Enhanced Stability and Detection Range of Microbial Electrochemical Biotoxicity Sensor by Polydopamine Encapsulation
Abstract
:1. Introduction
2. Material and Methods
2.1. The MEC Sensor Construction
2.2. Encapsulation of the Electroactive Biofilm with PDA and the Heavy Metal Ion Shock
2.3. Biofilm Topography and Electrochemical Analysis
3. Results and Discussion
3.1. Morphology of Biofilm and Baseline Current after PDA Encapsulation
3.2. Sensor Responses to Different Metal Ions
3.3. Mechanism of PDA Protection of the Electroactive Biofilm
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chu, N.; Liang, Q.; Hao, W.; Jiang, Y.; Liang, P.; Zeng, R.J. Microbial electrochemical sensor for water biotoxicity monitoring. Chem. Eng. J. 2021, 404, 127053. [Google Scholar] [CrossRef]
- Girotti, S.; Ferri, E.N.; Fumo, M.G.; Maiolini, E. Monitoring of environmental pollutants by bioluminescent bacteria. Anal. Chim. Acta 2008, 608, 2–29. [Google Scholar] [CrossRef]
- Clements, P.J.; Bolon, B.; McInnes, E.; Mukaratirwa, S.; Scudamore, C. Chapter 17—Animal Models in Toxicologic Research: Rodents. In Haschek and Rousseaux’s Handbook of Toxicologic Pathology, 4th ed.; Haschek, W.M., Rousseaux, C.G., Wallig, M.A., Bolon, B., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 653–694. [Google Scholar]
- Weiner, A.; Irijalba, I.; Gallego, M.; Ibarburu, I.; Sainz, L.; Goñi-De-Cerio, F.; Quevedo, C.; Muriana, A. Validation of a zebrafish developmental defects assay as a qualified alternative test for its regulatory use following the ICH S5(R3) guideline. Reprod. Toxicol. 2024, 123, 108513. [Google Scholar] [CrossRef]
- Charoeythornkhajhornchai, P.; Kunjiek, T.; Chaipayang, S.; Phosri, S. Toxicity assessment of bioplastics on brine shrimp (Artemia franciscana) and cell lines. Emerg. Contam. 2023, 9, 100253. [Google Scholar] [CrossRef]
- Clerbaux, L.-A.; Coecke, S.; Lumen, A.; Kliment, T.; Worth, A.P.; Paini, A. Capturing the applicability of in vitro-in silico membrane transporter data in chemical risk assessment and biomedical research. Sci. Total. Environ. 2018, 645, 97–108. [Google Scholar] [CrossRef]
- Jin, X.-W.; Li, Z.-Y.; Xu, P.-P.; Zhang, X.-Y.; Ren, N.-Q.; Kurilenko, V.V.; Sun, K. Advances in Microfluidic Biosensors Based on Luminescent Bacteria. Chin. J. Anal. Chem. 2019, 47, 181–189. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, H.; Yao, Y.; Lin, W.; Duan, S.; Liu, B. Characterization of Light-Sensitive Refractive Indices for Ionic Liquids Based on a Coreless-Fiber-Coupled Microcavity Interferometric Sensor. IEEE Sens. J. 2023, 23, 14142–14152. [Google Scholar] [CrossRef]
- Wang, J.; Dong, C.; Li, Q.; Yang, X.; Li, D.; Zhang, L.; Zhang, Y.; Zhan, G. Innovative electrochemical biosensor with nitrifying biofilm and nitrite oxidation signal for comprehensive toxicity detection in Tuojiang River. Water Res. 2023, 233, 119757. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, C.-W.; Wang, D.; Wei, N. A Whole-Cell Biosensor for Point-of-Care Detection of Waterborne Bacterial Pathogens. ACS Synth. Biol. 2021, 10, 333–344. [Google Scholar] [CrossRef]
- Atkinson, J.T.; Su, L.; Zhang, X.; Bennett, G.N.; Silberg, J.J.; Ajo-Franklin, C.M. Real-time bioelectronic sensing of environmental contaminants. Nature 2022, 611, 548–553. [Google Scholar] [CrossRef]
- Adekunle, A.; Raghavan, V.; Tartakovsky, B. A comparison of microbial fuel cell and microbial electrolysis cell biosensors for real-time environmental monitoring. Bioelectrochemistry 2019, 126, 105–112. [Google Scholar] [CrossRef]
- Du, L.; Yan, Y.; Li, T.; Liu, H.; Li, N.; Wang, X. Machine Learning Enables Quantification of Multiple Toxicants with Microbial Electrochemical Sensors. ACS ES&T Eng. 2022, 2, 92–100. [Google Scholar]
- Li, T.; Chen, F.; Zhou, Q.; Wang, X.; Liao, C.; Zhou, L.; Wan, L.; An, J.; Wan, Y.; Li, N. Unignorable toxicity of formaldehyde on electroactive bacteria in bioelectrochemical systems. Environ. Res. 2020, 183, 109143. [Google Scholar] [CrossRef]
- Luo, H.; Liu, G.; Zhang, R.; Bai, Y.; Fu, S.; Hou, Y. Heavy metal recovery combined with H2 production from artificial acid mine drainage using the microbial electrolysis cell. J. Hazard. Mater. 2014, 270, 153–159. [Google Scholar] [CrossRef]
- Liu, Y.; Ai, K.; Lu, L. Polydopamine and Its Derivative Materials: Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields. Chem. Rev. 2014, 114, 5057–5115. [Google Scholar] [CrossRef]
- Kim, M.; Li, S.; Song, Y.E.; Park, S.Y.; Kim, H.I.; Jae, J.; Chung, I.; Kim, J.R. Polydopamine/polypyrrole-encapsulation graphite felt enhances biocompatibility for electroactive bacteria and power density of microbial fuel cell. Chemosphere 2023, 313, 137388. [Google Scholar] [CrossRef]
- Du, Q.; Li, T.; Li, N.; Wang, X. Protection of Electroactive Biofilm from Extreme Acid Shock by Polydopamine Encapsulation. Environ. Sci. Technol. Lett. 2017, 4, 345–349. [Google Scholar] [CrossRef]
- Du, Q.; Mu, Q.; Cheng, T.; Li, N.; Wang, X. Real-Time Imaging Revealed That Exoelectrogens from Wastewater Are Selected at the Center of a Gradient Electric Field. Environ. Sci. Technol. 2018, 52, 8939–8946. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, X.; Zhao, Q.; Yan, X.; Du, Q.; Li, N.; Liao, C.; Wang, X. Synthesis of silver nanoparticles using living electroactive biofilm protected by polydopamine. iScience 2021, 24, 102933. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Q.; Liao, C.; Tian, L.; Yan, X.; Li, N.; Wang, X. Anaerobic bioreduction of elemental sulfur improves bioavailability of Fe (III) oxides for bioremediation. Sci. Total. Environ. 2023, 858, 159794. [Google Scholar] [CrossRef]
- Wang, J.; Chen, M.; Zhang, J.; Sun, X.; Li, N.; Wang, X. Dynamic membrane filtration accelerates electroactive biofilms in bioelectrochemical systems. Environ. Sci. Ecotechnol. 2024, 20, 100375. [Google Scholar] [CrossRef]
- Sheng, G.; Yu, H.; Li, X. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review. Biotechnol. Adv. 2010, 28, 882–894. [Google Scholar] [CrossRef]
- de Menezes, A.; Clipson, N.; Doyle, E. Comparative metatranscriptomics reveals widespread community responses during phenanthrene degradation in soil. Environ. Microbiol. 2012, 14, 2577–2588. [Google Scholar] [CrossRef]
- Wang, X.; Gao, N.; Zhou, Q. Concentration responses of toxicity sensor with Shewanella oneidensis MR-1 growing in bioelectrochemical systems. Biosens. Bioelectron. 2013, 43, 264–267. [Google Scholar] [CrossRef]
- Xu, M.; Li, J.; Liu, B.; Yang, C.; Hou, H.; Hu, J.; Yang, J.; Xiao, K.; Liang, S.; Wang, D. The evaluation of long term performance of microbial fuel cell based Pb toxicity shock sensor. Chemosphere 2021, 270, 129455. [Google Scholar] [CrossRef]
- Light, S.H.; Su, L.; Rivera-Lugo, R.; Cornejo, J.A.; Louie, A.; Iavarone, A.T.; Ajo-Franklin, C.M.; Portnoy, D.A. A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria. Nature 2018, 562, 140–144. [Google Scholar] [CrossRef]
- Su, H.; Yan, X.; Zhao, Q.; Liao, C.; Tian, L.; Wang, Z.; Wan, Y.; Li, N.; Wang, X. Layered Design of a Highly Repeatable Electroactive Biofilm for a Standardized Biochemical Oxygen Demand Sensor. ACS Sens. 2023, 8, 2383–2390. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, Z.; Yan, J.; Yan, H.; Li, B.; Guo, L.; Sun, Q.; Geng, T.; Guo, X.; Liu, L.; Yan, W.; et al. Enhanced Stability and Detection Range of Microbial Electrochemical Biotoxicity Sensor by Polydopamine Encapsulation. Biosensors 2024, 14, 365. https://doi.org/10.3390/bios14080365
Guan Z, Yan J, Yan H, Li B, Guo L, Sun Q, Geng T, Guo X, Liu L, Yan W, et al. Enhanced Stability and Detection Range of Microbial Electrochemical Biotoxicity Sensor by Polydopamine Encapsulation. Biosensors. 2024; 14(8):365. https://doi.org/10.3390/bios14080365
Chicago/Turabian StyleGuan, Zengfu, Jiaguo Yan, Haiyuan Yan, Bin Li, Lei Guo, Qiang Sun, Tie Geng, Xiaoxuan Guo, Lidong Liu, Wenqing Yan, and et al. 2024. "Enhanced Stability and Detection Range of Microbial Electrochemical Biotoxicity Sensor by Polydopamine Encapsulation" Biosensors 14, no. 8: 365. https://doi.org/10.3390/bios14080365
APA StyleGuan, Z., Yan, J., Yan, H., Li, B., Guo, L., Sun, Q., Geng, T., Guo, X., Liu, L., Yan, W., & Wang, X. (2024). Enhanced Stability and Detection Range of Microbial Electrochemical Biotoxicity Sensor by Polydopamine Encapsulation. Biosensors, 14(8), 365. https://doi.org/10.3390/bios14080365