Advances in Bacteriophage Therapy against Relevant MultiDrug-Resistant Pathogens
Abstract
:1. Introduction
2. Acinetobacter baumannii and Phage Therapy
2.1. In Vivo Phage Therapy against A. baumannii
2.2. Case Reports of Phage Administration against A. baumannii
3. Phage Therapy against Infections Caused by K. pneumoniae
3.1. In Vivo Phage Therapy Experiments against K. pneumoniae
3.2. Case Reports Using Phage Therapy against K. pneumoniae
4. Phage Therapy against E. coli
4.1. In Vivo Models of Phage Therapy against E. coli
4.2. Case Reports Using Phage Therapy against E. coli
5. Pseudomonas aeruginosa and Phage Therapy
5.1. Phage Therapy against MDR/XDR P. aeruginosa: In Vivo Studies
5.2. Case Reports of Phage Administration against P. aeruginosa
6. Clinical Trials
6.1. Clinical Trials against Poly-Infections
6.2. Clinical Trials against Mono-Infections
6.2.1. K. pneumoniae
6.2.2. E. coli
6.2.3. P. aeruginosa
7. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Marston, H.D.; Dixon, D.M.; Knisely, J.M.; Palmore, T.N.; Fauci, A.S. Antimicrobial Resistance. JAMA 2016, 316, 1193–1204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surveillance of Antimicrobial Resistance in Europe 2019. Available online: Https://Www.Ecdc.Europa.Eu/Sites/Default/Files/Documents/Surveillance-Antimicrobial-Resistance-Europe-2019.Pdf (accessed on 15 April 2021).
- Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. Available online: Https://Www.Who.Int/Medicines/Publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf (accessed on 15 April 2021).
- Kostakioti, M.; Hadjifrangiskou, M.; Hultgren, S.J. Bacterial Biofilms: Development, Dispersal, and Therapeutic Strategies in the Dawn of the Postantibiotic Era. Cold Spring Harb. Perspect. Med. 2013, 3, a010306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alanis, A.J. Resistance to Antibiotics: Are We in the Post-Antibiotic Era? Arch. Med. Res. 2005, 36, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Gordillo Altamirano, F.L.; Barr, J.J. Phage Therapy in the Postantibiotic Era. Clin. Microbiol. Rev. 2019, 32. [Google Scholar] [CrossRef] [Green Version]
- Kasman, L.M.; Porter, L.D. Bacteriophages. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Ghose, C.; Euler, C.W. Gram-Negative Bacterial Lysins. Antibiotics 2020, 9, 74. [Google Scholar] [CrossRef] [Green Version]
- Chanishvili, N. Phage Therapy—History from Twort and d’Herelle through Soviet experience to current approaches. In Advances in Virus Research; Elsevier: Amsterdam, The Netherlands, 2012; Volume 83, pp. 3–40. ISBN 978-0-12-394438-2. [Google Scholar]
- Reardon, S. Phage Therapy Gets Revitalized. Nature 2014, 510, 15–16. [Google Scholar] [CrossRef] [Green Version]
- McCallin, S.; Sacher, J.C.; Zheng, J.; Chan, B.K. Current State of Compassionate Phage Therapy. Viruses 2019, 11, 343. [Google Scholar] [CrossRef] [Green Version]
- McConnell, M.J.; Actis, L.; Pachón, J. Acinetobacter baumannii: Human Infections, Factors Contributing to Pathogenesis and Animal Models. FEMS Microbiol. Rev. 2013, 37, 130–155. [Google Scholar] [CrossRef] [Green Version]
- Ho, P.-L.; Cheng, V.C.-C.; Chu, C.-M. Antibiotic Resistance in Community-Acquired Pneumonia Caused by Streptococcus pneumoniae, Methicillin-Resistant Staphylococcus aureus, and Acinetobacter baumannii. Chest 2009, 136, 1119–1127. [Google Scholar] [CrossRef]
- Ong, C.W.M.; Lye, D.C.B.; Khoo, K.L.; Chua, G.S.W.; Yeoh, S.F.; Leo, Y.S.; Tambyah, P.A.; Chua, A.C. Severe Community-Acquired Acinetobacter baumannii Pneumonia: An Emerging Highly Lethal Infectious Disease in the Asia-Pacific. Respirology 2009, 14, 1200–1205. [Google Scholar] [CrossRef]
- Jones, A.; Morgan, D.; Walsh, A.; Turton, J.; Livermore, D.; Pitt, T.; Green, A.; Gill, M.; Mortiboy, D. Importation of Multidrug-Resistant Acinetobacter spp. Infections with Casualties from Iraq. Lancet Infect. Dis. 2006, 6, 317–318. [Google Scholar] [CrossRef]
- Tong, M.J. Septic Complications of War Wounds. JAMA 1972, 219, 1044–1047. [Google Scholar] [CrossRef]
- Munoz-Price, L.S.; Weinstein, R.A. Acinetobacter Infection. N. Engl. J. Med. 2008, 358, 1271–1281. [Google Scholar] [CrossRef]
- Vila, J.; Pachón, J. Therapeutic Options for Acinetobacter baumannii Infections. Expert. Opin. Pharmacother. 2008, 9, 587–599. [Google Scholar] [CrossRef]
- Yang, H.; Liang, L.; Lin, S.; Jia, S. Isolation and Characterization of a Virulent Bacteriophage AB1 of Acinetobacter baumannii. BMC Microbiol. 2010, 10, 131. [Google Scholar] [CrossRef] [Green Version]
- Lin, N.-T.; Chiou, P.-Y.; Chang, K.-C.; Chen, L.-K.; Lai, M.-J. Isolation and Characterization of Phi AB2: A Novel Bacteriophage of Acinetobacter baumannii. Res. Microbiol. 2010, 161, 308–314. [Google Scholar] [CrossRef]
- Schooley, R.T.; Biswas, B.; Gill, J.J.; Hernandez-Morales, A.; Lancaster, J.; Lessor, L.; Barr, J.J.; Reed, S.L.; Rohwer, F.; Benler, S.; et al. Development and Use of Personalized Bacteriophage-Based Therapeutic Cocktails to Treat a Patient with a Disseminated Resistant Acinetobacter baumannii Infection. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [Green Version]
- Aslam, S.; Lampley, E.; Wooten, D.; Karris, M.; Benson, C.; Strathdee, S.; Schooley, R.T. Lessons Learned from the First 10 Consecutive Cases of Intravenous Bacteriophage Therapy to Treat Multidrug-Resistant Bacterial Infections at a Single Center in the United States. Open Forum Infect. Dis. 2020, 7, ofaa389. [Google Scholar] [CrossRef]
- Brix, A.; Cafora, M.; Aureli, M.; Pistocchi, A. Animal Models to Translate Phage Therapy to Human Medicine. IJMS 2020, 21, 3715. [Google Scholar] [CrossRef]
- Shen, G.-H.; Wang, J.-L.; Wen, F.-S.; Chang, K.-M.; Kuo, C.-F.; Lin, C.-H.; Luo, H.-R.; Hung, C.-H. Isolation and Characterization of Φkm18p, a Novel Lytic Phage with Therapeutic Potential against Extensively Drug Resistant Acinetobacter baumannii. PLoS ONE 2012, 7, e46537. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.; Huang, G.; Zhang, Y.; Jiang, B.; Yang, Z.; Dong, Z.; You, B.; Yuan, Z.; Hu, F.; Zhao, Y.; et al. Phage Abp1 Rescues Human Cells and Mice from Infection by Pan-Drug Resistant Acinetobacter baumannii. Cell. Physiol. Biochem. 2017, 44, 2337–2345. [Google Scholar] [CrossRef] [PubMed]
- Grygorcewicz, B.; Roszak, M.; Golec, P.; Śleboda-Taront, D.; Łubowska, N.; Górska, M.; Jursa-Kulesza, J.; Rakoczy, R.; Wojciuk, B.; Dołęgowska, B. Antibiotics Act with VB_AbaP_AGC01 Phage against Acinetobacter baumannii in Human Heat-Inactivated Plasma Blood and Galleria mellonella Models. IJMS 2020, 21, 4390. [Google Scholar] [CrossRef] [PubMed]
- Blasco, L.; Ambroa, A.; Lopez, M.; Fernandez-Garcia, L.; Bleriot, I.; Trastoy, R.; Ramos-Vivas, J.; Coenye, T.; Fernandez-Cuenca, F.; Vila, J.; et al. Combined Use of the Ab105-2φΔCI Lytic Mutant Phage and Different Antibiotics in Clinical Isolates of Multi-Resistant Acinetobacter baumannii. Microorganisms 2019, 7, 556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, W.; Feng, Y.; Zong, Z. Two New Lytic Bacteriophages of the Myoviridae Family against Carbapenem-Resistant Acinetobacter baumannii. Front. Microbiol. 2018, 9, 850. [Google Scholar] [CrossRef] [PubMed]
- Leshkasheli, L.; Kutateladze, M.; Balarjishvili, N.; Bolkvadze, D.; Save, J.; Oechslin, F.; Que, Y.-A.; Resch, G. Efficacy of Newly Isolated and Highly Potent Bacteriophages in a Mouse Model of Extensively Drug-Resistant Acinetobacter baumannii Bacteraemia. J. Glob. Antimicrob. Resist. 2019, 19, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.; Park, J.-H.; Yong, D. Efficacy of Bacteriophage Treatment against Carbapenem-Resistant Acinetobacter Baumannii in Galleria mellonella Larvae and a Mouse Model of Acute Pneumonia. BMC Microbiol. 2019, 19, 70. [Google Scholar] [CrossRef] [PubMed]
- Kusradze, I.; Karumidze, N.; Rigvava, S.; Dvalidze, T.; Katsitadze, M.; Amiranashvili, I.; Goderdzishvili, M. Characterization and Testing the Efficiency of Acinetobacter baumannii Phage vB-GEC_Ab-M-G7 as an Antibacterial Agent. Front. Microbiol. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Regeimbal, J.M.; Jacobs, A.C.; Corey, B.W.; Henry, M.S.; Thompson, M.G.; Pavlicek, R.L.; Quinones, J.; Hannah, R.M.; Ghebremedhin, M.; Crane, N.J.; et al. Personalized Therapeutic Cocktail of Wild Environmental Phages Rescues Mice from Acinetobacter baumannii Wound Infections. Antimicrob. Agents Chemother. 2016, 60, 5806–5816. [Google Scholar] [CrossRef] [Green Version]
- Shivaswamy, V.C.; Kalasuramath, S.B.; Sadanand, C.K.; Basavaraju, A.K.; Ginnavaram, V.; Bille, S.; Ukken, S.S.; Pushparaj, U.N. Ability of Bacteriophage in Resolving Wound Infection Caused by Multidrug-Resistant Acinetobacter baumannii in Uncontrolled Diabetic Rats. Microb. Drug Resist. 2015, 21, 171–177. [Google Scholar] [CrossRef]
- Gordillo Altamirano, F.; Forsyth, J.H.; Patwa, R.; Kostoulias, X.; Trim, M.; Subedi, D.; Archer, S.K.; Morris, F.C.; Oliveira, C.; Kielty, L.; et al. Bacteriophage-Resistant Acinetobacter baumannii Are Resensitized to Antimicrobials. Nat. Microbiol. 2021, 6, 157–161. [Google Scholar] [CrossRef]
- Cha, K.; Oh, H.K.; Jang, J.Y.; Jo, Y.; Kim, W.K.; Ha, G.U.; Ko, K.S.; Myung, H. Characterization of Two Novel BacteriophagesiInfecting Multidrug-Resistant (MDR) Acinetobacter baumannii and Evaluation of Their Therapeutic Efficacy in Vivo. Front. Microbiol. 2018, 9, 696. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Tan, J.; Hao, Y.; Wang, Q.; Yan, X.; Wang, D.; Tuo, L.; Wei, Z.; Huang, G. Isolation and Characterization of a Novel Myophage Abp9 against Pandrug Resistant Acinetobacater baumannii. Front. Microbiol. 2020, 11, 506068. [Google Scholar] [CrossRef]
- Wu, M.; Hu, K.; Xie, Y.; Liu, Y.; Mu, D.; Guo, H.; Zhang, Z.; Zhang, Y.; Chang, D.; Shi, Y. A Novel Phage PD-6A3, and Its Endolysin Ply6A3, with Extended Lytic Activity against Acinetobacter baumannii. Front. Microbiol. 2019, 9, 3302. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, L.; Li, X.; Tan, D.; Cong, C.; Xu, Y. Efficacy of a Phage Cocktail in Controlling Phage Resistance Development in Multidrug Resistant Acinetobacter baumannii. Virus Res. 2019, 272, 197734. [Google Scholar] [CrossRef]
- Jasim, H.N.; Hafidh, R.R.; Abdulamir, A.S. Formation of Therapeutic Phage Cocktail and Endolysin to Highly Multi-Drug Resistant Acinetobacter baumannii: In Vitro and in Vivo Study. Iran. J. Basic Med. Sci. 2018, 21, 1100–1108. [Google Scholar] [CrossRef]
- Jeon, J.; Ryu, C.-M.; Lee, J.-Y.; Park, J.-H.; Yong, D.; Lee, K. In Vivo Application of Bacteriophage as a Potential Therapeutic Agent to Control OXA-66-like Carbapenemase-Producing Acinetobacter baumannii Strains Belonging to Sequence Type 357. Appl. Environ. Microbiol. 2016, 82, 4200–4208. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.-L.; Kuo, C.-F.; Yeh, C.-M.; Chen, J.-R.; Cheng, M.-F.; Hung, C.-H. Efficacy of Φkm18p Phage Therapy in a Murine Model of Extensively Drug-Resistant Acinetobacter baumannii Infection. Infect. Drug Resist. 2018, 11, 2301–2310. [Google Scholar] [CrossRef] [Green Version]
- Hua, Y.; Luo, T.; Yang, Y.; Dong, D.; Wang, R.; Wang, Y.; Xu, M.; Guo, X.; Hu, F.; He, P. Phage Therapy as a Promising New Treatment for Lung Infection Caused by Carbapenem-Resistant Acinetobacter Baumannii in Mice. Front. Microbiol. 2018, 8, 2659. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Mi, Z.; Niu, W.; An, X.; Yuan, X.; Liu, H.; Li, P.; Liu, Y.; Feng, Y.; Huang, Y.; et al. Intranasal Treatment with Bacteriophage Rescues Mice from Acinetobacter baumannii-Mediated Pneumonia. Future Microbiol. 2016, 11, 631–641. [Google Scholar] [CrossRef]
- Tan, X.; Chen, H.; Zhang, M.; Zhao, Y.; Jiang, Y.; Liu, X.; Huang, W.; Ma, Y. Clinical Experience of Personalized Phage Therapy against Carbapenem-Resistant Acinetobacter baumannii Lung Infection in a Patient with Chronic Obstructive Pulmonary Disease. Front. Cell. Infect. Microbiol. 2021, 11, 631585. [Google Scholar] [CrossRef]
- Wu, N.; Dai, J.; Guo, M.; Li, J.; Zhou, X.; Li, F.; Gao, Y.; Qu, H.; Lu, H.; Jin, J.; et al. Pre-Optimized Phage Therapy on Secondary Acinetobacter baumannii Infection in Four Critical COVID-19 Patients. Emerg. Microbes Infect. 2021, 10, 612–618. [Google Scholar] [CrossRef]
- Nir-Paz, R.; Gelman, D.; Khouri, A.; Sisson, B.M.; Fackler, J.; Alkalay-Oren, S.; Khalifa, L.; Rimon, A.; Yerushalmy, O.; Bader, R.; et al. Successful Treatment of Antibiotic-Resistant, Poly-Microbial Bone Infection with Bacteriophages and Antibiotics Combination. Clin. Infect. Dis. 2019, 69, 2015–2018. [Google Scholar] [CrossRef]
- LaVergne, S.; Hamilton, T.; Biswas, B.; Kumaraswamy, M.; Schooley, R.T.; Wooten, D. Phage Therapy for a Multidrug-Resistant Acinetobacter baumannii Craniectomy Site Infection. Open Forum Infect. Dis. 2018, 5, ofy064. [Google Scholar] [CrossRef] [Green Version]
- Herridge, W.P.; Shibu, P.; O’Shea, J.; Brook, T.C.; Hoyles, L. Bacteriophages of Klebsiella spp., Their Diversity and Potential Therapeutic Uses. J. Med. Microbiol. 2020, 69, 176. [Google Scholar]
- Sundaramoorthy, N.S.; Thothathri, S.; Bhaskaran, M.; GaneshPrasad, A.; Nagarajan, S. Phages from Ganges River Curtail in Vitro Biofilms and Planktonic Growth of Drug Resistant Klebsiella pneumoniae in a Zebrafish Infection Model. AMB Expr. 2021, 11, 27. [Google Scholar] [CrossRef]
- Thiry, D.; Passet, V.; Danis-Wlodarczyk, K.; Lood, C.; Wagemans, J.; De Sordi, L.; van Noort, V.; Dufour, N.; Debarbieux, L.; Mainil, J.G.; et al. New Bacteriophages against Emerging Lineages ST23 and ST258 of Klebsiella pneumoniae and Efficacy Assessment in Galleria mellonella Larvae. Viruses 2019, 11, 411. [Google Scholar] [CrossRef] [Green Version]
- Wintachai, P.; Naknaen, A.; Thammaphet, J.; Pomwised, R.; Phaonakrop, N.; Roytrakul, S.; Smith, D.R. Characterization of Extended-Spectrum-β-Lactamase Producing Klebsiella pneumoniae Phage KP1801 and Evaluation of Therapeutic Efficacy in Vitro and in Vivo. Sci. Rep. 2020, 10, 11803. [Google Scholar] [CrossRef]
- Hesse, S.; Malachowa, N.; Porter, A.R.; Freedman, B.; Kobayashi, S.D.; Gardner, D.J.; Scott, D.P.; Adhya, S.; DeLeo, F.R. Bacteriophage Treatment Rescues Mice Infected with Multidrug-Resistant Kleb. pneumoniae ST258. mBio 2021, 12, e00034-21. [Google Scholar] [CrossRef]
- Zhang, C.; Yuan, J.; Guo, C.; Ge, C.; Wang, X.; Wei, D.; Li, X.; Si, H.; Hu, C. Identification and Complete Genome of Lytic “Kp34likevirus” Phage VB_KpnP_Bp5 and Therapeutic Potency in the Treatment of Lethal Klebsiella pneumoniae Infections in Mice. Virus Res. 2021, 297, 198348. [Google Scholar] [CrossRef] [PubMed]
- Horváth, M.; Kovács, T.; Koderivalappil, S.; Ábrahám, H.; Rákhely, G.; Schneider, G. Identification of a Newly Isolated Lytic Bacteriophage against K24 Capsular Type, Carbapenem Resistant Klebsiella pneumoniae Isolates. Sci. Rep. 2020, 10, 5891. [Google Scholar] [CrossRef] [Green Version]
- Anand, T.; Virmani, N.; Kumar, S.; Mohanty, A.K.; Pavulraj, S.; Bera, B.C.; Vaid, R.K.; Ahlawat, U.; Tripathi, B.N. Phage Therapy for Treatment of Virulent Klebsiella pneumoniae Infection in a Mouse Model. J. Glob. Antimicrob. Resist. 2020, 21, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Kaabi, S.A.G.; Musafer, H.K. An Experimental Mouse Model for Phage Therapy of Bacterial Pathogens Causing Bacteremia. Microb. Pathog. 2019, 137, 103770. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Wu, N.; Bao, J.; Shi, X.; Ou, H.; Ye, S.; Zhao, W.; Wei, Z.; Cai, J.; Li, L.; et al. Heterogeneous Klebsiella pneumoniae Co-Infections Complicate Personalized Bacteriophage Therapy. Front. Cell. Infect. Microbiol. 2021, 10, 608402. [Google Scholar] [CrossRef] [PubMed]
- Cano, E.J.; Caflisch, K.M.; Bollyky, P.L.; Van Belleghem, J.D.; Patel, R.; Fackler, J.; Brownstein, M.J.; Horne, B.; Biswas, B.; Henry, M.; et al. Phage Therapy for Limb-Threatening Prosthetic Knee Klebsiella pneumoniae Infection: Case Report and in Vitro Characterization of Anti-Biofilm Activity. Clin. Infect. Dis. 2020, ciaa705. [Google Scholar] [CrossRef]
- Corbellino, M.; Kieffer, N.; Kutateladze, M.; Balarjishvili, N.; Leshkasheli, L.; Askilashvili, L.; Tsertsvadze, G.; Rimoldi, S.G.; Nizharadze, D.; Hoyle, N.; et al. Eradication of a Multidrug-Resistant, Carbapenemase-Producing Klebsiella pneumoniae Isolate Following Oral and Intra-Rectal Therapy with a Custom Made, Lytic Bacteriophage Preparation. Clin. Infect. Dis. 2020, 70, 1998–2001. [Google Scholar] [CrossRef]
- Bao, J.; Wu, N.; Zeng, Y.; Chen, L.; Li, L.; Yang, L.; Zhang, Y.; Guo, M.; Li, L.; Li, J.; et al. Non-Active Antibiotic and Bacteriophage Synergism to Successfully Treat Recurrent Urinary Tract Infection Caused by Extensively Drug-Resistant Klebsiella pneumoniae. Emerg. Microbes Infect. 2020, 9, 771–774. [Google Scholar] [CrossRef] [Green Version]
- Rostkowska, O.M.; Międzybrodzki, R.; Miszewska-Szyszkowska, D.; Górski, A.; Durlik, M. Treatment of Recurrent Urinary Tract Infections in a 60-year-old Kidney Transplant Recipient. The Use of Phage Therapy. Transpl. Infect. Dis. 2021, 23. [Google Scholar] [CrossRef]
- Kuipers, S.; Ruth, M.M.; Mientjes, M.; de Sévaux, R.G.L.; van Ingen, J. A Dutch Case Report of Successful Treatment of Chronic Relapsing Urinary Tract Infection with Bacteriophages in a Renal Transplant Patient. Antimicrob. Agents Chemother. 2019, 64, e01281-19. [Google Scholar] [CrossRef] [Green Version]
- Rubalskii, E.; Ruemke, S.; Salmoukas, C.; Boyle, E.C.; Warnecke, G.; Tudorache, I.; Shrestha, M.; Schmitto, J.D.; Martens, A.; Rojas, S.V.; et al. Bacteriophage Therapy for Critical Infections Related to Cardiothoracic Surgery. Antibiotics 2020, 9, 232. [Google Scholar] [CrossRef]
- Murray, P.R.; Rosenthal, K.S.; Pfaller, M.A. Medical Microbiology, 9th ed.; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Manohar, P.; Tamhankar, A.J.; Lundborg, C.S.; Ramesh, N. Isolation, Characterization and in Vivo Efficacy of Escherichia Phage MyPSH1131. PLoS ONE 2018, 13, e0206278. [Google Scholar] [CrossRef]
- Manohar, P.; Nachimuthu, R.; Lopes, B.S. The Therapeutic Potential of Bacteriophages Targeting Gram-Negative Bacteria Using Galleria mellonella Infection Model. BMC Microbiol. 2018, 18, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maura, D.; Galtier, M.; Le Bouguénec, C.; Debarbieux, L. Virulent Bacteriophages Can Target O104:H4 Enteroaggregative Escherichia coli in the Mouse Intestine. Antimicrob. Agents Chemother. 2012, 56, 6235–6242. [Google Scholar] [CrossRef] [Green Version]
- Abdulamir, A.S.; Jassim, S.A.A.; Abu Bakar, F. Novel Approach of Using a Cocktail of Designed Bacteriophages against Gut Pathogenic E. coli for Bacterial Load Biocontrol. Ann. Clin. Microbiol. Antimicrob. 2014, 13, 39. [Google Scholar] [CrossRef] [Green Version]
- Cepko, L.C.S.; Garling, E.E.; Dinsdale, M.J.; Scott, W.P.; Bandy, L.; Nice, T.; Faber-Hammond, J.; Mellies, J.L. Myoviridae Phage PDX Kills Enteroaggregative Escherichia coli without Human Microbiome Dysbiosis. J. Med. Microbiol. 2020, 69, 309–323. [Google Scholar] [CrossRef]
- Schneider, G.; Szentes, N.; Horváth, M.; Dorn, Á.; Cox, A.; Nagy, G.; Doffkay, Z.; Maróti, G.; Rákhely, G.; Kovács, T. Kinetics of Targeted Phage Rescue in a Mouse Model of Systemic Escherichia coli K1. Biomed. Res. Int. 2018, 2018, 7569645. [Google Scholar] [CrossRef] [Green Version]
- Bull, J.J.; Otto, G.; Molineux, I.J. In Vivo Growth Rates Are Poorly Correlated with Phage Therapy Success in a Mouse Infection Model. Antimicrob. Agents Chemother. 2012, 56, 949–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dufour, N.; Debarbieux, L.; Fromentin, M.; Ricard, J.-D. Treatment of Highly Virulent Extraintestinal Pathogenic Escherichia coli Pneumonia with Bacteriophages. Crit. Care Med. 2015, 43, e190–e198. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.; Akhter, M.Z.; Yasmin, M.; Ahsan, C.R.; Nessa, J. Local Bacteriophage Isolates Showed Anti-Escherichia coli O157:H7 Potency in an Experimental Ligated Rabbit Ileal Loop Model. Can. J. Microbiol. 2011, 57, 408–415. [Google Scholar] [CrossRef]
- Cafora, M.; Deflorian, G.; Forti, F.; Ferrari, L.; Binelli, G.; Briani, F.; Ghisotti, D.; Pistocchi, A. Phage Therapy against Pseudomonas aeruginosa Infections in a Cystic Fibrosis Zebrafish Model. Sci. Rep. 2019, 9, 1527. [Google Scholar] [CrossRef] [Green Version]
- Parkins, M.D.; Somayaji, R.; Waters, V.J. Epidemiology, Biology, and Impact of Clonal Pseudomonas aeruginosa Infections in Cystic Fibrosis. Clin. Microbiol. Rev. 2018, 31, e00019-18. [Google Scholar] [CrossRef] [Green Version]
- Rossitto, M.; Fiscarelli, E.V.; Rosati, P. Challenges and Promises for Planning Future Clinical Research into Bacteriophage Therapy against Pseudomonas aeruginosa in Cystic Fibrosis. An Argumentative Review. Front. Microbiol. 2018, 9, 775. [Google Scholar] [CrossRef] [PubMed]
- Pires, D.P.; Vilas Boas, D.; Sillankorva, S.; Azeredo, J. Phage Therapy: A Step Forward in the Treatment of Pseudomonas aeruginosa Infections. J. Virol. 2015, 89, 7449–7456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tümmler, B. Emerging Therapies against Infections with Pseudomonas aeruginosa. F1000Research 2019, 8, 1371. [Google Scholar] [CrossRef] [PubMed]
- López-Causapé, C.; Cabot, G.; del Barrio-Tofiño, E.; Oliver, A. The Versatile Mutational Resistome of Pseudomonas aeruginosa. Front. Microbiol. 2018, 9, 685. [Google Scholar] [CrossRef]
- Hill, C.; Mills, S.; Ross, R.P. Phages & Antibiotic Resistance: Are the Most Abundant Entities on Earth Ready for a Comeback? Future Microbiol. 2018, 13, 711–726. [Google Scholar] [CrossRef]
- Eichenberger, E.M.; Thaden, J.T. Epidemiology and Mechanisms of Resistance of Extensively Drug Resistant Gram-Negative Bacteria. Antibiotics 2019, 8, 37. [Google Scholar] [CrossRef] [Green Version]
- Hraiech, S.; Brégeon, F.; Rolain, J.-M. Bacteriophage-Based Therapy in Cystic Fibrosis-Associated Pseudomonas aeruginosa Infections: Rationale and Current Status. Drug Des. Devel. Ther. 2015, 9, 3653–3663. [Google Scholar] [CrossRef] [Green Version]
- Holloway, B.W.; Egan, J.B.; Monk, M. Lysogeny in Pseudomonas aeruginosa. Aust. J. Exp. Biol. Med. Sci. 1960, 38, 321–329. [Google Scholar] [CrossRef]
- Kellenberger, E.; Sechaud, J. Electron Microscopical Studies of Phage Multiplication. II. Production of Phage-Related Structures during Multiplication of Phages T2 and T4. Virology 1957, 3, 256–274. [Google Scholar] [CrossRef]
- Jeon, J.; Yong, D. Two Novel Bacteriophages Improve Survival in Galleria mellonella Infection and Mouse Acute Pneumonia Models Infected with Extensively Drug-Resistant Pseudomonas aeruginosa. Appl. Environ. Microbiol. 2019, 85. [Google Scholar] [CrossRef] [Green Version]
- Forti, F.; Roach, D.R.; Cafora, M.; Pasini, M.E.; Horner, D.S.; Fiscarelli, E.V.; Rossitto, M.; Cariani, L.; Briani, F.; Debarbieux, L.; et al. Design of a Broad-Range Bacteriophage Cocktail That Reduces Pseudomonas aeruginosa Biofilms and Treats Acute Infections in Two Animal Models. Antimicrob. Agents Chemother. 2018, 62, e02573-17. [Google Scholar] [CrossRef] [Green Version]
- Waters, E.M.; Neill, D.R.; Kaman, B.; Sahota, J.S.; Clokie, M.R.J.; Winstanley, C.; Kadioglu, A. Phage Therapy Is Highly Effective against Chronic Lung Infections with Pseudomonas aeruginosa. Thorax 2017, 72, 666–667. [Google Scholar] [CrossRef] [Green Version]
- Chang, R.Y.K.; Chen, K.; Wang, J.; Wallin, M.; Britton, W.; Morales, S.; Kutter, E.; Li, J.; Chan, H.-K. Proof-of-Principle Study in a Murine Lung Infection Model of Antipseudomonal Activity of Phage PEV20 in a Dry-Powder Formulation. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Quan, D.; Chang, R.Y.K.; Chow, M.Y.T.; Wang, Y.; Li, M.; Morales, S.; Britton, W.J.; Kutter, E.; Li, J.; et al. Synergistic Activity of Phage PEV20-Ciprofloxacin Combination Powder Formulation—A Proof-of-Principle Study in a P. aeruginosa Lung Infection Model. Eur. J. Pharm. Biopharm. 2021, 158, 166–171. [Google Scholar] [CrossRef]
- Pabary, R.; Singh, C.; Morales, S.; Bush, A.; Alshafi, K.; Bilton, D.; Alton, E.W.F.W.; Smithyman, A.; Davies, J.C. Antipseudomonal Bacteriophage Reduces Infective Burden and Inflammatory Response in Murine Lung. Antimicrob. Agents Chemother. 2016, 60, 744–751. [Google Scholar] [CrossRef] [Green Version]
- Jennes, S.; Merabishvili, M.; Soentjens, P.; Pang, K.W.; Rose, T.; Keersebilck, E.; Soete, O.; François, P.-M.; Teodorescu, S.; Verween, G.; et al. Use of Bacteriophages in the Treatment of Colistin-Only-Sensitive Pseudomonas aeruginosa Septicaemia in a Patient with Acute Kidney Injury—A Case Report. Crit. Care 2017, 21, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duplessis, C.; Biswas, B.; Hanisch, B.; Perkins, M.; Henry, M.; Quinones, J.; Wolfe, D.; Estrella, L.; Hamilton, T. Refractory Pseudomonas Bacteremia in a 2-Year-Old Sterilized by Bacteriophage Therapy. J. Pediatric Infect. Dis. Soc. 2018, 7, 253–256. [Google Scholar] [CrossRef] [Green Version]
- Tkhilaishvili, T.; Winkler, T.; Müller, M.; Perka, C.; Trampuz, A. Bacteriophages as Adjuvant to Antibiotics for the Treatment of Periprosthetic Joint Infection Caused by Multidrug-Resistant Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2019, 64. [Google Scholar] [CrossRef] [Green Version]
- Law, N.; Logan, C.; Yung, G.; Furr, C.-L.L.; Lehman, S.M.; Morales, S.; Rosas, F.; Gaidamaka, A.; Bilinsky, I.; Grint, P.; et al. Successful Adjunctive Use of Bacteriophage Therapy for Treatment of Multidrug-Resistant Pseudomonas aeruginosa Infection in a Cystic Fibrosis Patient. Infection 2019, 47, 665–668. [Google Scholar] [CrossRef]
- Aslam, S.; Courtwright, A.M.; Koval, C.; Lehman, S.M.; Morales, S.; Furr, C.L.; Rosas, F.; Brownstein, M.J.; Fackler, J.R.; Sisson, B.M.; et al. Early Clinical Experience of Bacteriophage Therapy in 3 Lung Transplant Recipients. Am. J. Transplant. 2019, 19, 2631–2639. [Google Scholar] [CrossRef] [PubMed]
- Maddocks, S.; Fabijan, A.P.; Ho, J.; Lin, R.C.Y.; Ben Zakour, N.L.; Dugan, C.; Kliman, I.; Branston, S.; Morales, S.; Iredell, J.R. Bacteriophage Therapy of Ventilator-Associated Pneumonia and Empyema Caused by Pseudomonas aeruginosa. Am. J. Respir. Crit. Care Med. 2019, 200, 1179–1181. [Google Scholar] [CrossRef] [PubMed]
- Chan, B.K.; Turner, P.E.; Kim, S.; Mojibian, H.R.; Elefteriades, J.A.; Narayan, D. Phage Treatment of an Aortic Graft Infected with Pseudomonas aeruginosa. Evol. Med. Public Health 2018, 2018, 60–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aleshkin, A.V.; Ershova, O.N.; Volozhantsev, N.V.; Svetoch, E.A.; Popova, A.V.; Rubalskii, E.O.; Borzilov, A.I.; Aleshkin, V.A.; Afanas’ev, S.S.; Karaulov, A.V.; et al. Phagebiotics in Treatment and Prophylaxis of Healthcare-Associated Infections. Bacteriophage 2016, 6, e1251379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bochkareva, S.S.; Aleshkin, A.V.; Ershova, O.N.; Novikova, L.I.; Karaulov, A.V.; Kiseleva, I.; Zulkarneev, E.; Ribalskii, E.; Zeigarnik, M. Anti-Phage Antibody Response in Phage Therapy against Healthcare-Associated Infections (HAIs). Infekc. Bolezn. 2017, 15, 35–40. [Google Scholar] [CrossRef]
- Jault, P.; Leclerc, T.; Jennes, S.; Pirnay, J.P.; Que, Y.-A.; Resch, G.; Rousseau, A.F.; Ravat, F.; Carsin, H.; Le Floch, R.; et al. Efficacy and Tolerability of a Cocktail of Bacteriophages to Treat Burn Wounds Infected by Pseudomonas aeruginosa (PhagoBurn): A Randomised, Controlled, Double-Blind Phase 1/2 Trial. Lancet Infect. Dis. 2019, 19, 35–45. [Google Scholar] [CrossRef]
- Patel, D.R.; Bhartiya, S.K.; Kumar, R.; Shukla, V.K.; Nath, G. Use of Customized Bacteriophages in the Treatment of Chronic Nonhealing Wounds: A Prospective Study. Int. J. Low. Extrem. Wounds 2021, 20, 37–46. [Google Scholar] [CrossRef]
- Sarker, S.A.; Berger, B.; Deng, Y.; Kieser, S.; Foata, F.; Moine, D.; Descombes, P.; Sultana, S.; Huq, S.; Bardhan, P.K.; et al. Oral Application of Escherichia coli Bacteriophage: Safety Tests in Healthy and Diarrheal Children from Bangladesh. Environ. Microbiol. 2017, 19, 237–250. [Google Scholar] [CrossRef]
- Sarker, S.A.; Sultana, S.; Reuteler, G.; Moine, D.; Descombes, P.; Charton, F.; Bourdin, G.; McCallin, S.; Ngom-Bru, C.; Neville, T.; et al. Oral Phage Therapy of Acute Bacterial Diarrhea with Two Coliphage Preparations: A Randomized Trial in Children from Bangladesh. EBioMedicine 2016, 4, 124–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarker, S.A.; McCallin, S.; Barretto, C.; Berger, B.; Pittet, A.-C.; Sultana, S.; Krause, L.; Huq, S.; Bibiloni, R.; Bruttin, A.; et al. Oral T4-like Phage Cocktail Application to Healthy Adult Volunteers from Bangladesh. Virology 2012, 434, 222–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fauconnier, A. Phage Therapy Regulation: From Night to Dawn. Viruses 2019, 11, 352. [Google Scholar] [CrossRef] [Green Version]
Infection Model | Bacteria | Phage Therapy | Antibiotic Combination | Outcome | References |
---|---|---|---|---|---|
Ex-vivo human lung epithelial A549 cells | 106 CFU of XDR strains | Φkm18p at MOIs of 0.01, 0.1 and 1 | No | Cell survival | [24] |
HeLa cells | 107 CFU of AB1 strain in 100µL of DMEM | Abp (108 PFU in 100 µL) after 2 h | No | Survival of treated cells was similar to the positive control group at 24 h | [25] |
Ex-vivo human heat-inactivated plasma blood and G. mellonella | Clinical strain | vB_AbaP_AGC01 | Phage alone and combined with gentamicin, ciprofloxacin and meropenem | Increased survival with antibiotic combination | [26] |
G. mellonella | Ab177_GEIH-2000 | Ab105-2phiΔCI | Alone, imipenem or meropenem | Increased survival with antibiotic combination after 72 h | [27] |
G. mellonella | Carbapenem-resistant strains | WCHABP1 and WCHABP12 | No | Survival increased from 20% to 75% in treated larvae | [28] |
G. mellonella and murine model of bacteremia | 105 CFU of ESBL strains in larvae model and 6 × 107 CFU in murine model | vB_AbaM_3054 and vB_AbaM_3090 via IP in mice 2 h post-infection | No | 100% survival after 80 h post-infection in larvae model, and 100% survival in murine model after 7 d | [29] |
G. mellonella and murine model of acute pneumoniae | Carbapenem-resistant strain | BΦ-R2096 at MOIs of 10 and 100 for larvae, and 0.1, 1 and 10 MOIs for mice | No | At 48 h, a MOI of 100 reached 50% of survival of larvae while a MOI of 10 obtained 10%. Only MOI of 1 exhibited 100% of survival in mice after 12 d | [30] |
Rat wound model | 5 × 108 CFU/mL | vB-GEC_Ab-M-G7 | No | Efficacy was achieved. Treated rats reduced symptoms and bacterial load by 5 log | [31] |
Full-thickness dorsal infected wound model | MDR AB5075 | Five-member cocktail | No | Neither increase of size nor necrosis was visualized in treated mice. Non-mature biofilm was present on treated mice | [32] |
Wound model in uncontrolled diabetic rats | MDR strain | 48 h post-infection | No | Treated mice reduced inflammation and no bacteria was isolated at day 8 | [33] |
Mouse model of sepsis | IP 106 CFU of AB900 and A9844 | ΦFG02 and ΦCO01 | No | Reduction of bacterial loads of treated mice with isolation of resistant strains sensitive to antibiotics | [34] |
Mouse model of pneumonia | 108 CFU of MDR strain with IN infection | Cocktail of PBAB08 and PBAB25 injected from day −1 to day +7 (109 PFU) | No | 100-fold reduction in lungs was obtained in treated mice respect to the control group. In addition, inflammatory response was studied after IN, IP and oral routes and only IP phages increased 20% IgE compared to controls | [35] |
Mouse model of sepsis | 5 × 107 CFU of panresistant ABZY9 | Immediate IP injection of Abp9 at MOI of 10 | No | 8 out of 12 treated mice survived | [36] |
Mouse model of sepsis | 109 CFU/mL | IP inoculation of 109 PFU vB_AbaP_PD-6A3 1 h post-infection | No | A survival rate of 60% was obtained compared to 0% of control group | [37] |
Mouse model of sepsis | 2 × 107 CFU of AB9 | 108 PFU of vB-AbaS-D0 and -D2 IP alone and combined | No | vB-AbaS-D2 and a mix of the 2 phages reached 90 and 100% of survival, respectively. vB-AbaS-D0 showed 50% of survival after 7 d | [38] |
Mouse model of sepsis | AB3 | Cocktail | No | 100% of survival 6 weeks after infection | [39] |
Mouse model of pneumonia | IN carbapenem-resistant strain | BΦ-C62 | No | 3 d post-treatment, no bacteria was found in lungs with a concomitant improvement of histological damage | [40] |
Mouse model of sepsis | ESBL strain (2–3 × 108 CFU/mouse BALB/c and 6 × 108 CFU/mouse C57BL/6) | ϕkm18p at MOIs of 0.1, 1 and 10 after 10 min and 1 h from infection | No | 100% of survival in mice treated after 10 min and 56% of survival in BALB/C and 46% in C57BL/6 treated after 1 h | [41] |
Mouse model of pneumonia in neutropenic mice | Carbapenem-resistant strain | SH-Ab15519 via IN 1 h post-infection at MOIs of 0.1, 1 and 10 and 2 h post-infection at 10 MOI | No | 90% of survival was obtained in all mice treated after 1 h. Mice treated 2 h post-infection showed 66.7% after 14 d | [42] |
Mouse model of pneumonia in neutropenic mice | 2 × 108 CFU MDR strain via IN | IN vB_AbaM-IME-AB2 at MOI of 0.1, 1 and 10. A MOI of 10 was administered 1 h, 4 h and 24 post-infection | No | Only a MOI of 10 obtained 100% of survival, and only mice treated 1 h post-infection showed 100% of survival | [43] |
Infection Model | Bacteria | Phage Therapy | Antibiotic Combination | Outcome | References |
---|---|---|---|---|---|
Zebrafish | 103 CFU IM | 108 PFU/mL IM 2 h post-infection | Alone or with streptomycin | 77% reduction of bacterial load with phage alone and 98% reduction combined with streptomycin | [49] |
G. mellonella | ST258 KL106 and ST23 K1 | vB_KpnP_KL106-ULIP47 and vB_KpnP_KL106-ULIP54 | No | Survival was similar to control the group for both strains | [50] |
G. mellonella | ESBL-producing strain | MOI of 1, 10, 100 and 1000 of KP1801 | No | >93% of survival was found for all MOIs as prophylaxis. Lower therapeutic effect | [51] |
Mouse model of sepsis | IP 5 × 107 CFU MDR ST258 strain | IP Pharr and ΦKpNIH-2 at different MOIs and times | No | Survival depended more on time than on dose, with good results at 1 h post-infection | [52] |
Mouse model of sepsis | 4 × 107 CFU IP | 2 × 108 PFU IP at −2, 0 and 2 h compared to infection. | No | After 7 d, 100% of survival was reached in treated mice at −2 and 0 h. Treatment of 2 h post-infection obtained 60% of survival | [53] |
Mouse infection model | 2 × 108 CFU K24 carbapenem-resistant 533 strain | 1.7 × 108 PFU after 10 min or 1 h post-infection IP of vB_KpnS_Kp13 | No | 100% of survival in phage administration after 10 min. 12.5% of survival after 1 h | [54] |
Mouse model of pneumonia | IN 109 CFU | IN VTCCBPA43 (tolerant to 80 °C) 2 h post-infection | No | Treated mice experienced a reduction in bacterial load and less lesions 48 post-infection. Phages were detected 6 d after infection | [55] |
Mouse model of sepsis | IP 108 CFU | Cocktail of phages | No | 1 and 2 MOIs produced 100% of survival, while 0.01 MOI was less effective. Cocktails obtained better results | [56] |
Infection Model | Bacteria | Phage Therapy | Outcome | References |
---|---|---|---|---|
G. mellonella | 106 CFU/mL of 31 strains | 103 PFU/mL myPSH1131 | A single dose of phage was enough to reduce the bacterial load, but 3 doses were necessary to achieve survival | [65] |
G. mellonella | 20 µL with 108 CFU/mL | 20 µL of 104 PFU/mL of ec311, doses every 6 h | 3 doses were necessary to achieve 100% survival | [66] |
Model of gut colonization in mice | EAEC O104:H4 55989Str strain | Cocktail of CLB_P1, CLB_P2 and CLB_P3 via oral by drinking water | Bacterial concentration got reduced after 24 h, but after phage withdraw, bacterial regrew | [67] |
Model of gut colonization in rats | EAEC, EHEC, EIEC, EPEC ETEC, DAEC | Mix of 140 phages for 20 d via drinking water and oral injection or feeding with vegetable capsules | Growth of exogenous E. coli flora was suppressed | [68] |
Mouse model of gut infection | 106 CFU of Entretoaggregative strain | 4 × 108 PFU of PDX | A reduction of the goal target bacteria was achieved in murine feces without dysbacteriosis, but not in human feces in vitro | [69] |
Mouse model of sepsis | 108 CFU/mL | IP 5 × 109 CFU/mL of a cocktail | 100% of survival in treated mice after 100 h | [56] |
Mouse model of sepsis | IV K1 IHE3034 | 107 PFU of IK1 | High protection. Phages were accumulated in spleen | [70] |
Mouse model of muscular infection | IM 40–50 µL of 108 CFU/mL of O18:K1:H7 | 106 PFU of K1 dep and K1 ind | K1dep resolved 100% of infections and K1 idp resolved 30% of cases | [71] |
Mouse model of pneumonia | IN 536 bioluminescent and VAP strain | 536_P1 and 536_P7 with MOI of 0.3, 3 and 10 | 100% of survival in all treated mice | [72] |
Rabbit ileal loop | 0.5 mL of 108 CFU/mL O157:H7 | Cocktail with 0.5 mL of 106 PFU/mL of PAH6 and P2BH2 | Reduction of accumulation of liquid in loop and decreased bacteria load | [73] |
Infection Model | Bacteria | Phage Therapy | Antibiotic Combination | Outcome | References |
---|---|---|---|---|---|
G. mellonella and mouse | 105 CFU/mL YMC11/02/R656 strains and IN in mouse | Bφ-R656 and Bφ-R1836 at MOIs of 100, 10 and 1 (IN in mice) | No | Treatment with Bφ-R656 and Bφ-R1836 increased 50 and 60% of survival in larvae and 66 and 83% in mice, respectively | [85] |
G. mellonella and mouse | 109 CFU/mL PAK-lumi in larvae and 107 in mouse IN | Cocktail with PYO2, DEV, E215, E217, PAK_P1 and PAK_P4 phages (IN in mice) | No | In larvae: MOI of 8 increased survival from 17% to 49% and MOI of 25 increased to 63% after 20 h. Prophylaxis also was provided. In mice: 100% of survival with 0.05 and 1 MOIs | [86] |
Mouse model of pneumoniae | 2 × 106 CFU/mL IN | PELP20 IN administration 24, 36, 48, 72, 144 and 156 h post-infection | No | Complete clearance in 100% of mice treated at 24, 36, 48 and 72 h, and 70% of clearance in mice treated at 144 and 156 h | [87] |
Mouse model of pneumoniae | 2.5 × 106 CFU FADDI-PA001 intratracheal administration | 2 × 107 PFU/mg intratracheally aerosolized PEV20 phage | No | Bacterial burden reduction of treated mice, from 1.3 × 1010 CFU to 6 × 104 CFU in lungs | [88] |
Mouse model of pneumoniae | MDR strain | 1 mg with 106 PFU PEV20 aerosolized into the trachea 2 h post-infection | Ciprofloxacin (0.33 mg) intotracheal aerosolized 2 h post-infection | Combined treatment with antibiotic reduced bacterial load by 5.9 log10 | [89] |
Preventive mouse infection model | 2.5 × 107 CFU/mL IN | 1.2 × 109 PFU/mL IN cocktail 48 h prior infection | No | After 24 h of bacterial challenge, more than 70% of pre-treated mice cleared the infection and the other 30% harboured up to 20 CFU/mL | [90] |
Zebrafish | 30 CFU/embryo | 5 × 109 PFU/mL of a cocktail of four phages | Ciprofloxacin 100 µg/mL | CF embryos reduced lethality from 83% to 52% and antibiotic combination increased survival | [74] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Broncano-Lavado, A.; Santamaría-Corral, G.; Esteban, J.; García-Quintanilla, M. Advances in Bacteriophage Therapy against Relevant MultiDrug-Resistant Pathogens. Antibiotics 2021, 10, 672. https://doi.org/10.3390/antibiotics10060672
Broncano-Lavado A, Santamaría-Corral G, Esteban J, García-Quintanilla M. Advances in Bacteriophage Therapy against Relevant MultiDrug-Resistant Pathogens. Antibiotics. 2021; 10(6):672. https://doi.org/10.3390/antibiotics10060672
Chicago/Turabian StyleBroncano-Lavado, Antonio, Guillermo Santamaría-Corral, Jaime Esteban, and Meritxell García-Quintanilla. 2021. "Advances in Bacteriophage Therapy against Relevant MultiDrug-Resistant Pathogens" Antibiotics 10, no. 6: 672. https://doi.org/10.3390/antibiotics10060672
APA StyleBroncano-Lavado, A., Santamaría-Corral, G., Esteban, J., & García-Quintanilla, M. (2021). Advances in Bacteriophage Therapy against Relevant MultiDrug-Resistant Pathogens. Antibiotics, 10(6), 672. https://doi.org/10.3390/antibiotics10060672