Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = peptidoglycan hydrolase (PGH)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3996 KiB  
Article
Transcriptional Analysis and Identification of a Peptidoglycan Hydrolase (PGH) and a Ribosomal Protein with Antimicrobial Activity Produced by Lactiplantibacillus paraplantarum
by Jessica J. Hurtado-Rios, Ulises Carrasco-Navarro, Julio Cesar Almanza-Pérez, Monica A. Rincón-Guevara and Edith Ponce-Alquicira
Int. J. Mol. Sci. 2024, 25(23), 12650; https://doi.org/10.3390/ijms252312650 - 25 Nov 2024
Viewed by 1522
Abstract
The growing challenge of antibiotic resistance has intensified the search for new antimicrobial agents. Promising alternatives include peptidoglycan hydrolases (PGHs) and certain ribosomal proteins, both of which exhibit antimicrobial activity. This study focuses on a Lactiplantibacillus paraplantarum strain, isolated from fermented meat, capable [...] Read more.
The growing challenge of antibiotic resistance has intensified the search for new antimicrobial agents. Promising alternatives include peptidoglycan hydrolases (PGHs) and certain ribosomal proteins, both of which exhibit antimicrobial activity. This study focuses on a Lactiplantibacillus paraplantarum strain, isolated from fermented meat, capable of inhibiting pathogens such as Listeria innocua, Salmonella Typhimurium, Escherichia coli, Staphylococcus aureus, and Weissella viridescens. The highest growth and antimicrobial activity were observed at a high nitrogen concentration (5.7 g/L). Two antimicrobial proteins were identified: the 50S ribosomal protein L14 (RP uL14) and 6-phospho-N-acetylmuramidase (MupG), a PGH. Partial purification and characterization of these proteins were achieved using SDS-PAGE, zymography, and LC-MS/MS. Transcriptional data (RT-qPCR) showed that higher nitrogen concentrations enhanced MupG expression, while increased carbon concentrations boosted RP uL14 expression. These findings highlight the importance of nutritional sources in maximizing the production of novel antimicrobial proteins, offering a potential path to develop effective alternatives against antibiotic-resistant bacteria. Full article
(This article belongs to the Special Issue Structure and Function of Ribosomal Proteins 2024)
Show Figures

Graphical abstract

17 pages, 2265 KiB  
Article
Chimeric Peptidoglycan Hydrolases Kill Staphylococcal Mastitis Isolates in Raw Milk and within Bovine Mammary Gland Epithelial Cells
by Anja P. Keller, Shera Ly, Steven Daetwyler, Fritz Eichenseher, Martin J. Loessner and Mathias Schmelcher
Viruses 2022, 14(12), 2801; https://doi.org/10.3390/v14122801 - 15 Dec 2022
Cited by 6 | Viewed by 2204
Abstract
Staphylococcus aureus is a major causative agent of bovine mastitis, a disease considered one of the most economically devastating in the dairy sector. Considering the increasing prevalence of antibiotic-resistant strains, novel therapeutic approaches efficiently targeting extra- and intracellular bacteria and featuring high activity [...] Read more.
Staphylococcus aureus is a major causative agent of bovine mastitis, a disease considered one of the most economically devastating in the dairy sector. Considering the increasing prevalence of antibiotic-resistant strains, novel therapeutic approaches efficiently targeting extra- and intracellular bacteria and featuring high activity in the presence of raw milk components are needed. Here, we have screened a library of eighty peptidoglycan hydrolases (PGHs) for high activity against S. aureus in raw bovine milk, twelve of which were selected for further characterization and comparison in time-kill assays. The bacteriocins lysostaphin and ALE-1, and the chimeric PGH M23LST(L)_SH3b2638 reduced bacterial numbers in raw milk to the detection limit within 10 min. Three CHAP-based PGHs (CHAPGH15_SH3bAle1, CHAPK_SH3bLST_H, CHAPH5_LST_H) showed gradually improving activity with increasing dilution of the raw milk. Furthermore, we demonstrated synergistic activity of CHAPGH15_SH3bAle1 and LST when used in combination. Finally, modification of four PGHs (LST, M23LST(L)_SH3b2638, CHAPK_SH3bLST, CHAPGH15_SH3bAle1) with the cell-penetrating peptide TAT significantly enhanced the eradication of intracellular S. aureus in bovine mammary alveolar cells compared to the unmodified parentals in a concentration-dependent manner. Full article
(This article belongs to the Special Issue State-of-the-Art Phage Therapy Development in Europe 2022)
Show Figures

Figure 1

13 pages, 1274 KiB  
Article
Comparative Transcriptome Analysis Reveals Differentially Expressed Genes Related to Antimicrobial Properties of Lysostaphin in Staphylococcus aureus
by Xianghe Yan, Yanping Xie, Charles Li, David M. Donovan, Andrew Gehring, Peter Irwin and Yiping He
Antibiotics 2022, 11(2), 125; https://doi.org/10.3390/antibiotics11020125 - 18 Jan 2022
Cited by 3 | Viewed by 3533
Abstract
Comparative transcriptome analysis and de novo short-read assembly of S. aureus Newman strains revealed significant transcriptional changes in response to the exposure to triple-acting staphylolytic peptidoglycan hydrolase (PGH) 1801. Most altered transcriptions were associated with the membrane, cell wall, and related genes, including [...] Read more.
Comparative transcriptome analysis and de novo short-read assembly of S. aureus Newman strains revealed significant transcriptional changes in response to the exposure to triple-acting staphylolytic peptidoglycan hydrolase (PGH) 1801. Most altered transcriptions were associated with the membrane, cell wall, and related genes, including amidase, peptidase, holin, and phospholipase D/transphosphatidylase. The differential expression of genes obtained from RNA-seq was confirmed by reverse transcription quantitative PCR. Moreover, some of these gene expression changes were consistent with the observed structural perturbations at the DNA and RNA levels. These structural changes in the genes encoding membrane/cell surface proteins and altered gene expressions are the candidates for resistance to these novel antimicrobials. The findings in this study could provide insight into the design of new antimicrobial agents. Full article
Show Figures

Figure 1

Back to TopTop