In Silico Study for Algerian Essential Oils as Antimicrobial Agents against Multidrug-Resistant Bacteria Isolated from Pus Samples
Abstract
:1. Introduction
2. Results and Discussion
2.1. Prevalence of Bacterial Isolates
2.2. Distribution of Bacterial Isolates According to the Hospital Department
2.3. Distribution of Bacterial Isolates According to Sex
2.4. Antibiotics-Susceptibility Testing
2.5. Phenotypic Detection of Multidrug-Resistant Bacteria
2.6. Antibacterial Activity
2.6.1. The Radial Streak-Line Method
2.6.2. Evaluation of the Antibacterial Activity of Potent EOs
2.7. Chemical Composition of the Potent EOs
2.8. Molecular-Docking Study
3. Materials and Methods
3.1. Study Design
3.2. Identification of Clinical Isolates
3.3. Antibiotic-Susceptibility Test
3.4. Phenotypic Detection of MDR-Strain Resistance Mechanisms
3.5. Plant Material and Extraction
3.6. Bacterial Strains
3.7. Antimicrobial Activity
3.7.1. The Radial Streak-Line Method
3.7.2. Agar Diffusion Method
3.7.3. Broth Microdilution Assay
3.8. Chemical Composition of Potent EOs
3.9. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohamed, S.B.; Eddine, A.D. Antibacterial Activity of Essential Oils of Some Algerian Aromatic Plants Against Multidrug Resistant Bacteria. J. Essent. Oil-Bear. Plants 2010, 13, 362–370. [Google Scholar] [CrossRef]
- Delaquis, P.J.; Stanich, K.; Girard, B.; Mazza, G. Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. Int. J. Food Microbiol. 2002, 74, 101–109. [Google Scholar] [CrossRef]
- Burt, S.A.; Reinders, R.D. Antimicrobial activity of selected plante essential oils against Escherichia coli O157:H7. Lett. Appl. Microbiol. 2003, 36, 162–167. [Google Scholar] [CrossRef]
- Man, A.; Santacroce, L.; Jacob, R.; Mare, A.; Man, L. Antimicrobial Activity of Six Essential Oils Against a Group of Human Pathogens: A Comparative Study. Pathogens 2019, 8, 15. [Google Scholar] [CrossRef]
- Aouf, A.; Ali, H.; Al-Khalifa, A.R.; Mahmoud, K.F.; Farouk, A. Influence of Nanoencapsulation Using High-Pressure Homogenization on the Volatile Constituents and Anticancer and Antioxidant Activities of Algerian Saccocalyx satureioides Coss. et Durieu. Molecules 2020, 25, 4756. [Google Scholar] [CrossRef]
- Bouaouina, S.; Aouf, A.; Touati, A.; Ali, H.; Elkhadragy, M.; Yehia, H.; Farouk, A. Effect ofNanoencapsulation on theAntimicrobial and Antibiofilm Activities of Algerian Origanum glandulosum Desf. Against Multidrug-Resistant Clinical Isolates. Nanomaterials 2022, 12, 2630. [Google Scholar] [CrossRef]
- Lee, N.Y.; Lee, C.C.; Huang, W.H.; Tsui, K.C.; Hsueh, P.R.; Ko, W.C. Carbapenemtherapy for bacteremia due to extended-spectrum-ß-lactamaseproducing Escherichia coli or Klebsiella pneumoniae: Implications of ertapenem susceptibility. Antimicrob. Agents Chemother. 2012, 56, 2888–2893. [Google Scholar] [CrossRef]
- Lucena, A.; Costa, D.L.M.; Nogueira, K.S.; Matos, A.P.; Gales, A.C.; Paganini, M.C.; Castro, M.E.S.; Raboni, S.M. Nosocomial infections with metallo-betalactamase-producing Pseudomonas aeruginosa: Molecularepidemiology, risk factors, clinical features and outcomes. J. Hosp. Infect. 2014, 87, 234–240. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Benmansour, N.; Benmansour, A.; El Hanbali, F.; González-Mas, M.C.; Blázquez, M.A.; El Hakmaoui, A.; Akssira, M. Antimicrobial activity of essential oil of Artemisia judaica L. from Algeria against Multi-Drug Resistant bacteria from clinical origin. Flavour Fragr. J. 2016, 31, 137–142. [Google Scholar] [CrossRef]
- Mehalaine, S.; Belfadel, O.; Menasria, T.; Messaili, A. Chemical composition and antibacterial activity of essential oils of three medicinal plants from Algerian semi-arid climatic zone. Phytothérapie 2017, 16, S155–S163. [Google Scholar] [CrossRef]
- Miladinović, D.L.; Ilić, B.S.; Kocić, B.D. Chemoinformatics Approach to Antibacterial Studies of Essential Oils. Nat. Prod. Commun. 2015, 10, 1063–1066. [Google Scholar] [CrossRef] [PubMed]
- Jianu, C.; Stoin, D.; Cocan, I.; David, I.; Pop, G.; Lukinich-Gruia, A.T.; Mioc, M.; Mioc, A.; Șoica, C.; Muntean, D.; et al. In Silico and In Vitro Evaluation of the Antimicrobial and Antioxidant Potential of Mentha × smithiana R. GRAHAM Essential Oil from Western Romania. Foods 2021, 10, 815. [Google Scholar] [CrossRef] [PubMed]
- Tchakal-Mesbahi, A.; Abdouni, M.A.; Metref, M. Prevalence of Multidrug-Resistant Bacteria Isolated from Burn Wounds In Algeria. Ann. Burn. Fire Disasters 2021, 34, 150–156. [Google Scholar]
- Hak-Jae, K.; Sae, W.N.; Hissah, A.A.; Munirah, A.A.D.; Nandhakumar, P.; Dyona, L. Prevalence of multidrug-resistant bacteria associated with polymicrobial infections. J. Infect. Public Health 2021, 14, 1864–1869. [Google Scholar]
- Uçkay, I.; Hoffmeyer, P.; Lew, D.; Pittet, D. Prevention of surgical site infections in orthopaedic surgery and bone trauma: State-of-the-art update. J. Hosp. Infect. 2013, 84, 5–12. [Google Scholar] [CrossRef]
- Lye, D.C.; Earnest, A.; Ling, M.L.; Lee, T.-E.; Yong, H.-C.; Fisher, D.A.; Krishnan, P.; Hsu, L.-Y. The impact of multidrug resistance in healthcare-associated and nosocomial Gram-negative bacteraemia on mortality and length of stay: Cohort study. Clin. Microbiol. Infect. 2012, 8, 502–508. [Google Scholar] [CrossRef]
- Feleke, T.; Eshetie, S.; Dagnew, M.; Endris, M.; Abebe, W.; Tiruneh, M.; Moges, F. Multidrug-resistant bacterial isolates from patients suspected of Nosocomial infections at the University of Gondar Comprehensive Specialized Hospital, Northwest Ethiopia. BMC Res. Notes 2018, 11, 602–608. [Google Scholar] [CrossRef]
- Tong, S.Y.C.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G., Jr. Staphylococcus aureus Infections: Epidemiology, Pathophysiology, Clinical Manifestations, and Management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef]
- Zeynudin, A.; Pritsch, M.; Schubert, S.; Messerer, M.; Liegl, G.; Belachew, M.H.T.; Wieser, A. Prevalence and antibiotic susceptibility pattern of CTX-M type extended-spectrum β-lactamases among clinical isolates of gram-negative bacilli in Jimma, Ethiopia. BMC Infect. Dis. 2018, 18, 524–533. [Google Scholar] [CrossRef]
- Lin, M.F.; Lan, C.Y. Antimicrobial resistance in Acinetobacter baumannii: From bench to bedside. World J. Clin. Cases 2014, 2, 787–814. [Google Scholar] [CrossRef] [PubMed]
- Dessie, W.; Mulugeta, G.; Fentaw, S.; Mihret, A.; Hassen, M.; Abebe, E. Pattern of bacterial pathogens and their susceptibility isolated from surgical site infections at selected referral hospitals, Addis Ababa, Ethiopia. Int. J. Microbiol. 2016, 2016, 2418902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agodi, A.; Zarrilli, R.; Barchitta, M.; Anzaldi, A.; Di Popolo, A.; Mattaliano, A.; Ghiraldi, E.; Travali, S. Alert surveillance of intensive care unit-acquired Acinetobacter infections in a Sicilian hospital. Clin. Microbiol. Infect. 2006, 12, 241–247. [Google Scholar] [CrossRef]
- Ylipalosaari, P.; Ala-Kokko, T.I.; Laurila, J.; Ohtonen, P.; Syrjala, H. Intensive care acquired infection is an independent risk factor for hospital mortality: A prospective cohort study. Crit. Care 2006, 10, R66–R71. [Google Scholar] [CrossRef] [PubMed]
- Gomila, M.; Del Carmen, G.M.; Fernandez-Baca, V.; Pareja, A.; Pascual, M.; Diaz-Antolin, P.; García-Valdés, E.; Lalucat, J. Genetic diversity of clinical Pseudomonas aeruginosa isolates in a public hospital in Spain. BMC Microbiol. 2013, 13, 1471–2180. [Google Scholar] [CrossRef]
- Werarak, P.; Kiratisin, P.; Thamlikitkul, V. Hospital-acquired pneumonia and ventilator-associated pneumonia in adults at Siriraj Hospital: Etiology, clinical outcomes, and impact of antimicrobial resistance. J. Med. Assoc. Thai. 2010, 93, S126–S138. [Google Scholar] [PubMed]
- Zahlane, K.; Ouafi, A.T.; Barakate, M. The clinical and epidemiological risk factors of infections due to multidrug resistant bacteria in an adult intensive care unit of University Hospital Center in Marrakesh-Morocco. J. Infect. Public Health 2020, 13, 637–643. [Google Scholar]
- Negussie, A.; Mulugeta, G.; Bedru, A.; Ali, I.; Shimeles, D.; Lema, T.; Aseffa, A. Bacteriological profile and antimicrobial susceptibility pattern of blood culture isolates among septicemia suspected children in selected hospitals Addis Ababa, Ethiopia. Int. J. Biol. Med. Res. 2015, 6, 4709–4717. [Google Scholar]
- Latif, S.; Anwar, M.S.; Ahmad, I. Bacterial pathogens responsible for blood stream infection (BSI) and pattern of drug resistance in a tertiary care hospital of Lahore. Biomedica 2009, 25, 101–105. [Google Scholar]
- Dilnessa, T.; Bitew, A. Prevalence and antimicrobial susceptibility pattern of methicillin resistant Staphylococcus aureus isolated from clinical samples at Yekatit 12 Hospital Medical College, Addis Ababa, Ethiopia. BMC Infect. Dis. 2016, 16, 398–406. [Google Scholar] [CrossRef]
- Džamić, A.M.; Nikolić, B.J.; Giweli, A.A.; Mitić-Ćulafić, D.S.; Soković, M.D.; Ristić, M.S.; Knežević-Vukčević, J.B.; Marin, P.D. Libyan Thymus capitatus essential oil: Antioxidant, antimicrobial cytotoxic and colon pathogen adhesion-inhibition properties. J. Appl. Microbiol. 2015, 119, 389–399. [Google Scholar] [CrossRef]
- Moumni, S.; Elaissi, A.; Trabelsi, A.; Merghni, A.; Chraief, I.; Jelassi, B.; Chemli, R.; Ferchich, S. Correlation between chemical composition and antibacterial activity of some Lamiaceae species essential oils from Tunisia. BMC Complement. Altern. Med. 2020, 20, 103–117. [Google Scholar] [CrossRef]
- Ezzeddine, N.B.H.B.; Abdelkéfi, M.M.; Aissa, R.B.; Chaabouni, M.M. Antibacterial screening of Origanum majorana L. oil from Tunisia. J. Essent. Oil Res. 2001, 13, 295–297. [Google Scholar] [CrossRef]
- Sellami, I.H.; Maamouri, E.; Chahed, T.; Wannes, W.A.; Kchouk, M.E.; Marzouk, B. Effect of growth stage on the content and composition of the essential and phenolic fraction of sweet marjoram (Origanum majorana L.). Ind. Crop. Prod. 2009, 30, 395–402. [Google Scholar] [CrossRef]
- Elaissi, A.; Rouis, Z.; Mabrouk, S.; Salah, K.B.H.; Aouni, M.; Khouja, M.L.; Farhat, F.; Chemli, R.; Harzallah-Skhiri, F. Correlation between chemical compostion and antibacterial activity of essential oils from fifteen eucalyptus species growing in Korbous and Jbel Abderrahmam arboreta north East Tunisia. Molecules 2012, 17, 3044–3057. [Google Scholar] [CrossRef] [Green Version]
- Delamare, L.A.P.; Pisterello, M.I.T.; Artico, L.; Atti-Serafini, L.; Echeverrigary, S. Antibqcterial activity of the essential oils of Salvia officinalis L.and Salvia triloba L.cultivated in south Brazil. Food Chem. 2007, 100, 603–608. [Google Scholar]
- Dob, T.; Berramdane, T.; Dahmane, D.; Benabdelkader, T.; Chelghoum, C. Chemical composition of the essential oil of Salvia officinalis from Algeria. Chem. Nat. Compd. 2007, 43, 491–494. [Google Scholar] [CrossRef]
- Boutebouhart, H.; Didaoui, L.; Tata, S.; Sabaou, N. Effect of Extraction and Drying Method on Chemical Composition, and Evaluation of Antioxidant and Antimicrobial Activities of Essential Oils from Salvia officinalis L. J. Essent. Oil-Bear. Plants 2019, 22, 717–727. [Google Scholar] [CrossRef]
- Mahdjoubi, H.; Bakchiche, B.; Gherib, A.; Boudjelal, F.; Bardaweel, S.K. Essential Oil of Salvia officinalis L. from the Algerian Saharan Atlas: Chemical Composition and Biological Evaluation. Jordan J. Pharm. Sci. 2020, 13, 415–423. [Google Scholar]
- Craft, J.D.; Satyal, P.; Setzer, W.N. The Chemotaxonomy of Common Sage (Salvia officinalis) Based on the Volatile Constituents. Medicines 2017, 4, 47. [Google Scholar] [CrossRef]
- Benaliouche, F.; Sbartai, H.; Meraghni, M.; Hadj-Moussa, H.; Sbartai, I. Chemical characterization of the essential oil of Thymus vulgaris and evaluation of its antifungal activity on the apple scab pathogen (Venturia inaequalis L.). CATRINA 2021, 21, 57–65. [Google Scholar]
- Satyal, P.; Murray, B.L.; McFeeters, R.L.; Setzer, W.N. Essential Oil Characterization of Thymus vulgaris from Various Geographical Locations. Foods 2016, 5, 70. [Google Scholar] [CrossRef]
- Abdelli, W.; Sysak, A.; Bahri, F.; Szumny, A.; Pawlak, A.; Obmiska-Mrukowicz, B. Chemical composition, antimicrobial and cytotoxic activity of essential oils of Algerian Thymus vulgaris L. Acta Pol. Pharm. 2019, 76, 1051–1059. [Google Scholar] [CrossRef]
- Abdelli, W.; Bahri, F.; Romane, A.; Höferl, M.; Wanner, J.; Schmidt, E.; Jirovetz, L. Chemical Composition and Anti-inflammatory Activity of Algerian Thymus vulgaris Essential Oil. Nat. Prod. Commun. 2017, 12, 611–614. [Google Scholar] [CrossRef]
- Oliva, M.M.; Beltramino, E.; Gallucci, N.; Casero, C.; Zygadlo, J.; Demo, M. Antimicrobial activity of essential oils of Aloysia triphylla (L’Her.) Britton from different regions of Argentina. Bol. Latinoam. Caribe. Plant Med. Aromat. 2010, 9, 21–37. [Google Scholar]
- Ho, M.J.; Bakkalbasi, E.; Söll, D.; Miller, A.C. Drugging tRNA aminoacylation. RNA Biol. 2018, 15, 667–677. [Google Scholar] [CrossRef]
- Aliye, M.; Dekebo, A.; Tesso, H.; Abdo, T.; Eswaramoorthy, R.; Melaku, Y. Molecular docking analysis and evaluation of the antibacterial and antioxidant activities of the constituents of Ocimum cufodontii. Sci. Rep. 2021, 11, 10101–10111. [Google Scholar] [CrossRef]
- Salvi, P.; Kumar, G.; Gandass, N.; Kajal; Verma, A.; Rajarammohan, S.; Rai, N.; Gautam, V. Antimicrobial Potential of Essential Oils from Aromatic Plant Ocimum sp.; A Comparative Biochemical Profiling and In-SilicoAnalysis. Agronomy 2022, 12, 627. [Google Scholar] [CrossRef]
- Kitamura, Y.; Ebihara, A.; Agari, Y.; Shinkai, A.; Hirotsu, K.; Kuramitsu, S. Structure of d-alanine-d-alanine ligase from Thermusthermophilus HB8: Cumulative conformational change and enzyme–ligand interactions. Acta Crystallogr. Sect. D Biol. Crystallogr. 2009, 65, 1098–1106. [Google Scholar] [CrossRef] [Green Version]
- Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother. 2005, 49, 2474–2478. [Google Scholar] [CrossRef]
- Basu, J.; Chattopadhyay, R.; Kundu, M.; Chakrabarti, P. Purification and partial characterization of a penicillin-binding proteinfrom Mycobacterium smegmatis. J. Bacteriol. 1992, 174, 4829–4832. [Google Scholar] [CrossRef]
- Cappuccino, G.J.; Sherman, N. Biochemical activities of microorganisms. In Microbiology: A Laboratory Manual, 6th ed.; Pearson Education USA: Upper Saddle River, NJ, USA, 2001; Volume 5, pp. 133–194. [Google Scholar]
- Cheesbrough, M. Microbiological test. In District Laboratory Practice in Tropical Countries, 2nd ed.; Cambridge University Press: Cambridge, UK, 2009; Volume 7, pp. 1–226. [Google Scholar] [CrossRef]
- Jonathan, N. Screening for extended-spectrum beta-lactamase-producing pathogenic enterobacteria in district general hospitals. J. Clin. Microbiol. 2005, 43, 1488–1490. [Google Scholar] [CrossRef]
- Tan, T.Y.; Yong Ng, L.S.; He, J.; Koh, T.H.; Hsu, L.Y. Evaluation of screening methods to detect plasmid-mediated AmpC in Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis. Antimicrob. Agents Chemother. 2009, 53, 146–149. [Google Scholar] [CrossRef] [PubMed]
- Hidri, N.; Ploy, M.C. Instauration et surveillance d’un traitement antibiotique. In Bacteriologiemedicale, 2nd ed.; Denis, F., Ploy, M.C., Martin, C., Bingen, E., Quentin, R., Eds.; Elsevier Masson: Paris, France, 2016; Volume 42, pp. 585–594. [Google Scholar]
- Bosch, M.; Nart, J.; Audivert, S.; Bonachera, M.A.; Alemany, A.S.; Fuentes, M.C.; Cuné, J. Isolation and characterization of probiotic strains for improving oral health. Arch. Oral Biol. 2012, 57, 539–549. [Google Scholar] [CrossRef]
- Natarajan, D.; Britto, S.J.; Srinivasan, K.; Nagamurugan, N.; Mohanasundari, C.; Perumal, G. Anti-bacterial activity of Euphorbia fusiformis a rare medicinal herb. J. Ethnopharmacol. 2005, 102, 123–126. [Google Scholar] [CrossRef]
- Taleb, M.H.; Abdeltawab, N.F.; Shamma, R.N.; Abdelgayed, S.S.; Mohamed, S.S.; Farag, M.A.; Ramadan, M.A. Origanum vulgare L. Essential Oil as a Potential Anti-Acne Topical Nanoemulsion—In Vitro and In Vivo Study. Molecules 2018, 23, 2164. [Google Scholar] [CrossRef]
- Kaloustian, J.; Abou, L.; Mikail, C.; Amiot, M.J.; Portugal, H. Southern French thyme oils: Chromatographic study of chemotypes. J. Sci. Food Agric. 2005, 85, 2437–2444. [Google Scholar] [CrossRef]
- Adams, R. Identification of Essential Oil Components by Gas. In Chromatography/Mass Spectroscopy, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Liu, Y.; Yang, X.; Gan, J.; Chen, S.; Xiao, Z.-X.; Cao, Y. CB-Dock2: Improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res. 2022, 50, 159–164. [Google Scholar] [CrossRef]
- Farouk, A.; Mohsen, M.; Ali, H.; Shaaban, H.; Albaridi, N. Antioxidant Activity and Molecular Docking Study of Volatile Constituents from Different Aromatic Lamiaceous Plants Cultivated in Madinah Monawara, Saudi Arabia. Molecules 2021, 26, 4145. [Google Scholar] [CrossRef]
Isolates | Antibiotics (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
MRSA | P | OX | FOX | E | SP | L | DA | OFX | VA | AK |
50 | 46.42 | 46.4 | 10.71 | 10.71 | 1.78 | 1.78 | 2.67 | 0 | 3.57 | |
AMP | AMX | AMC | CF | CTX | CRO | IMP | AK | OFX | STX | |
M. morganii | 100 | 100 | 100 | 100 | 33.3 | 33.3 | 0 | 0 | 66.6 | 66.6 |
P. mirabilis | 20 | 20 | 10 | 10 | 10 | 10 | 0 | 0 | 20 | 10 |
P. penneri | 100 | 100 | 100 | 100 | 0 | 0 | 0 | 0 | 100 | 100 |
P. vulgaris | 100 | 100 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 |
Serratia spp. | 100 | 100 | 100 | 100 | 0 | 0 | 0 | 0 | 0 | 0 |
E. aerogene | 100 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | 0 | 100 |
S. marcescens | 100 | 100 | 100 | 100 | 40 | 40 | 0 | 0 | 20 | 40 |
Proteus spp. | 80 | 80 | 80 | 80 | 0 | 0 | 0 | 0 | 40 | 60 |
E. coli | 50 | 45 | 45 | 30 | 25 | 25 | 0 | 0 | 35 | 45 |
K. pneumoniae | 58.3 | 58.3 | 50 | 58.3 | 50 | 50 | 0 | 0 | 41.66 | 54.16 |
TIC | TCC | PRL | CAZ | AZM | IMP | AK | LEV | CT | STX | |
P. aeruginosa | 12.5 | 8.33 | 8.33 | 8.33 | 8.33 | 4.16 | 4.16 | 8.33 | 0 | 12.5 |
A. baumannii | 100 | 100 | 100 | 100 | 100 | 100 | 0 | 100 | 0 | 100 |
Strains | Bacterial-Growth Inhibition by Essential Oils | ||||
---|---|---|---|---|---|
R. officinalis | T. vulgaris | S. officinalis | P. roseum | M. pulegium | |
E. coli ATCC25953 | + | + | - | - | - |
K. pneumoniae ATCC700603 | + | - | - | - | - |
S. aureus ATCC6538P | + | +++ | ++ | - | + |
P. aeruginosa ATCC 27255 | - | - | - | - | - |
E. coli 2793ESBL | - | ++ | + | - | - |
MRSA 1392 | - | ++ | + | - | + |
A. baumannii 2873 | - | +++ | - | - | + |
S. marcescens 1393ESBL | - | +++ | + | - | + |
K. pneumoniae 3466ESBL | - | ++ | - | - | - |
Strains | T. vulgaris | S. officinalis | ||||
---|---|---|---|---|---|---|
IZ * (mm) | MIC (%) | MBC (%) | IZ (mm) | MIC (%) | MBC (%) | |
E. coli ESBL | 15 | 0.15% | 0.15% | 8 | 2.5% | 5% |
K. pneumoniae ESBL | 12 | 0.07% | 0.07% | 8 | 2.5% | 5% |
S. marcescens ESBL | 17 | 0.62% | 1.25% | 8 | 2.5% | 2.5% |
A. baumannii | 22 | 0.31% | 0.62% | 12 | 0.62% | >5% |
MRSA | 17 | 0.15% | 0.15% | 10 | 2.5% | >5% |
P. aeruginosa ATCC27853 | NA ** | / *** | / | NA | / | / |
E. coli ATCC25953ESBL | 14 | 1.25% | 2.5% | NA | / | / |
K. pneumoniae ATCC700603ESBL | 12 | 1.25% | 2.5% | NA | / | / |
S. aureus ATCC6538P | 26 | 0.62% | 2.5% | 12 | 1.25% | 5% |
S/N | Compound | RI a | LRI b | Salvia officinalisc | Thymus vulgaris | Identification Method d,e |
---|---|---|---|---|---|---|
1 | α-Pinene | 934 | 939 | 0.18 ± 0.02 | 0.14 ± 0.01 | KI, MS |
2 | Camphene | 951 | 954 | 0.52 ± 0.04 | 0.53 ± 0.03 | KI, MS |
3 | β-Pinene | 981 | 979 | 0.22 ± 0.01 | 0.51 ± 0.04 | KI, MS |
4 | 1,8-Cineole | 1033 | 1031 | 13.20 ± 0.7 | - | KI, MS, STD |
5 | α-Thujone | 1107 | 1102 | 34.91 ± 1.7 | - | KI, MS, STD |
6 | Camphor | 1143 | 1146 | 39.62 ± 1.1 | 0.21 ± 0.01 | KI, MS, STD |
7 | Isoborneol | 1157 | 1160 | 0.32 ± 0.01 | - | KI, MS |
8 | Borneol | 1162 | 1169 | 0.87 ± 0.03 | 76.42 ± 1.13 | KI, MS, STD |
9 | Thymol, methyl ether | 1234 | 1235 | - | 0.38 ± 0.05 | KI, MS |
10 | Thymol | 1291 | 1290 | - | 17.69 ± 0.61 | KI, MS, STD |
11 | β-Caryophyllene | 1416 | 1419 | 1.09 ± 0.06 | 1.09 ± 0.05 | KI, MS, STD |
12 | α-Humulene | 1457 | 1454 | 1.40 ± 0.05 | - | KI, MS |
13 | δ-Cadinene | 1524 | 1523 | 0.50 ± 0.02 | - | KI, MS |
14 | Caryophyllene oxide | 1585 | 1583 | 0.17 ± 0.01 | 0.86 ± 0.03 | KI, MS |
15 | Viridoflorol | 1593 | 1592 | 5.84 ± 0.15 | - | KI, MS, STD |
16 | Humulene oxide | 1602 | 1600 | 0.72 ± 0.03 | - | KI, MS |
Total | 99.56% | 97.83% | - |
Ligand | Binding Free Energy ΔG (kcal/mol) | ||||||
---|---|---|---|---|---|---|---|
1JZQ * | 1KZN | 2VEG | 2ZDQ | 3RAE | 3SRW | 3UDI | |
1,8-Cineole ** | −5.6 | −4.5 | −4.5 | −6.3 | −6.1 | −5.8 | −4.9 |
α-Thujone | −5.8 | −5.2 | −4.6 | −6.6 | −5.9 | −5.7 | −4.9 |
Camphor | −5.4 | −4.5 | −4.5 | −5.9 | −5.4 | −6.1 | −5.3 |
Borneol | −5.4 | −4.5 | −4.7 | −5.8 | −5.6 | −5.7 | −5.0 |
Thymol | −5.8 | −6.3 | −5.1 | −7.7 | −5.9 | −5.7 | −5.3 |
β-Caryophyllene | −6.8 | −6.3 | −5.4 | −6.6 | −6.0 | −7.8 | −5.9 |
α-Humulene | −7.0 | −5.5 | −5.9 | −6.0 | −6.3 | −7.6 | −6.0 |
Viridoflorol | −7.0 | −6.1 | −6.2 | −6.0 | −6.5 | −8.1 | −6.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aouf, A.; Bouaouina, S.; Abdelgawad, M.A.; Abourehab, M.A.S.; Farouk, A. In Silico Study for Algerian Essential Oils as Antimicrobial Agents against Multidrug-Resistant Bacteria Isolated from Pus Samples. Antibiotics 2022, 11, 1317. https://doi.org/10.3390/antibiotics11101317
Aouf A, Bouaouina S, Abdelgawad MA, Abourehab MAS, Farouk A. In Silico Study for Algerian Essential Oils as Antimicrobial Agents against Multidrug-Resistant Bacteria Isolated from Pus Samples. Antibiotics. 2022; 11(10):1317. https://doi.org/10.3390/antibiotics11101317
Chicago/Turabian StyleAouf, Abdelhakim, Sarah Bouaouina, Mohamed A. Abdelgawad, Mohammed A. S. Abourehab, and Amr Farouk. 2022. "In Silico Study for Algerian Essential Oils as Antimicrobial Agents against Multidrug-Resistant Bacteria Isolated from Pus Samples" Antibiotics 11, no. 10: 1317. https://doi.org/10.3390/antibiotics11101317
APA StyleAouf, A., Bouaouina, S., Abdelgawad, M. A., Abourehab, M. A. S., & Farouk, A. (2022). In Silico Study for Algerian Essential Oils as Antimicrobial Agents against Multidrug-Resistant Bacteria Isolated from Pus Samples. Antibiotics, 11(10), 1317. https://doi.org/10.3390/antibiotics11101317