Nanosensor-Enabled Detection and Identification of Intracellular Bacterial Infections in Macrophages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cell Culture
2.3. Synthesis of PONI-Boronic Acid-Pyrene Polymer
2.4. Infection Model
2.5. Trypan Blue Exclusion Test of Cell Viability
2.6. Sensing Protocol
2.7. Linear Discriminant Analysis
2.8. Identification of Unknown Samples
3. Results and Discussion
3.1. Synthesis and Characterization of PONI-BA-Pyrene
3.2. Evaluation of the Glycan Binding Affinity of the Polymeric Sensor
3.3. Validation of the Bacterial Infection Model in Macrophages
3.4. Detection and Discrimination between Different Types of Bacteria-Infected Macrophages
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pidwill, G.R.; Gibson, J.F.; Cole, J.; Renshaw, S.A.; Foster, S.J. The Role of Macrophages in Staphylococcus Aureus Infection. Front. Immunol. 2021, 11, 620339. [Google Scholar] [CrossRef]
- Austermeier, S.; Kasper, L.; Westman, J.; Gresnigt, M.S. I Want to Break Free—Macrophage Strategies to Recognize and Kill Candida Albicans, and Fungal Counter-Strategies to Escape. Curr. Opin. Microbiol. 2020, 58, 15–23. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Jiang, M.; Mas-Rosario, J.A.; Fedeli, S.; Cao-Milan, R.; Liu, L.; Winters, K.J.; Hirschbiegel, C.M.; Nabawy, A.; et al. Polarization of Macrophages to an Anti-Cancer Phenotype through in Situ Uncaging of a TLR 7/8 Agonist Using Bioorthogonal Nanozymes. Chem. Sci. 2024, 15, 2486–2494. [Google Scholar] [CrossRef]
- Germic, N.; Frangez, Z.; Yousefi, S.; Simon, H.U. Regulation of the Innate Immune System by Autophagy: Monocytes, Macrophages, Dendritic Cells and Antigen Presentation. Cell Death Differ. 2019, 26, 715–727. [Google Scholar] [CrossRef]
- Sica, A.; Erreni, M.; Allavena, P.; Porta, C. Macrophage Polarization in Pathology. Cell. Mol. Life Sci. 2015, 72, 4111–4126. [Google Scholar] [CrossRef]
- Weiss, G.; Schaible, U.E. Macrophage Defense Mechanisms against Intracellular Bacteria. Immunol. Rev. 2015, 264, 182–203. [Google Scholar] [CrossRef]
- Bah, A.; Vergne, I. Macrophage Autophagy and Bacterial Infections. Front. Immunol. 2017, 8, 1483. [Google Scholar] [CrossRef]
- Price, J.V.; Vance, R.E. The Macrophage Paradox. Immunity 2014, 41, 685–693. [Google Scholar] [CrossRef]
- Tranchemontagne, Z.R.; Camire, R.B.; O’Donnell, V.J.; Baugh, J.; Burkholder, K.M. Staphylococcus Aureus Strain USA300 Perturbs Acquisition of Lysosomal Enzymes and Requires Phagosomal Acidification for Survival inside Macrophages. Infect. Immun. 2015, 84, 241–253. [Google Scholar] [CrossRef]
- Belon, C.; Blanc-Potard, A.B. Intramacrophage Survival for Extracellular Bacterial Pathogens: MgtC as a Key Adaptive Factor. Front. Cell. Infect. Microbiol. 2016, 6, 52. [Google Scholar] [CrossRef]
- Kamaruzzaman, N.F.; Kendall, S.; Good, L. Targeting the Hard to Reach: Challenges and Novel Strategies in the Treatment of Intracellular Bacterial Infections. Br. J. Pharmacol. 2017, 174, 2225–2236. [Google Scholar] [CrossRef] [PubMed]
- Cillóniz, C.; Torres, A.; Niederman, M.; van der Eerden, M.; Chalmers, J.; Welte, T.; Blasi, F. Community-Acquired Pneumonia Related to Intracellular Pathogens. Intensive Care Med. 2016, 42, 1374–1386. [Google Scholar] [CrossRef] [PubMed]
- Kiehn, O. Car Mechanisms of Immune Evasion and Bone Tissue Colonization That Make Staphylococcus Aureus the Primary Pathogen in Osteomyelitis. Physiol. Behav. 2017, 176, 139–148. [Google Scholar] [CrossRef]
- Dikshit, N.; Bist, P.; Fenlon, S.N.; Pulloor, N.K.; Chua, C.E.L.; Scidmore, M.A.; Carlyon, J.A.; Tang, B.L.; Chen, S.L.; Sukumaran, B. Intracellular Uropathogenic E. coli Exploits Host Rab35 for Iron Acquisition and Survival within Urinary Bladder Cells. PLoS Pathog. 2015, 11, e1005083. [Google Scholar] [CrossRef] [PubMed]
- Del Mar Cendra, M.; Torrents, E. Differential Adaptability between Reference Strains and Clinical Isolates of Pseudomonas Aeruginosa into the Lung Epithelium Intracellular Lifestyle. Virulence 2020, 11, 862–876. [Google Scholar] [CrossRef] [PubMed]
- Fu, F.; Zhang, Y.; Li, L.; Wang, H.; Li, Q.; Tao, X.; Song, Y.; Song, E. Intracellular Pathogen Detection Based on Dual-Recognition Units Constructed Fluorescence Resonance Energy Transfer Nanoprobe. Anal. Chem. 2020, 92, 11462–11468. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; Fei, Y.; Hu, L.; Huang, Z.; Li, L.L.; Wang, H. Chemotaxis-Instructed Intracellular Staphylococcus Aureus Infection Detection by a Targeting and Self-Assembly Signal-Enhanced Photoacoustic Probe. Nano Lett. 2018, 18, 6229–6236. [Google Scholar] [CrossRef]
- Rasmussen, S.B.; Reinert, L.S.; Paludan, S.R. Innate Recognition of Intracellular Pathogens: Detection and Activation of the First Line of Defense. Apmis 2009, 117, 323–337. [Google Scholar] [CrossRef]
- Broz, P. Recognition of Intracellular Bacteria by In Fl Ammasomes. Microbiol. Spectr. 2019, 7, 10–128. [Google Scholar] [CrossRef]
- Zhai, S.; Zhang, X.; Jiang, M.; Liu, Y.; Qu, G.; Cui, X.; Hirschbiegel, C.M.; Liu, Y.; Alves, C.; Lee, Y.W.; et al. Nanoparticles with Intermediate Hydrophobicity Polarize Macrophages to Plaque-Specific Mox Phenotype via Nrf2 and HO-1 Activation. J. Hazard. Mater. 2024, 466, 133590. [Google Scholar] [CrossRef]
- Nagarajan, U.M.; Tripathy, M.; Kollipara, A.; Allen, J.; Goodwin, A.; Whittimore, J.; Wyrick, P.B.; Rank, R.G. Differential Signaling Pathways Are Initiated in Macrophages during Infection Depending on the Intracellular Fate of Chlamydia spp. Immunol. Cell Biol. 2018, 96, 246–256. [Google Scholar] [CrossRef]
- Yang, D.; Shen, L.X.; Chen, R.F.; Fu, Y.; Xu, H.Y.; Zhang, L.N.; Liu, D.H. The Effect of Talaromyces Marneffei Infection on CD86 Expression in THP-1 Cells. Infect. Drug Resist. 2021, 14, 651–660. [Google Scholar] [CrossRef]
- Zamboni, D.S.; Kobayashi, K.S.; Kohlsdorf, T.; Ogura, Y.; Long, E.M.; Vance, R.E.; Kuida, K.; Mariathasan, S.; Dixit, V.M.; Flavell, R.A.; et al. The Birc1e Cytosolic Pattern-Recognition Receptor Contributes to the Detection and Control of Legionella Pneumophila Infection. Nat. Immunol. 2006, 7, 318–325. [Google Scholar] [CrossRef]
- McDermott, J.E.; Wang, J.; Mitchell, H.; Webb-Robertson, B.J.; Hafen, R.; Ramey, J.; Rodland, K.D. Challenges in Biomarker Discovery: Combining Expert Insights with Statistical Analysis of Complex Omics Data. Expert Opin. Med. Diagn. 2013, 7, 37–51. [Google Scholar] [CrossRef]
- Zamora-Olivares, D.; Kaoud, T.S.; Zeng, L.; Pridgen, J.R.; Zhuang, D.L.; Ekpo, Y.E.; Nye, J.R.; Telles, M.; Anslyn, E.V.; Dalby, K.N. Quantification of ERK Kinase Activity in Biological Samples Using Differential Sensing. ACS Chem. Biol. 2020, 15, 83–92. [Google Scholar] [CrossRef]
- Li, Z.; Askim, J.R.; Suslick, K.S. The Optoelectronic Nose: Colorimetric and Fluorometric Sensor Arrays. Chem. Rev. 2019, 119, 231–292. [Google Scholar] [CrossRef]
- Zeng, L.; Kaoud, T.S.; Zamora-Olivares, D.; Bohanon, A.L.; Li, Y.; Pridgen, J.R.; Ekpo, Y.E.; Zhuang, D.L.; Nye, J.R.; Telles, M.; et al. Multiplexing the Quantitation of MAP Kinase Activities Using Differential Sensing. J. Am. Chem. Soc. 2022, 144, 4017–4025. [Google Scholar] [CrossRef]
- Lu, X.; Suslick, K.S.; Li, Z. Nanoparticle Optical Sensor Arrays: Gas Sensing and Biomedical Diagnosis. Anal. Sens. 2023, 3, e202200050. [Google Scholar] [CrossRef]
- Köstereli, Z.; Severin, K. Array-Based Sensing of Purine Derivatives with Fluorescent Dyes. Org. Biomol. Chem. 2015, 13, 9231–9235. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, K.D.; Stephenson, C.J. Molecularly Imprinted Polymer Sensor Arrays. Curr. Opin. Chem. Biol. 2010, 14, 743–750. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Chattopadhyay, A.N.; Zhang, X.; Jiang, M.; Luther, D.C.; Gopalakrishnan, S.; Rotello, V.M. Nano Assessing Nano: Nanosensor-Enabled Detection of Cell Phenotypic Changes Identifies Nanoparticle Toxicological Effects at Ultra-Low Exposure Levels. Small 2020, 16, 2002084. [Google Scholar] [CrossRef] [PubMed]
- Gade, A.M.; Meadows, M.K.; Ellington, A.D.; Anslyn, E.V. Differential Array Sensing for Cancer Cell Classification and Novelty Detection. Org. Biomol. Chem. 2017, 15, 9866–9874. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; Chen, S.; Heinis, C.; Scopelliti, R.; Severin, K. Erratum: Pattern-Based Sensing of Peptides and Aminoglycosides with a Single Molecular Probe (Organic Letters (2013) 15 (3458)). Org. Lett. 2013, 15, 4624. [Google Scholar] [CrossRef]
- Askim, J.R.; Mahmoudi, M.; Suslick, K.S. Optical Sensor Arrays for Chemical Sensing: The Optoelectronic Nose. Chem. Soc. Rev. 2013, 42, 8649–8682. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, L.; New, E.J.; Mahon, C.S. Macromolecular Optical Sensor Arrays. ACS Appl. Polym. Mater. 2021, 3, 506–530. [Google Scholar] [CrossRef]
- Dai, F.; Xie, M.; Wang, Y.; Zhang, L.; Zhang, Z.; Lu, X. Synergistic Effect Improves the Response of Active Sites to Target Variations for Picomolar Detection of Silver Ions. Anal. Chem. 2022, 94, 10462–10469. [Google Scholar] [CrossRef] [PubMed]
- Lian, M.; Shi, F.; Cao, Q.; Wang, C.; Li, N.; Li, X.; Zhang, X.; Chen, D. Paper-Based Colorimetric Sensor Using Bimetallic Nickel-Cobalt Selenides Nanozyme with Artificial Neural Network-Assisted for Detection of H2O2 on Smartphone. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 311, 124038. [Google Scholar] [CrossRef] [PubMed]
- Pode, Z.; Peri-Naor, R.; Georgeson, J.M.; Georgeson, T.; Kiss, V.; Unger, T.; Markus, B.; Barr, H.M.; Motiei, L.; Margulies, D. Protein Recognition with a Pattern-Generating Fluorescent Molecular Probe. Nat. Nanotechnol. 2017, 12, 1161–1168. [Google Scholar] [CrossRef]
- Pérez, R.L.; Cong, M.; Vaughan, S.R.; Ayala, C.E.; Galpothdeniya, W.I.S.; Mathaga, J.K.; Warner, I.M. Protein Discrimination Using a Fluorescence-Based Sensor Array of Thiacarbocyanine-GUMBOS. ACS Sens. 2020, 5, 2422–2429. [Google Scholar] [CrossRef]
- Jiang, M.; Gupta, A.; Zhang, X.; Nath Chattopadhyay, A.; Fedeli, S.; Huang, R.; Yang, J.; Rotello, V.M. Identification of Proteins Using Supramolecular Gold Nanoparticle-Dye Sensor Arrays. Anal. Sens. 2023, 3, e202200080. [Google Scholar] [CrossRef]
- Yan, P.; Zheng, X.; Liu, S.; Dong, Y.; Fu, T.; Tian, Z.; Wu, Y. Colorimetric Sensor Array for Identification of Proteins and Classification of Metabolic Profiles under Various Osmolyte Conditions. ACS Sens. 2023, 8, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Cheng, P.; Zhu, X.; Xu, M.; Liu, M.; Li, H.; Zhang, Y.; Yao, S. Antimicrobial Agent Functional Gold Nanocluster-Mediated Multichannel Sensor Array for Bacteria Sensing. Langmuir 2024, 40, 2369–2376. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Cheng, H.; Wang, B.; Braun, M.S.; Fan, X.; Bender, M.; Huang, W.; Domhan, C.; Mier, W.; Lindner, T.; et al. Polymer/Peptide Complex-Based Sensor Array That Discriminates Bacteria in Urine. Angew. Chem. Int. Ed. 2017, 56, 15246–15251. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Lu, S.; Chen, B.; Hu, F.; Li, C.; Guo, C. Machine Learning-Assisted Optical Nano-Sensor Arrays in Microorganism Analysis. TrAC Trends Anal. Chem. 2023, 159, 116945. [Google Scholar] [CrossRef]
- Jiang, M.; Chattopadhyay, A.N.; Geng, Y.; Rotello, V.M. An Array-Based Nanosensor for Detecting Cellular Responses in Macrophages Induced by Femtomolar Levels of Pesticides. Chem. Commun. 2022, 58, 2890–2893. [Google Scholar] [CrossRef] [PubMed]
- Tomita, S.; Ishihara, S.; Kurita, R. Biomimicry Recognition of Proteins and Cells Using a Small Array of Block Copolymers Appended with Amino Acids and Fluorophores. ACS Appl. Mater. Interfaces 2019, 11, 6751–6758. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Hardie, J.; Landis, R.F.; Mas-Rosario, J.A.; Chattopadhyay, A.N.; Keshri, P.; Sun, J.; Rizzo, E.M.; Gopalakrishnan, S.; Farkas, M.E.; et al. High-Content and High-Throughput Identification of Macrophage Polarization Phenotypes. Chem. Sci. 2020, 11, 8231–8239. [Google Scholar] [CrossRef] [PubMed]
- Aquino, R.S.; Park, P.W. Glycosaminoglycans and Infection. Front. Biosci. 2016, 21, 1260–1277. [Google Scholar] [CrossRef]
- Anderluh, M.; Berti, F.; Bzducha-Wróbel, A.; Chiodo, F.; Colombo, C.; Compostella, F.; Durlik, K.; Ferhati, X.; Holmdahl, R.; Jovanovic, D.; et al. Emerging Glyco-Based Strategies to Steer Immune Responses. FEBS J. 2021, 288, 4746–4772. [Google Scholar] [CrossRef]
- Oommen, A.; Cunningham, S.; Joshi, L. Transcriptomic Analysis of Respiratory Tissue and Cell Line Models to Examine Glycosylation Machinery during Sars-Cov-2 Infection. Viruses 2021, 13, 82. [Google Scholar] [CrossRef]
- Tang, X.L.; Yuan, C.H.; Ding, Q.; Zhou, Y.; Pan, Q.; Zhang, X.L. Selection and Identification of Specific Glycoproteins and Glycan Biomarkers of Macrophages Involved in Mycobacterium Tuberculosis Infection. Tuberculosis 2017, 104, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Chattopadhyay, A.N.; Li, C.H.; Geng, Y.; Luther, D.C.; Huang, R.; Rotello, V.M. Direct Discrimination of Cell Surface Glycosylation Signatures Using a Single PH-Responsive Boronic Acid-Functionalized Polymer. Chem. Sci. 2022, 29, 12899–12905. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Chattopadhyay, A.N.; Jeon, T.; Zhang, X.; Rotello, V.M. Sensor Array-Enabled Identification of Drugs for Repolarization of Macrophages to Anti-Inflammatory Phenotypes. Anal. Chem. 2023, 95, 12177–12183. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zhai, W.; Fossey, J.S.; James, T.D. Boronic Acids for Fluorescence Imaging of Carbohydrates. Chem. Commun. 2016, 52, 3456–3469. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Liu, Z. Glycan-Specific Molecularly Imprinted Polymers towards Cancer Diagnostics: Merits, Applications, and Future Perspectives. Chem. Soc. Rev. 2024, 53, 1870–1891. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Zhu, X.; Long, Y.; Liu, M.; Li, H.; Zhang, Y.; Yao, S. Boronic Acid-Decorated Carbon Dot-Based Semiselective Multichannel Sensor Array for Cytokine Discrimination and Oral Cancer Diagnosis. Anal. Chem. 2024, 96, 1795–1802. [Google Scholar] [CrossRef]
- Karponi, G.; Kritas, S.K.; Papanikolaou, E.; Petridou, E. A Cellular Model of Infection with Brucella Melitensis in Ovine Macrophages: Novel Insights for Intracellular Bacterial Detection. Vet. Sci. 2019, 6, 71. [Google Scholar] [CrossRef]
- Hayward, R.J.; Humphrys, M.S.; Huston, W.M.; Myers, G.S.A. Dual RNA-Seq Analysis of in Vitro Infection Multiplicity and RNA Depletion Methods in Chlamydia-Infected Epithelial Cells. Sci. Rep. 2021, 11, 10399. [Google Scholar] [CrossRef] [PubMed]
- Brooks, W.L.A.; Sumerlin, B.S. Synthesis and Applications of Boronic Acid-Containing Polymers: From Materials to Medicine. Chem. Rev. 2016, 116, 1375–1397. [Google Scholar] [CrossRef]
- Makabenta, J.M.V.; Nabawy, A.; Chattopadhyay, A.N.; Jeon, T.; Park, J.; Lo, P.C.; Nosovitski, S.; Huang, R.; Li, C.H.; Jiang, M.; et al. Antimicrobial Polymer-Loaded Hydrogels for the Topical Treatment of Multidrug-Resistant Wound Biofilm Infections. J. Control. Release 2023, 362, 513–523. [Google Scholar] [CrossRef]
- Ellis, M.J.; Tsai, C.N.; Johnson, J.W.; French, S.; Elhenawy, W.; Porwollik, S.; Andrews-Polymenis, H.; McClelland, M.; Magolan, J.; Coombes, B.K.; et al. A Macrophage-Based Screen Identifies Antibacterial Compounds Selective for Intracellular Salmonella Typhimurium. Nat. Commun. 2019, 10, 197. [Google Scholar] [CrossRef] [PubMed]
- Piccinini, F.; Tesei, A.; Arienti, C.; Bevilacqua, A. Cell Counting and Viability Assessment of 2D and 3D Cell Cultures: Expected Reliability of the Trypan Blue Assay. Biol. Proced. Online 2017, 19, 8. [Google Scholar] [CrossRef] [PubMed]
- Al-Shaebi, Z.; Akdeniz, M.; Ahmed, A.O.; Altunbek, M.; Aydin, O. Breakthrough Solution for Antimicrobial Resistance Detection: Surface-Enhanced Raman Spectroscopy-Based on Artificial Intelligence. Adv. Mater. Interfaces 2023, 2300664. [Google Scholar] [CrossRef]
- Jiang, M.; Rotello, V.M. Cell-Based Chemical Safety Assessment and Therapeutic Discovery Using Array-Based Sensors. Int. J. Mol. Sci. 2022, 23, 3672. [Google Scholar] [CrossRef]
- Gharaghani, F.M.; Mostafapour, S.; Hemmateenejad, B. A Paper-Based Biomimetic Sensing Device for the Discrimination of Original and Fraudulent Cigarette Brands Using Mixtures of MoS2 Quantum Dots and Organic Dyes. Biosensors 2023, 13, 705. [Google Scholar] [CrossRef]
- Abbasi-Moayed, S.; Orouji, A.; Hormozi-Nezhad, M.R. Multiplex Detection of Biogenic Amines for Meat Freshness Monitoring Using Nanoplasmonic Colorimetric Sensor Array. Biosensors 2023, 13, 803. [Google Scholar] [CrossRef] [PubMed]
- Ngernpimai, S.; Geng, Y.; Makabenta, J.M.; Landis, R.F.; Keshri, P.; Gupta, A.; Li, C.H.; Chompoosor, A.; Rotello, V.M. Rapid Identification of Biofilms Using a Robust Multichannel Polymer Sensor Array. ACS Appl. Mater. Interfaces 2019, 11, 11202–11208. [Google Scholar] [CrossRef] [PubMed]
- Landis, R.F.; Li, C.H.; Gupta, A.; Lee, Y.W.; Yazdani, M.; Ngernyuang, N.; Altinbasak, I.; Mansoor, S.; Khichi, M.A.S.; Sanyal, A.; et al. Biodegradable Nanocomposite Antimicrobials for the Eradication of Mul-tidrug-Resistant Bacterial Biofilms without Accumulated Resistance. J. Am. Chem. Soc. 2018, 140, 6176–6182. [Google Scholar] [CrossRef] [PubMed]
- Jangid, A.K.; Kim, S.; Kim, K. International Journal of Biological Macromolecules Delivery of Piperlongumine via Hyaluronic Acid / Phenylboronic Acid-Mediated Dual Targetable Polymersome for Enhanced Anticancer Functionality against Pancreatic Tumor. Int. J. Biol. Macromol. 2024, 275, 133738. [Google Scholar] [CrossRef]
- Lian, Z.; Liu, L.; He, J.; Fan, S.; Guo, S.; Li, X.; Liu, G.; Fan, Y.; Chen, X.; Li, M.; et al. Structurally Diverse Pyrene-Decorated Planar Chiral [2,2]Paracyclophanes with Tunable Circularly Polarized Luminescence between Monomer and Excimer. Chem. A Eur. J. 2024, 30, e202303819. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, G.; Guan, F. Biological Functions and Analytical Strategies of Sialic Acids in Tumor. Cells 2020, 9, 273. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Thuy-Boun, P.S.; Pfeiffer, W.; Vartabedian, V.F.; Torkamani, A.; Teijaro, J.R.; Wolan, D.W. Identification of an N-Acetylneuraminic Acid-Presenting Bacteria Isolated from a Human Microbiome. Sci. Rep. 2021, 11, 4763. [Google Scholar] [CrossRef] [PubMed]
- Priego-Capote, F.; Orozco-Solano, M.I.; Calderón-Santiago, M.; Luque de Castro, M.D. Quantitative Determination and Confirmatory Analysis of N-Acetylneuraminic and N-Glycolylneuraminic Acids in Serum and Urine by Solid-Phase Extraction on-Line Coupled to Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A 2014, 1346, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Yue, H.; Chen, J.; Chen, X.; Wang, X.; Zhang, Y.; Zhou, N. Systematic Screening and Optimization of Single-Stranded DNA Aptamer Specific for N-Acetylneuraminic Acid: A Comparative Study. Sens. Actuators B Chem. 2021, 344, 130270. [Google Scholar] [CrossRef]
- Stewart, S.; Ivy, M.A.; Anslyn, E.V. The Use of Principal Component Analysis and Discriminant Analysis in Differential Sensing Routines. Chem. Soc. Rev. 2014, 43, 70–84. [Google Scholar] [CrossRef]
- O’Brien, D.K.; Melville, S.B. The Anaerobic Pathogen Clostridium Perfringens Can Escape the Phagosome of Macrophages under Aerobic Conditions. Cell. Microbiol. 2000, 2, 505–519. [Google Scholar] [CrossRef] [PubMed]
- Pal, R.R.; Baidya, A.K.; Mamou, G.; Bhattacharya, S.; Socol, Y.; Kobi, S.; Katsowich, N.; Ben-Yehuda, S.; Rosenshine, I. Pathogenic E. coli Extracts Nutrients from Infected Host Cells Utilizing Injectisome Components. Cell 2019, 177, 683–696.e18. [Google Scholar] [CrossRef] [PubMed]
- Duc, L.H.; Hong, H.A.; Uyen, N.Q.; Cutting, S.M. Intracellular Fate and Immunogenicity of B. Subtilis Spores. Vaccine 2004, 22, 1873–1885. [Google Scholar] [CrossRef] [PubMed]
- Conover, M.S.; Hadjifrangiskou, M.; Palermo, J.J.; Hibbing, M.E.; Dodson, K.W.; Hultgren, S.J. Metabolic Requirements of Escherichia Coli in Intracellular Bacterial Communities during Urinary Tract Infection Pathogenesis. MBio 2016, 7, e00104-16. [Google Scholar] [CrossRef]
- Gou, Z.; Wang, A.; Tian, M.; Zuo, Y. Pyrene-Based Monomer-Excimer Dual Response Organosilicon Polymer for the Selective Detection of 2,4,6-Trinitrotoluene (TNT) and 2,4,6-Trinitrophenol (TNP). Mater. Chem. Front. 2022, 6, 607–612. [Google Scholar] [CrossRef]
- Nakamura, R.; Katsuno, T.; Kishimoto, Y.; Kaba, S.; Yoshimatsu, M.; Kitamura, M.; Suehiro, A.; Hiwatashi, N.; Yamashita, M.; Tateya, I.; et al. A Novel Method for Live Imaging of Human Airway Cilia Using Wheat Germ Agglutinin. Sci. Rep. 2020, 10, 14417. [Google Scholar] [CrossRef] [PubMed]
- Terävä, J.; Tiainen, L.; Lamminmäki, U.; Kellokumpu-Lehtinen, P.-L.; Pettersson, K.; Gidwani, K. Lectin Nanoparticle Assays for Detecting Breast Cancer-Associated Glycovariants of Cancer Antigen 15-3 (CA15-3) in Human Plasma. PLoS ONE 2019, 14, e0219480. [Google Scholar] [CrossRef] [PubMed]
Cell Only | MRSA | B. sub | E. coli | K. pneu | Correct (%) | |
---|---|---|---|---|---|---|
Cell only | 5 | 0 | 0 | 0 | 1 | 83 |
MRSA | 0 | 6 | 0 | 0 | 0 | 100 |
B. sub | 1 | 0 | 5 | 0 | 0 | 83 |
E. coli | 0 | 0 | 1 | 5 | 0 | 83 |
K. pneu | 0 | 0 | 0 | 0 | 6 | 100 |
Total | 6 | 6 | 6 | 5 | 7 | 90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chattopadhyay, A.N.; Jiang, M.; Makabenta, J.M.V.; Park, J.; Geng, Y.; Rotello, V. Nanosensor-Enabled Detection and Identification of Intracellular Bacterial Infections in Macrophages. Biosensors 2024, 14, 360. https://doi.org/10.3390/bios14080360
Chattopadhyay AN, Jiang M, Makabenta JMV, Park J, Geng Y, Rotello V. Nanosensor-Enabled Detection and Identification of Intracellular Bacterial Infections in Macrophages. Biosensors. 2024; 14(8):360. https://doi.org/10.3390/bios14080360
Chicago/Turabian StyleChattopadhyay, Aritra Nath, Mingdi Jiang, Jessa Marie V. Makabenta, Jungmi Park, Yingying Geng, and Vincent Rotello. 2024. "Nanosensor-Enabled Detection and Identification of Intracellular Bacterial Infections in Macrophages" Biosensors 14, no. 8: 360. https://doi.org/10.3390/bios14080360
APA StyleChattopadhyay, A. N., Jiang, M., Makabenta, J. M. V., Park, J., Geng, Y., & Rotello, V. (2024). Nanosensor-Enabled Detection and Identification of Intracellular Bacterial Infections in Macrophages. Biosensors, 14(8), 360. https://doi.org/10.3390/bios14080360