Association of Antimicrobial Resistance in Campylobacter spp. in Broilers and Turkeys with Antimicrobial Use
Abstract
:1. Introduction
2. Results
2.1. Development of AMU in Broilers and Turkeys
2.2. Development of AMR
2.3. Association of AMR and AMU
3. Discussion
4. Materials and Methods
4.1. Data on AMR of Campylobacter spp. in Broilers and Turkeys
4.2. Data on AMU in Broilers and Turkeys
4.3. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EFSA; ECDC. The European Union One Health 2019 Zoonoses Report. EFSA J. 2021, 19, 6406. [Google Scholar] [CrossRef]
- Rosner, B.M.; Schielke, A.; Didelot, X.; Kops, F.; Breidenbach, J.; Willrich, N.; Golz, G.; Alter, T.; Stingl, K.; Josenhans, C.; et al. A combined case-control and molecular source attribution study of human Campylobacter infections in Germany, 2011–2014. Sci. Rep. 2017, 7, 5139. [Google Scholar] [CrossRef]
- ECDC; EFSA; EMA. ECDC/EFSA/EMA second joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals. Joint Interagency Antimicrobial Consumption and Resistance Analysis (JIACRA) Report. EFSA J. 2017, 15, 4872. [Google Scholar] [CrossRef]
- Mughini-Gras, L.; Penny, C.; Ragimbeau, C.; Schets, F.M.; Blaak, H.; Duim, B.; Wagenaar, J.A.; de Boer, A.; Cauchie, H.M.; Mossong, J.; et al. Quantifying potential sources of surface water contamination with Campylobacter jejuni and Campylobacter coli. Water Res. 2016, 101, 36–45. [Google Scholar] [CrossRef]
- European Commission. Commission Implementing Decision of 12 November 2013 on the monitoring and reporting of antimicrobial resistance in zoonotic and commensal bacteria, 2013/652/EU. Off. J. Eur. Union 2013, L303, 26–39. [Google Scholar]
- EFSA; ECDC. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2017/2018. EFSA J. 2020, 18, 6007. [Google Scholar] [CrossRef] [Green Version]
- Luiken, R.E.C.; Van Gompel, L.; Munk, P.; Sarrazin, S.; Joosten, P.; Dorado-García, A.; Borup Hansen, R.; Knudsen, B.E.; Bossers, A.; Wagenaar, J.A.; et al. Associations between antimicrobial use and the faecal resistome on broiler farms from nine European countries. J. Antimicrob. Chemother. 2019, 74, 2596–2604. [Google Scholar] [CrossRef]
- Taylor, N.M.; Wales, A.D.; Ridley, A.M.; Davies, R.H. Farm level risk factors for fluoroquinolone resistance in E. coli and thermophilic Campylobacter spp. on poultry farms. Avian Pathol. 2016, 45, 559–568. [Google Scholar] [CrossRef] [Green Version]
- Dorado-Garcia, A.; Mevius, D.J.; Jacobs, J.J.; Van Geijlswijk, I.M.; Mouton, J.W.; Wagenaar, J.A.; Heederik, D.J. Quantitative assessment of antimicrobial resistance in livestock during the course of a nationwide antimicrobial use reduction in the Netherlands. J. Antimicrob. Chemother. 2016, 71, 3607–3619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tenhagen, B.A.; Alt, K.; Kasbohrer, A.; Kollas, C.; Pfefferkorn, B.; Naumann, S.; Wiehle, L.; Thieck, M.; Stingl, K. Comparison of Antimicrobial Resistance of Thermophilic Campylobacter Isolates from Conventional and Organic Turkey Meat in Germany. Foodborne Pathog. Dis. 2020, 17, 750–757. [Google Scholar] [CrossRef] [PubMed]
- Kempf, I.; Kerouanton, A.; Bougeard, S.; Nagard, B.; Rose, V.; Mourand, G.; Osterberg, J.; Denis, M.; Bengtsson, B.O. Campylobacter coli in Organic and Conventional Pig Production in France and Sweden: Prevalence and Antimicrobial Resistance. Front. Microbiol. 2017, 8, 955. [Google Scholar] [CrossRef]
- Koper, L.M.; Bode, C.; Bender, A.; Reimer, I.; Heberer, T.; Wallmann, J. Eight years of sales surveillance of antimicrobials for veterinary use in Germany-What are the perceptions? PLoS ONE 2020, 15, e0237459. [Google Scholar] [CrossRef]
- Flor, M.; Käsbohrer, A.; Kaspar, H.; Tenhagen, B.-A.; Wallmann, J. Beiträge der Arbeitsgruppe Antibiotikaresistenz zur Evaluierung der 16. AMG-Novelle–Themenkomplex 1: Entwicklung der Antibiotikaabgabe- und -Verbrauchsmengen Sowie der Therapiehäufigkeit; Bundesministerium für Ernährung und Landwirtschaft: Berlin, Germany, 2019. [Google Scholar]
- Agresti, A.; Coull, B.A. Approximate is Better than “Exact” for Interval Estimation of Binomial Proportions. Am. Stat. 1998, 52, 119–126. [Google Scholar] [CrossRef]
- Wallmann, J.; Bender, A.; Bode, C.; Köper, L.M.; Heberer, T. Abgabemengen antimikrobiell wirksamer Stoffe in Deutschland 2016. Auswertung der nach DIMDI-AMV eingereichten Daten 2016 und Vergleich mit den Daten aus den Vorjahren. Dtsch. Tierärzteblatt 2017, 65, 1650–1659. [Google Scholar]
- EMA. Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2018—Trends from 2010 to 2018. Tenth ESVAC Report; European Medicines Agency (EMA): Amsterdam, The Netherlands, 2020; p. 184.
- BMEL. Bericht des Bundesministeriums für Ernährung und Landwirtschaft über die Evaluierung des Antibiotikaminimierungskonzepts der 16. AMG-Novelle; Bundesministerium für Ernährung und Landwirtschaft: Berlin, Germany, 2019. [Google Scholar]
- SDA. Het Gebruik van Antibiotica bij Landbouwhuisdieren in 2019: Trends, Benchmarken, Bedrijven en Dierenartsen; Autoriteit Diergeneesmiddelen, SDa: Utrecht, The Netherlands, 2020; p. 36. [Google Scholar]
- Joosten, P.; Sarrazin, S.; Van Gompel, L.; Luiken, R.E.C.; Mevius, D.J.; Wagenaar, J.A.; Heederik, D.J.J.; Dewulf, J. Quantitative and qualitative analysis of antimicrobial usage at farm and flock level on 181 broiler farms in nine European countries. J. Antimicrob. Chemother. 2019, 74, 798–806. [Google Scholar] [CrossRef]
- ITAVI. Réseau Professionnel de Références sur les Usages d’Antibiotiques en Élevage Avicole; ITAVI: Lyon, France, 2019. [Google Scholar]
- Mesa Varona, O.; Chaintarli, K.; Muller-Pebody, B.; Anjum, M.F.; Eckmanns, T.; Norstrom, M.; Boone, I.; Tenhagen, B.A. Monitoring Antimicrobial Resistance and Drug Usage in the Human and Livestock Sector and Foodborne Antimicrobial Resistance in Six European Countries. Infect. Drug Resist. 2020, 13, 957–993. [Google Scholar] [CrossRef] [Green Version]
- Signorini, M.L.; Rossler, E.; Diaz David, D.C.; Olivero, C.R.; Romero-Scharpen, A.; Soto, L.P.; Astesana, D.M.; Berisvil, A.P.; Zimmermann, J.A.; Fusari, M.L.; et al. Antimicrobial Resistance of Thermotolerant Campylobacter Species Isolated from Humans, Food-Producing Animals, and Products of Animal Origin: A Worldwide Meta-Analysis. Microb. Drug Resist. 2018, 24, 1174–1190. [Google Scholar] [CrossRef]
- Varga, C.; Guerin, M.T.; Brash, M.L.; Slavic, D.; Boerlin, P.; Susta, L. Antimicrobial resistance in Campylobacter jejuni and Campylobacter coli isolated from small poultry flocks in Ontario, Canada: A two-year surveillance study. PLoS ONE 2019, 14, e0221429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA; ECDC. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2016. EFSA J. 2018, 16, 5182. [Google Scholar] [CrossRef]
- SDA. Het Gebruik van Antibiotica bij Landbouwhuisdieren in 2016: Trends, Benchmarken, Bedrijven en Dierenartsen; Autoriteit Diergeneesmiddelen, SDa: Utrecht, The Netherlands, 2017; p. 93. [Google Scholar]
- Agunos, A.; Gow, S.P.; Léger, D.F.; Carson, C.A.; Deckert, A.E.; Bosman, A.L.; Loest, D.; Irwin, R.J.; Reid-Smith, R.J. Antimicrobial Use and Antimicrobial Resistance Indicators-Integration of Farm-Level Surveillance Data From Broiler Chickens and Turkeys in British Columbia, Canada. Front. Vet. Sci. 2019, 6, 131. [Google Scholar] [CrossRef]
- Luo, N.; Pereira, S.; Sahin, O.; Lin, J.; Huang, S.; Michel, L.; Zhang, Q. Enhanced in vivo fitness of fluoroquinolone-resistant Campylobacter jejuni in the absence of antibiotic selection pressure. Proc. Natl. Acad. Sci. USA 2005, 102, 541–546. [Google Scholar] [CrossRef] [Green Version]
- Kovac, J.; Cadez, N.; Stessl, B.; Stingl, K.; Gruntar, I.; Ocepek, M.; Trkov, M.; Wagner, M.; Smole Mozina, S. High genetic similarity of ciprofloxacin-resistant Campylobacter jejuni in central Europe. Front. Microbiol. 2015, 6, 1169. [Google Scholar] [CrossRef] [Green Version]
- Technical University of Denmark–National Food Institute. Comparative genomics of quinolone-resistant and susceptible Campylobacter jejuni of poultry origin from major poultry producing European countries (GENCAMP). EFSA Supporting Publ. 2018, EN-1398, 36. [Google Scholar] [CrossRef] [Green Version]
- Zeitouni, S.; Kempf, I. Fitness cost of fluoroquinolone resistance in Campylobacter coli and Campylobacter jejuni. Microb. Drug Resist. 2011, 17, 171–179. [Google Scholar] [CrossRef]
- WHO. Critically Important Antimicrobials for Human Medicine, 6th Revision 2018; World Health Organisation: Genf, Switzerland, 2019; p. 52. [Google Scholar]
- Noormohamed, A.; Fakhr, M.K. Prevalence and Antimicrobial Susceptibility of Campylobacter spp. in Oklahoma Conventional and Organic Retail Poultry. Open Microbiol. J. 2014, 8, 130–137. [Google Scholar] [CrossRef] [Green Version]
- Bolinger, H.; Kathariou, S. The Current State of Macrolide Resistance in Campylobacter spp.: Trends and Impacts of Resistance Mechanisms. Appl. Environ. Microbiol. 2017, 83. [Google Scholar] [CrossRef] [Green Version]
- Zeitouni, S.; Collin, O.; Andraud, M.; Ermel, G.; Kempf, I. Fitness of macrolide resistant Campylobacter coli and Campylobacter jejuni. Microb. Drug Resist. 2012, 18, 101–108. [Google Scholar] [CrossRef]
- Florez-Cuadrado, D.; Ugarte-Ruiz, M.; Quesada, A.; Palomo, G.; Dominguez, L.; Porrero, M.C. Description of an erm(B)-carrying Campylobacter coli isolate in Europe. J. Antimicrob. Chemother. 2016, 71, 841–843. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, M.; Deng, F.; Shen, Z.; Wu, C.; Zhang, J.; Zhang, Q.; Shen, J. Emergence of multidrug-resistant Campylobacter species isolates with a horizontally acquired rRNA methylase. Antimicrob. Agents Chemother. 2014, 58, 5405–5412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- BMEL. Allgemeine Verwaltungsvorschrift über die Erfassung, Auswertung und Veröffentlichung von Daten über das Auftreten von Zoonosen und Zoonoseerregern entlang der Lebensmittelkette (AVV Zoonosen Lebensmittelkette), Zuletzt geändert durch Verwaltungsvorschrift vom 19. Juni 2017 (BAnz AT 23.06.2017 B2). Bundesanzeiger 2012, Nr.27, 623. [Google Scholar]
- BVL. Berichte zur Lebensmittelsicherheit–Zoonosen-Monitoring 2016; Bundesamt für Verbraucherschutz und Lebensmittelsicherheit: Berlin, Germany, 2017; Volume 11, p. 77.
- BVL. Berichte zur Lebensmittelsicherheit—Zoonosen-Monitoring 2014; Bundesamt für Verbraucherschutz und Lebensmittelsicherheit: Berlin, Germany, 2016; Volume 10, p. 63.
- BVL. Berichte zur Lebensmittelsicherheit 2013—Zoonosen-Monitoring; Bundesamt für Verbraucherschutz und Lebensmittelsicherheit: Berlin, Germany, 2015; Volume 9, p. 70.
- BVL. Berichte zur Lebensmittelsicherheit 2012—Zoonosen-Monitoring; Bundesamt für Verbraucherschutz und Lebensmittelsicherheit: Berlin, Germany, 2014; Volume 8, p. 72.
- BVL. Berichte zur Lebensmittelsicherheit 2011—Zoonosen-Monitoring; Bundesamt für Verbraucherschutz und Lebensmittelsicherheit: Berlin, Germany, 2013; Volume 7, p. 76.
- BVL. Berichte zur Lebensmittelsicherheit 2010—Zoonosen-Monitoring; Bundesamt für Verbraucherschutz und Lebensmittelsicherheit: Berlin, Germany, 2012; Volume 6, p. 61.
- Mayr, A.M.; Lick, S.; Bauer, J.; Tharigen, D.; Busch, U.; Huber, I. Rapid detection and differentiation of Campylobacter jejuni, Campylobacter coli, and Campylobacter lari in food, using multiplex real-time PCR. J. Food Prot. 2010, 73, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. M45-A: Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015. [Google Scholar]
- Clinical and Laboratory Standards Institute. CLSI VET06: Methods for Antimicrobial Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria Isolated from Animals; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
- Anonymous. Arzneimittelgesetz in der Fassung der Bekanntmachung vom 12. Dezember 2005 (BGBl. I S. 3394), das Zuletzt Durch Artikel 1 der Verordnung vom 19. Mai 2021 (BGBl. I S. 1164) Geändert Worden Ist; Bundesregierung: Berlin, Germany, 2021. [Google Scholar]
- Cormican, M.; Hopkins, S.; Jarlier, V.; Reilly, J.; Simonsen, G.S.; Strauss, R.; Vandenberg, O.; Zabicka, D.; Zarb, P.; Catchpole, M.; et al. ECDC, EFSA and EMA Joint Scientific Opinion on a list of outcome indicators as regards surveillance of antimicrobial resistance and antimicrobial consumption in humans and food-producing animals. EFSA J. 2017, 15, 70. [Google Scholar] [CrossRef]
Species/6 Month Period | Aminoglycosides | Fluoroquinolones | Macrolides | Tetracyclines | Total |
---|---|---|---|---|---|
Broilers | |||||
2014/2 (July–December) | 5.83 | 1.76 | 1.05 | 0.41 | 25.97 |
2015/1 (January–June) | 4.40 | 1.88 | 0.97 | 0.18 | 20.42 |
2015/2 (July–December) | 3.28 | 1.80 | 0.63 | 0.15 | 16.15 |
2016/1 (January–June) | 3.43 | 1.61 | 0.49 | 0.24 | 16.57 |
2016/2 (July–December) | 5.13 | 1.38 | 0.30 | 0.11 | 18.25 |
2016 combined 1 | 4.28 | 1.50 | 0.39 | 0.17 | 17.41 |
% change 2014–2016 2 | −26.6 | −14.7 | −62.4 | −57.5 | −33.0 |
Turkeys | |||||
2014/2 (July–December) | 0.59 | 3.47 | 2.08 | 2.27 | 33.01 |
2015/1 (January–June) | 0.72 | 3.48 | 1.68 | 1.85 | 29.21 |
2015/2 (July–December) | 0.50 | 2.76 | 1.57 | 1.98 | 25.73 |
2016/1 (January–June) | 0.57 | 2.92 | 1.27 | 1.85 | 24.40 |
2016/2 (July–December) | 0.65 | 2.19 | 1.29 | 1.39 | 22.37 |
2016 combined 1 | 0.61 | 2.55 | 0.50 | 1.28 | 23.39 |
% change 2014–2016 2 | +3.6 | −26.5 | −38.1 | −38.3 | −29.2 |
Species, Origin Year No. of Isolates | Nalidixic Acid | Ciprofloxacin | Gentamicin | Streptomycin | Tetracycline | Erythromycin | Fully Susceptible |
---|---|---|---|---|---|---|---|
C. coli, Broiler | |||||||
2011, N = 25 | 88.0 (69.2–96.7) | 92.0 (73.9–98.9) | 0 (0–23.1) | 12.0 (3.5–31.0) | 80.0 (60.3–91.4) | 32.0 (17.2–51.8) | 0 (0–16.1) |
2013, N = 16 | 81.3 (56.2–94.2) | 81.3 (56.2–94.2) | 0 (0–4.1) | 6.3 (0–30.6) | 68.8 (44.1–85.9) | 0 (0–23.1) | 12.5 (2.5–37.5) |
2014, N = 112 | 79.5 (71.0–86.0) | 82.1 (73.9–88.2) | 0 (0–11.2) | 12.5 (7.5–20.1) | 82.1 (73.9–88.2) | 23.2 (16.4–31.9) | 6.3 (2.9–12.6) |
2016, N = 38 | 84.2 (69.2–92.9) | 92.1 (78.5–98.0) | 0 (0–2.4) | 18.4 (9.0–33.8) | 86.8 (72.1–94.6) | 5.3 (0.6–18.4) | 2.6 (0–14.9) |
C. coli, Turkey | |||||||
2010, N = 76 | 92.1 (83.5–96.6) | 93.4 (85.2–97.5) | 0 (0–5.7) | 13.2 (7.2–22.8) | 92.1 (83.4–96.6) | 64.5 (53.2–74.3) | 2.6 (0.2–9.8) |
2012, N = 79 | 87.3 (78.1–93.2) | 92.4 (84.1–96.8) | 0.4 (0–2.4) | 16.5 (9.8–26.4) | 93.7 (85.6–97.5) | 35.4 (25.8–46.5) | 3.8 (0.9–11.1) |
2014, N = 263 | 87.8 (83.3–91.3) | 91.6 (87.6–94.5) | 0 (0–2.7) | 14.1 (10.4–18.8) | 88.2 (83.7–91.6) | 35.0 (29.5–40.9) | 2.7 (1.2–5.5) |
2016, N = 169 | 88.8 (83.0–92.8) | 95.3 (90.8–97.7) | 0.2 (0–1.1) | 13.6 (9.2–19.7) | 78.7 (71.9–84.2) | 14.2 (9.7–20.4) | 2.4 (0.7–6.2) |
C. jejuni, Broiler | |||||||
2011, N = 60 | 58.3 (45.7–69.9) | 65.0 (52.3–75.9) | 0 (0–10.4) | 5.0 (1.2–14.3) | 50.0 (37.7–62.3) | 3.3 (0.3–12.0) | 18.3 (10.5–30.2) |
2013, N = 40 | 42.5 (28.5–57.8) | 47.5 (32.9–62.5) | 0 (0–2.2) | 2.5 (0–14.0) | 32.5 (20.0–48.1) | 0 (0–10.4) | 42.5 (28.5–57.8) |
2014, N = 202 | 55.0 (48.1–61.7) | 65.8 (59.1–72.0) | 0.6 (0–3.7) | 0 (0–2.2) | 50.5 (43.7–57.3) | 3.5 (1.6–7.1) | 25.2 (19.8–31.7) |
2016, N = 166 | 68.1 (60.6–74.7) | 71.7 (64.4–78.0) | 0.2 (0–1.3) | 3.6 (1.5–7.8) | 50.6 (43.1–58.1) | 0 (0–2.7) | 27.7 (21.5–35.0) |
C. jejuni, Turkey | |||||||
2010, N = 56 | 60.7 (47.6–72.4) | 71.4 (58.4–81.7) | 0 (0–5.8) | 1.8 (0–10.3) | 64.3 (51.2–75.6) | 3.6 (0.3–12.8) | 19.6 (11.2–32.1) |
2012, N = 75 | 52.0 (40.9–62.9) | 68.0 (56.8–77.5) | 0 (0–2.1) | 9.3 (4.3–18.3) | 68.0 (56.8–77.5) | 0 (0–5.8) | 20.0 (12.5–30.6) |
2014, N = 214 | 57.0 (50.3–63.5) | 63.1 (56.4–69.3) | 0 (0–2.3) | 3.3 (1.5–6.7) | 56.1 (49.4–62.6) | 1.9 (0.6–4.9) | 26.2 (20.7–32.5) |
2016, N = 201 | 73.1 (66.6–78.8) | 77.6 (71.3–82.8) | 0 (0–0.8) | 3.5 (1.6–7.1) | 52.2 (45.4–59.0) | 0 (0–2.3) | 18.4 (13.7–24.4) |
Antimicrobial | Covariate | Coefficient of Regression | Standard Error | Wald | df 1 | p-Value | Odds Ratio | 95% Confidence Interval of Odds Ratio |
---|---|---|---|---|---|---|---|---|
Full Suscep-tibility | Year | 0.006 | 0.039 | 0.025 | 1 | 0.875 | 1.006 | 0.93–1.09 |
C. coli vs. C. jejuni | −2.149 | 0.215 | 100.100 | 1 | <0.001 | 0.117 | 0.08–1.18 | |
Broilers vs. turkeys | 0.312 | 0.140 | 4.984 | 1 | 0.026 | 1.366 | 1.04–1.80 | |
Constant | −13.680 | 78.706 | 0.030 | 1 | 0.862 | 0.000 | ||
STR | Year | −0.01 | 0.05 | 0.01 | 1 | 0.915 | 0.99 | 0.9–1.1 |
C. coli vs. C. jejuni | 1.54 | 0.21 | 53.20 | 1 | <0.001 | 4.68 | 3.09–7.09 | |
Broilers vs. turkeys | −0.26 | 0.21 | 1.57 | 1 | 0.211 | 0.77 | 0.51–1.16 | |
Constant | 7.29 | 98.89 | 0.01 | 1 | 0.941 | 1.47 × 103 | ||
NAL | Year | 0.08 | 0.03 | 7.67 | 1 | 0.006 | 1.09 | 1.03–1.16 |
C. coli vs. C. jejuni | 1.42 | 0.13 | 125.54 | 1 | <0.001 | 4.16 | 3.24–5.33 | |
Broilers vs. turkeys | −0.27 | 0.11 | 5.47 | 1 | 0.019 | 0.77 | 0.61–0.96 | |
Constant | −169.74 | 61.49 | 7.62 | 1 | 0.006 | 0.00 | ||
CIP | Year | 0.07 | 0.03 | 4.99 | 1 | 0.025 | 1.08 | 1.01–1.15 |
C. coli vs. C. jejuni | 1.53 | 0.15 | 109.56 | 1 | <0.001 | 4.60 | 3.46–6.12 | |
Broilers vs. turkeys | −0.32 | 0.12 | 6.90 | 1 | 0.009 | 0.73 | 0.57–0.92 | |
Constant | −147.48 | 66.41 | 4.93 | 1 | 0.026 | 0.00 | ||
TET | Year | −0.08 | 0.03 | 7.14 | 1 | 0.008 | 0.92 | 0.87–0.98 |
C. coli vs. C. jejuni | 1.55 | 0.12 | 163.00 | 1 | <0.001 | 4.73 | 3.73–6.01 | |
Broilers vs. turkeys | −0.33 | 0.11 | 8.97 | 1 | 0.003 | 0.72 | 0.58–0.89 | |
Constant | 165.45 | 61.81 | 7.16 | 1 | 0.007 | 7.1 × 1071 | ||
ERY | Year | −0.33 | 0.04 | 60.89 | 1 | <0.001 | 0.72 | 0.66–0.78 |
C. coli vs. C. jejuni | 3.27 | 0.28 | 140.01 | 1 | <0.001 | 26.23 | 15.27–45.05 | |
Broilers vs. turkeys | −0.53 | 0.19 | 7.62 | 1 | 0.006 | 0.59 | 0.41–0.86 | |
Constant | 659.84 | 85.04 | 60.20 | 1 | <0.001 | 3.6 × 10286 |
Antimicrobial | Covariate | Coefficient of Regression | Standard Error | Wald | df 1 | p-Value | Odds Ratio | 95% Confidence Interval of Odds Ratio |
---|---|---|---|---|---|---|---|---|
Full Suscep-tibility | C. coli vs. C. jejuni | −2.222 | 0.251 | 78.484 | 1 | <0.001 | 0.108 | 0.066–0.177 |
Broilers vs. turkeys | 0.408 | 0.193 | 4.469 | 1 | 0.035 | 1.504 | 1.030–2.194 | |
TF_total | 0.022 | 0.018 | 1.541 | 1 | 0.214 | 1.022 | 0.987–1.058 | |
Constant | −1.889 | 0.514 | 13.523 | 1 | <0.001 | 0.151 | ||
NAL | C. coli vs. C. jejuni | 1.31 | 0.15 | 80.85 | 1 | <0.001 | 3.71 | 2.78–4.93 |
Broilers vs. turkeys | −1.18 | 0.30 | 15.87 | 1 | <0.001 | 0.31 | 0.17–0.55 | |
TF_FQ | −0.64 | 0.18 | 12.10 | 1 | <0.001 | 0.53 | 0.37–0.76 | |
Constant | 2.62 | 0.58 | 20.64 | 1 | <0.001 | 13.80 | ||
CIP | C. coli vs. C. jejuni | 1.50 | 0.17 | 79.86 | 1 | <0.001 | 4.50 | 3.24–6.26 |
Broilers vs. turkeys | −1.33 | 0.33 | 16.16 | 1 | <0.001 | 0.26 | 0.14–0.51 | |
TF_FQ | −0.76 | 0.20 | 13.80 | 1 | <0.001 | 0.47 | 0.31–0.70 | |
Constant | 3.27 | 0.64 | 25.72 | 1 | <0.001 | 26.23 | ||
ERY | C. coli vs. C. jejuni | 3.01 | 0.32 | 87.42 | 1 | <0.001 | 20.20 | 10.76–37.94 |
Broilers vs. turkeys | 1.24 | 0.36 | 11.95 | 1 | <0.001 | 3.45 | 1.71–6.95 | |
TF_Macro | 1.70 | 0.30 | 32.27 | 1 | <0.001 | 5.49 | 3.05–9.88 | |
Constant | −7.16 | 0.65 | 121.49 | 1 | <0.001 | 0.00 | ||
TET | C. coli vs. C. jejuni | 1.52 | 0.14 | 123.75 | 1 | <0.001 | 4.59 | 3.51–6.00 |
Broilers vs. turkeys | 0.08 | 0.16 | 0.22 | 1 | 0.64 | 1.08 | 0.79–1.48 | |
TF_Tet | 0.49 | 0.24 | 4.05 | 1 | 0.04 | 1.62 | 1.01–2.61 | |
Constant | −0.19 | 0.20 | 0.94 | 1 | 0.33 | 0.82 | ||
STR | C. coli vs. C. jejuni | 1.85 | 0.27 | 48.42 | 1 | <0.001 | 6.36 | 3.78–10.72 |
Broilers vs. turkeys | 2.17 | 1.23 | 3.14 | 1 | 0.08 | 8.79 | 0.79–97.20 | |
TF_Amino | −0.51 | 0.27 | 3.67 | 1 | 0.06 | 0.60 | 0.36–1.01 | |
Constant | −3.31 | 0.28 | 138.64 | 1 | <0.001 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tenhagen, B.-A.; Flor, M.; Alt, K.; Knüver, M.-T.; Buhler, C.; Käsbohrer, A.; Stingl, K. Association of Antimicrobial Resistance in Campylobacter spp. in Broilers and Turkeys with Antimicrobial Use. Antibiotics 2021, 10, 673. https://doi.org/10.3390/antibiotics10060673
Tenhagen B-A, Flor M, Alt K, Knüver M-T, Buhler C, Käsbohrer A, Stingl K. Association of Antimicrobial Resistance in Campylobacter spp. in Broilers and Turkeys with Antimicrobial Use. Antibiotics. 2021; 10(6):673. https://doi.org/10.3390/antibiotics10060673
Chicago/Turabian StyleTenhagen, Bernd-Alois, Matthias Flor, Katja Alt, Marie-Theres Knüver, Christiane Buhler, Annemarie Käsbohrer, and Kerstin Stingl. 2021. "Association of Antimicrobial Resistance in Campylobacter spp. in Broilers and Turkeys with Antimicrobial Use" Antibiotics 10, no. 6: 673. https://doi.org/10.3390/antibiotics10060673
APA StyleTenhagen, B. -A., Flor, M., Alt, K., Knüver, M. -T., Buhler, C., Käsbohrer, A., & Stingl, K. (2021). Association of Antimicrobial Resistance in Campylobacter spp. in Broilers and Turkeys with Antimicrobial Use. Antibiotics, 10(6), 673. https://doi.org/10.3390/antibiotics10060673