PubMed]
- Nordmann, P.; Jayol, A.; Poirel, L. Rapid Detection of Polymyxin Resistance inEnterobacteriaceae. Emerg. Infect. Dis. 2016, 22, 1038–1043. [Google Scholar] [CrossRef] [Green Version]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). Recommendations for MIC Determination of Colistin (Polymyxin E) As Recommended by the Joint CLSI-EUCAST Polymyxin Breakpoints Working Group. 2016. Available online: https://eucast.org (accessed on 25 October 2021).
- Clinical Laboratory Standart Institute. M100 Performance Standards for Antimicrobial Susceptibility Testing. 2017. Available online: https://clsi.org (accessed on 25 October 2021).
- Tenover, F.C.; Arbeit, R.D.; Goering, R.V.; Mickelsen, P.A.; Murray, B.E.; Persing, D.H.; Swaminathan, B. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: Criteria for bacterial strain typing. J. Clin. Microbiol. 1995, 33, 2233–2239. [Google Scholar] [CrossRef] [Green Version]
- Kieser, T. Factors affecting the isolation of CCC DNA from Streptomyces lividans and Escherichia coli. Plasmid 1984, 12, 19–36. [Google Scholar] [CrossRef]
- Silva-Sanchez, J.; Barrios, H.; Reyna-Flores, F.; Bello-Diaz, M.; Sanchez-Perez, A.; Rojas, T. Bacterial Resistance Consortium, Garza-Ramos, U. Prevalence and characterization of plasmid-mediated quinolone resistance genes in extended-spectrum β-lactamase-producing Enterobacteriaceae isolates in Mexico. Microb Drug Resist. 2011, 17, 497–505. [Google Scholar] [CrossRef]
- Philippon, L.N.; Naas, T.; Bouthors, A.T.; Barakett, V.; Nordmann, P. OXA-18, a class D clavulanic acid-inhibited extended-spectrum beta-lactamase from Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 1997, 41, 2188–2195. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.M. Experiments in Molecular Genetics; Cold Spring Harbor Laboratory: New York, NY, USA, 1972. [Google Scholar]
- Garza-Ramos, U.; Rodriguez-Medina, N.; Lozano-Aguirre, L.; Silva-Sanchez, J.; Sanchez-Arias, M.; Rodriguez-Olguin, J.; Martínez-Romero, E. Klebsiella variicola Reference Strain F2R9 (ATCC BAA-830) Genome Sequence. Microbiol. Resour. Announc. 2021, 10, e0032921. [Google Scholar] [CrossRef]
- Vallenet, D.; Belda, E.; Calteau, A.; Cruveiller, S.; Engelen, S.; Lajus, A.; Le Fèvre, F.; Longin, C.; Mornico, D.; Roche, D.; et al. MicroScope--an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data. Nucleic Acids Res. 2013, 41, D636–D647. [Google Scholar] [CrossRef]
- Malberg Tetzschner, A.M.; Johnson, J.R.; Johnston, B.D.; Lund, O.; Scheutz, F. In Silico Genotyping of Escherichia coli Isolates for Extraintestinal Virulence Genes by Use of Whole-Genome Sequencing Data. J. Clin. Microbiol. 2020, 58, e01269-20. [Google Scholar] [CrossRef]
- Liu, B.; Zheng, D.; Jin, Q.; Chen, L.; Yang, J. VFDB 2019: A comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 2019, 47, D687–D692. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Zou, S.; Chen, H.; Yu, Y.; Ruan, Z. BacWGSTdb 2.0: A one-stop repository for bacterial whole-genome sequence typing and source tracking. Nucleic Acids Res. 2020, 49, D644–D650. [Google Scholar] [CrossRef]
- Beghain, J.; Bridier-Nahmias, A.; Le Nagard, H.; Denamur, E.; Clermont, O. ClermonTyping: An easy-to-use and accurate in silico method for Escherichia genus strain phylotyping. Microb. Genom. 2018, 4, e000192. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, M.J.; Petty, N.K.; Beatson, S.A. Easyfig: A genome comparison visualizer. Bioinformatics 2011, 27, 1009–1010. [Google Scholar] [CrossRef] [PubMed]
- Roux, S.; Enault, F.; Hurwitz, B.L.; Sullivan, M.B. VirSorter: Mining viral signal from microbial genomic data. PeerJ 2015, 3, e985. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Liang, Y.; Lynch, K.H.; Dennis, J.J.; Wishart, D.S. PHAST: A fast phage search tool. Nucleic Acids Res. 2011, 39, W347–W352. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Li, H.; Shen, Y.; Liu, Z.; Wang, S.; Shen, Z.; Zhang, R.; Walsh, T.R.; Shen, J.; Wang, Y. Novel Plasmid-Mediated Colistin Resistance Gene mcr-3 in Escherichia coli. mBio 2017, 8, e00543-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carattoli, A.; Villa, L.; Feudi, C.; Curcio, L.; Orsini, S.; Luppi, A.; Pezzotti, G.; Magistrali, C.F. Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Eurosurveillance 2017, 22, 30589. [Google Scholar] [CrossRef] [Green Version]
- Borowiak, M.; Fischer, J.; Hammerl, J.A.; Hendriksen, R.S.; Szabo, I.; Malorny, B. Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. enterica serovar Paratyphi B. J. Antimicrob. Chemother. 2017, 72, 3317–3324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Bacterial Species | Isolate/ Transcojugant | Isolation Date Month/Year | Age of the Swine | Sex | RP | ESBL-Producer | mcr-Type Gene | Plasmid Profile (Kb) d | Conjugation Frequency | CTX-M-Type | PFGE | MIC (µg/mL) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
COL | AMP | CAZ | CTX | IMP | AK | GEN | CIP | NAL | TET | ||||||||||||
E. coli | C072 | 03/2015 | 12 days | Male | + | + | mcr-1 | 150, 170 | NA | + | NR | 4 | >256 | 8 | >32 | 1 | 2 | 16 | 1 | >256 | >64 |
T-C072 a | NA | NA | + | + | mcr-1 | 170 | 8.3 × 10−8 | + | NA | 2 | 256 | 4 | >32 | 0.5 | 0.5 | 4 | 0.015 | 64 | 32 | ||
E. coli | C2033 | 09/2015 | 1 month | Male | + | + | mcr-1 | 75, 90, 170 | NA | + | NR | 4 | >256 | 4 | >32 | 1 | 2 | 32 | 2 | >256 | >64 |
T-C2033 a | NA | NA | + | + | mcr-1 | 170 | 1.2 × 10−3 | + | NA | 1 | >256 | 4 | >32 | 0.5 | 0.5 | 4 | 0.015 | 64 | 4 | ||
E. coli | C2-107 | 09/2015 | 6 days | Female | + | + | mcr-1 | 170 | NA | + | A | 4 | >256 | 4 | >32 | 0.5 | 2 | 16 | 4 | >256 | 0.5 |
T-C2-107 a | NA | NA | + | + | mcr-1 | 170 | 3 × 10−5 | + | NA | 1 | >256 | 16 | >32 | 1 | 2 | 16 | 0.06 | 64 | 0.5 | ||
E. coli | C2-108 | 09/2015 | 6 days | Male | + | + | mcr-1 | 170 | NA | + | A | 4 | >256 | 4 | >32 | 0.5 | 2 | 16 | 4 | >256 | 0.5 |
T-C2-108 a | NA | NA | + | + | mcr-1 | 170 | 2.1 × 10−5 | + | NA | 1 | >256 | 16 | >32 | 1 | 2 | 16 | 0.06 | 64 | 0.5 | ||
E. coli | RC2-007 b | 09/2015 | 2 months | Male | + | + | mcr-1 | 100, 120 | NA | + | NR | 4 | >256 | >32 | >32 | 0.06 | 0.25 | >32 | 16 | >256 | 64 |
TpEcoDH10B c | NA | NA | + | - | mcr-1 | 100 | NA | - | NA | 2 | ND | ND | ND | ND | ND | ND | ND | 32 | ND | ||
K. variicola | F2R9 | NA | NA | - | - | - | - | NA | - | NA | 0.5 | ND | ND | ND | ND | ND | ND | ND | ND | ND | |
TpKvF2R9 c | NA | NA | + | - | mcr-1 | 100 | NA | - | NA | 16 | ND | ND | ND | ND | ND | ND | ND | 32 | ND |
Isolate | Sequence Type a | Serotype a | Phylogroup b | Replicon Carrying the mcr-1 Gene | Incompatibility Group (Inc) a | Genetic Context of mcr-1 Gene c |
---|---|---|---|---|---|---|
C072 | 162 | 089:H19 | B1 | Plasmid | HI2, N, FIB | ISApl1-mcr-1-PAP2 |
C2-033 | 354 | 01:H34 | F | Plasmid | HI2, N, FIB | ISApl1-mcr-1-PAP2 |
C2-107 | 1286 | O16:H32 | A | Plasmid | HI2, HI2A, N | ISApl1-mcr-1-PAP2 |
C2-108 | 1286 | O16:H32 | A | Plasmid | HI2, HI2A, N | ISApl1-mcr-1-PAP2 |
RC2-007 | 744 | O89:H9 | A | Plasmid/Prophage | Incp0111, FIB | ISApl1-mcr-1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Santiago, J.; Rodríguez-Medina, N.; Tamayo-Legorreta, E.M.; Silva-Sánchez, J.; Téllez-Sosa, J.; Duran-Bedolla, J.; Aguilar-Vera, A.; Lecona-Valera, A.N.; Garza-Ramos, U.; Alpuche-Aranda, C. Molecular and Genomic Insights of mcr-1-Producing Escherichia coli Isolates from Piglets. Antibiotics 2022, 11, 157. https://doi.org/10.3390/antibiotics11020157
Rodríguez-Santiago J, Rodríguez-Medina N, Tamayo-Legorreta EM, Silva-Sánchez J, Téllez-Sosa J, Duran-Bedolla J, Aguilar-Vera A, Lecona-Valera AN, Garza-Ramos U, Alpuche-Aranda C. Molecular and Genomic Insights of mcr-1-Producing Escherichia coli Isolates from Piglets. Antibiotics. 2022; 11(2):157. https://doi.org/10.3390/antibiotics11020157
Chicago/Turabian StyleRodríguez-Santiago, Jonathan, Nadia Rodríguez-Medina, Elsa María Tamayo-Legorreta, Jesús Silva-Sánchez, Juan Téllez-Sosa, Josefina Duran-Bedolla, Alejandro Aguilar-Vera, Alba Neri Lecona-Valera, Ulises Garza-Ramos, and Celia Alpuche-Aranda. 2022. "Molecular and Genomic Insights of mcr-1-Producing Escherichia coli Isolates from Piglets" Antibiotics 11, no. 2: 157. https://doi.org/10.3390/antibiotics11020157
APA StyleRodríguez-Santiago, J., Rodríguez-Medina, N., Tamayo-Legorreta, E. M., Silva-Sánchez, J., Téllez-Sosa, J., Duran-Bedolla, J., Aguilar-Vera, A., Lecona-Valera, A. N., Garza-Ramos, U., & Alpuche-Aranda, C. (2022). Molecular and Genomic Insights of mcr-1-Producing Escherichia coli Isolates from Piglets. Antibiotics, 11(2), 157. https://doi.org/10.3390/antibiotics11020157