Exploration of the Tolerance of Novel Coronaviruses to Temperature Changes Based on SERS Technology
Abstract
1. Introduction
2. Experimental Methods
2.1. Preparation of Au Nanoarray SERS Chips
2.2. SERS Performance Characterization of Au Nanoarrays
2.3. Temperature Influence on the SARS-CoV and SARS-CoV-2 S Proteins, SARS-CoV-2 S and N Pseudovirus
3. Results and Discussion
3.1. Development of Human ACE2-Modified SERS Chips
3.2. The Temperature Tolerance of Raman Activity for SARS-CoV S and SARS-CoV-2 S Protein
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, Z.; Zhang, X.; Shu, Y.; Guo, M.; Zhang, H.; Tao, W. Insights from nanotechnology in COVID-19 treatment. Nano Today 2021, 36, 101019. [Google Scholar] [CrossRef]
- Tang, Z.; Kong, N.; Zhang, X.; Liu, Y.; Hu, P.; Mou, S.; Liljestrom, P.; Tan, W.; Kim, J.S.; Cao, Y.; et al. A materials-science perspective on tackling COVID-19. Nat. Rev. Mater. 2020, 5, 847–860. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Liu, J.; Xu, W.; Luo, Q.; Chen, D.; Lei, Z.; Huang, Z.; Li, X.; Deng, K.; Lin, B.; et al. SARS-CoV-2 can be detected in urine, blood, anal swabs, and oropharyngeal swabs specimens. J. Med. Virol. 2020, 92, 1676–1680. [Google Scholar] [CrossRef] [PubMed]
- Dehbandi, R.; Zazouli, M.A. Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe 2020, 1, E145. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Fang, X.; Mao, Y.; Qi, H.; Wu, J.; Liu, X.; You, F.; Zhao, W.; Chen, Y.; Zheng, L. Real-time, selective, and low-cost detection of trace level SARS-CoV-2 spike-protein for cold-chain food quarantine. Npj Sci. Food 2021, 5, 12. [Google Scholar] [CrossRef]
- Chi, Y.; Wang, Q.; Chen, G.; Zheng, S. The Long-Term Presence of SARS-CoV-2 on Cold-Chain Food Packaging Surfaces Indicates a New COVID-19 Winter Outbreak: A Mini Review. Front. Public Health 2021, 9, 650493. [Google Scholar] [CrossRef]
- Yan, F.F.; Gao, F. Comparison of the binding characteristics of SARS-CoV and SARS-CoV-2 RBDs to ACE2 at different temperatures by MD simulations. Brief. Bioinform. 2021, 22, 1122–1136. [Google Scholar] [CrossRef]
- Zou, L.R.; Ruan, F.; Huang, M.X.; Liang, L.J.; Huang, H.T.; Hong, Z.S.; Yu, J.X.; Kang, M.; Song, Y.C.; Xia, J.Y.; et al. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N. Engl. J. Med. 2020, 382, 1177–1179. [Google Scholar] [CrossRef]
- Wang, P.L.; Zhou, Y.L.; Zhou, Y.L.; Wen, Y.; Wang, F.; Yang, H.F. In-situ growth of raspberry-like silver composites for Raman detection of acrylamide. Sens. Actuators B Chem. 2017, 243, 856–862. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Y.P.; Guo, X.Y.; Wen, Y.; Yang, H.F. Rapid and selective detection of trace Cu2+ by accumulation- reaction-based Raman spectroscopy. Sens. Actuators B Chem. 2019, 283, 278–283. [Google Scholar] [CrossRef]
- Xu, Y.; Kutsanedzie, F.Y.H.; Hassan, M.; Zhu, J.J.; Ahmad, W.; Li, H.H.; Chen, Q.S. Mesoporous silica supported orderly-spaced gold nanoparticles SERS-based sensor for pesticides detection in food. Food Chem. 2020, 315, 126300. [Google Scholar] [CrossRef]
- Zhai, Y.; Zheng, Y.S.; Ma, Z.Y.; Cai, Y.Z.; Wang, F.; Guo, X.Y.; Wen, Y.; Yang, H.F. Synergistic Enhancement Effect for Boosting Raman Detection Sensitivity of Antibiotics. ACS Sens. 2019, 4, 2958–2965. [Google Scholar] [CrossRef]
- Hu, S.; Gao, Y.; Wu, Y.P.; Guo, X.Y.; Ying, Y.; Wen, Y.; Yang, H.F. Raman tracking the activity of urease in saliva for healthcare. Biosens. Bioelectron. 2019, 129, 24–28. [Google Scholar] [CrossRef]
- Xia, Z.; Li, D.; Deng, W. Identification and Detection of Volatile Aldehydes as Lung Cancer Biomarkers by Vapor Generation Combined with Paper-Based Thin-Film Microextraction. Anal. Chem. 2021, 93, 4924–4931. [Google Scholar] [CrossRef] [PubMed]
- Zong, C.; Xu, M.X.; Xu, L.J.; Wei, T.; Ma, X.; Zheng, X.S.; Hu, R.; Ren, B. Surface-Enhanced Raman Spectroscopy for Bioanalysis: Reliability and Challenges. Chem. Rev. 2018, 118, 4946–4980. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.L.; Liang, S.S.; Li, Y.Y.; Peng, Y.S.; Huang, Z.R.; Li, Z.Y.; Yang, Y.; Luo, X.Y. Localized Plasmonic Sensor for direct identifying lung and colon cancer from the blood. Biosens. Bioelectron. 2022, 211, 114372. [Google Scholar] [CrossRef]
- Kneipp, K. Surface-enhanced Raman scattering. Phys. Today 2007, 60, 40–46. [Google Scholar] [CrossRef]
- Wang, X.; Huang, S.C.; Hu, S.; Yan, S.; Ren, B. Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy. Nat. Rev. Phys. 2020, 2, 253–271. [Google Scholar] [CrossRef]
- Keshavarz, M.; Tan, B.; Venkatakrishnan, K. Label-Free SERS Quantum Semiconductor Probe for Molecular-Level and in Vitro Cellular Detection: A Noble-Metal-Free Methodology. ACS Appl. Mater. Interfaces 2018, 10, 34886–34904. [Google Scholar] [CrossRef]
- Peng, Y.S.; Lin, C.L.; Long, L.; Masaki, T.; Tang, M.; Yang, L.L.; Liu, J.J.; Huang, Z.R.; Li, Z.Y.; Luo, X.Y.; et al. Charge transfer resonance and electromagnetic enhancement synergistically enabling MXenes with excellent SERS sensitivity for SARS-CoV-2 S protein detection. Nano-Micro Lett. 2021, 13, 52. [Google Scholar] [CrossRef]
- Huang, J.L.; Wen, J.X.; Zhou, M.J.; Ni, S.; Le, W.; Chen, G.; Wei, L.; Zeng, Y.; Qi, D.J.; Pan, M.; et al. On-site detection of SARS-CoV-2 antigen by deep learning-based Surface-enhanced Raman spectroscopy and its biochemical foundations. Anal. Chem. 2021, 93, 9174–9182. [Google Scholar] [CrossRef]
- Yang, Y.; Peng, Y.S.; Lin, C.L.; Long, L.; Hu, J.Y.; He, J.; Zeng, H.; Huang, Z.R.; Li, Z.Y.; Tanemura, M.; et al. Human ACE2 functionalized Gold “virus trap” nanostructures for accurate capture of SARS-CoV-2 and single virus SERS detection. Nano-Micro Lett. 2021, 13, 109. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.D.; Peng, Y.S.; Lin, C.L.; Xu, M.M.; Zhao, S.; Masaki, T.; Yang, Y. Research progress and application of two-dimensional materials for surface-enhanced Raman scattering. Surf. Sci. Technol. 2024, 2, 14. [Google Scholar] [CrossRef]
- Peng, Y.S.; Lin, C.L.; Li, Y.Y.; Gao, Y.; Wang, J.; He, J.; Huang, Z.R.; Liu, J.J.; Luo, X.Y.; Yang, Y. Identifying infectiousness of SARS-CoV-2 by ultra-sensitive SnS2 SERS biosensors with capillary effect. Matter 2021, 5, 694–709. [Google Scholar] [CrossRef] [PubMed]
- Yeh, Y.T.; Gulino, K.; Zhang, Y.H.; Sabestien, A.; Chou, T.W.; Zhou, B.; Lin, Z.; Albert, I.; Lu, H.G.; Swaminathan, V.; et al. A rapid and label-free platform for virus capture and identification from clinical samples. Proc. Natl. Acad. Sci. USA 2020, 117, 895–901. [Google Scholar] [CrossRef]
- Chen, H.; Park, S.G.; Choi, N.; Kwon, H.J.; Kang, T.; Lee, M.K.; Choo, J. Sensitive Detection of SARS-CoV-2 Using a SERS-Based Aptasensor. ACS Sens. 2021, 6, 2378–2385. [Google Scholar] [CrossRef]
- Leong, S.X.; Leong, Y.X.; Tan, E.X.; Sim, H.Y.F.; Koh, C.S.L.; Lee, Y.H.; Chong, C.; Ng, L.S.; Chen, J.R.T.; Pang, D.W.C.; et al. Noninvasive and Point-of-Care Surface-Enhanced Raman Scattering (SERS)-Based Breathalyzer for Mass Screening of Coronavirus Disease 2019 (COVID-19) under 5 min. ACS Nano 2022, 16, 2629–2639. [Google Scholar] [CrossRef]
- Paria, D.; Kwok, K.S.; Raj, P.; Zheng, P.; Gracias, D.H.; Barman, I. Label-free spectroscopic SARS-CoV-2 detection on versatile nanoimprinted substrates. Nano Lett. 2022, 22, 3620–3627. [Google Scholar] [CrossRef]
- Liu, H.F.; Dai, E.H.; Xiao, R.; Zhou, Z.H.; Zhang, M.L.; Bai, Z.K.; Shao, Y.; Qi, K.Z.; Tu, J.; Wang, C.W.; et al. Development of a SERS-based lateral flow immunoassay for rapid and ultra-sensitive detection of anti-SARS-CoV-2 IgM/IgG in clinical samples. Sens. Actuators B: Chem. 2021, 329, 129196. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Z.Y.; Yamaguchi, K.; Tanemura, M.; Huang, Z.R.; Jiang, D.L.; Chen, Y.H.; Zhou, F.; Nogami, M. Controlled fabrication of silver nanoneedles array for SERS and their application in rapid detection of narcotics. Nanoscale 2012, 4, 2663–2669. [Google Scholar] [CrossRef]
- Wrapp, D.; Wang, N.S.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation. Science 2020, 367, 1260–1263. [Google Scholar] [CrossRef]
- Iosin, M.; Canpean, V.; Astilean, S. Spectroscopic studies on pH- and thermally induced conformational changes of Bovine Serum Albumin adsorbed onto gold nanoparticles. J. Photoch. Photobio. A 2011, 217, 395–401. [Google Scholar] [CrossRef]
- Pang, Y.S.; Hwang, H.J.; Kim, M.S. Reversible Temperature Dependence in Surface-Enhanced Raman Scattering of 1-Propanethiol Adsorbed on a Silver Island Film. J. Phys. Chem. B 1998, 102, 7203–7209. [Google Scholar] [CrossRef]
- Das, G.; Mecarini, F.; Gentile, F.; Angelis, F.D.; Kumar, H.G.M.; Candeloro, P.; Liberale, C.; Cuda, G.D. Nano-patterned SERS substrate: Application for protein analysis vs. temperature. Biosens. Bioelectron. 2009, 24, 1693–1699. [Google Scholar] [CrossRef] [PubMed]
- Miura, T.; Thomas, G.J. Raman Spectroscopy of Proteins and Their Assemblies. Subcell. Biochem. 1995, 24, 55–99. [Google Scholar] [PubMed]
- Krimm, S.; Bandekar, J. Vibrational Spectroscopy and Conformation of Peptides, Polypeptides, and Proteins. Adv. Protein Chem. 1986, 38, 181–364. [Google Scholar]
- Aubrey, K.L.; Thomas, G.J. Raman spectroscopy of filamentous bacteriophage Ff (fd, M13, f1) incorporating specifically-deuterated alanine and tryptophan side chains. Assignments and structural interpretation. Biophys. J. 1992, 60, 1337–1349. [Google Scholar] [CrossRef] [PubMed]
- Sarycheva, A.; Makaryan, T.; Maleski, K.; Satheeshkumar, E.; Melikyan, A.; Minassian, H.; Yoshimura, M.; Gogotsi, Y. Two-Dimensional Titanium Carbide (MXene) as Surface-Enhanced Raman Scattering Substrate. J. Phys. Chem. C 2017, 121, 19983–19988. [Google Scholar] [CrossRef]
- Yang, L.; Peng, Y.S.; Yang, Y.; Liu, J.J.; Huang, H.L.; Yu, B.H.; Zhao, J.M.; Lu, Y.L.; Huang, Z.R.; Li, Z.Y.; et al. A Novel Ultra-Sensitive Semiconductor SERS Substrate Boosted by the Coupled Resonance Effect. Adv. Sci. 2019, 6, 1900310. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Zhao, S.; Tanemura, M.; Yang, Y.; Liu, M. Exploration of the Tolerance of Novel Coronaviruses to Temperature Changes Based on SERS Technology. Biosensors 2025, 15, 558. https://doi.org/10.3390/bios15090558
Peng Y, Zhao S, Tanemura M, Yang Y, Liu M. Exploration of the Tolerance of Novel Coronaviruses to Temperature Changes Based on SERS Technology. Biosensors. 2025; 15(9):558. https://doi.org/10.3390/bios15090558
Chicago/Turabian StylePeng, Yusi, Shuai Zhao, Masaki Tanemura, Yong Yang, and Ming Liu. 2025. "Exploration of the Tolerance of Novel Coronaviruses to Temperature Changes Based on SERS Technology" Biosensors 15, no. 9: 558. https://doi.org/10.3390/bios15090558
APA StylePeng, Y., Zhao, S., Tanemura, M., Yang, Y., & Liu, M. (2025). Exploration of the Tolerance of Novel Coronaviruses to Temperature Changes Based on SERS Technology. Biosensors, 15(9), 558. https://doi.org/10.3390/bios15090558