Metal Oxides Nanomaterials and Nanocomposite-Based Electrochemical Sensors for Healthcare Applications
Abstract
:1. Introduction
2. Metal Oxide Nanostructures
3. Metal Oxide Nanocomposites
3.1. Noble Metal and Metal Oxide Nanocomposites
3.2. Polymer and Metal Oxide Nanocomposites
3.3. MXenes and Metal Oxide Nanocomposites
3.4. Metal Oxide Nanocomposites-Based Microelectrodes
S. No | Electrode Material | Analyte | Real Sample | LOD | Sensitivity | Linear Range | Ref. |
---|---|---|---|---|---|---|---|
1. | NiO@Au | Lactic acid | Human serum and Urine | 11.6 μM | 8.0 μA mM−1 | 100.0 μM–0.5 M | [64] |
2. | Au- NiCo2O4 | Glucose | - | 5.8 μM | 44.86 µA µM−1 cm−2 | 5.8 μM–0.1 mM | [36] |
3. | Ag–Fe2O3/PANI | Uric acid | Human blood and Urine | 102 pM | - | 0.001–0.900 μM | [69] |
4. | Fe2O3/Meso Carbon | Glucose | - | 2 µM | - | 25 μM–10 mM | [76] |
5. | C3N4-SWCNTs/rGO/CD-MOF | Baicalin | Human serum and Eye drops | 0.46 nM | 220 A M−1 | 1.0 nM–0.5 µM | [77] |
6. | NiO–rGO/MXene | Influenza viruses H1N1 H5N1 | Human plasma | 3.63 nM 2.39 nM | - - | - - | [83] |
7. | PANI/NiO | Dopamine | Injection | 0.0153 μM | - | 2.4 μM–20.0 μΜ | [86] |
8. | erGO/P5FIn/AuO | AFB1 | Peanuts and wheat samples | 0.02 pg mL−1 | - | 0.01–100 ng mL−1 | |
9. | Au@CuO MFs|CME | Gucose Lactic acid | Human serum and Urine | 1.41 μM 27.0 nM | 4.14 mA μM−1 cm−2 6.19 mA μM−1 cm−2 | 5.0 μM–0.5 mM 100 nM–88.0 μM | [90] |
10 | ZnO/MXene/GOx | Glucose | Sweat | 17.0 μM | 29 μA mM−1 cm−2 | 0.05–0.7 mM | [97] |
11 | GOx/Hemin@NC-ZIF | Glucose | - | 10.0 μM | - | 1.0–24 mM | [98] |
4. Figure-of-Merit of Metal Oxide Nanocomposites
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ogurcovs, A.; Kadiwala, K.; Sledevskis, E.; Krasovska, M.; Mizers, V. Glyphosate Sensor Based on Nanostructured Water-Gated CuO Field-Effect Transistor. Sensors 2022, 22, 8744. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, X.; Yang, W.; Mao, G.; Meng, Z.; Wu, Z.; Jiang, H.L. Surface-Clean Au(25) Nanoclusters in Modulated Microenvironment Enabled by Metal-Organic Frameworks for Enhanced Catalysis. J. Am. Chem. Soc. 2022, 144, 22008. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Peng, J.; Xi, L.; Lu, Z.; Yu, L.; Liu, M.; Huo, D.; He, H. Molecularly imprinted polymers enhanced peroxidase-like activity of AuNPs for determination of glutathione. Microchim. Acta 2022, 189, 457. [Google Scholar] [CrossRef] [PubMed]
- Ao, Y.; Ao, J.; Zhao, L.; Hu, L.; Qu, F.; Guo, B.; Liu, X. Hierarchical Structures Composed of Cu(OH)(2) Nanograss within Directional Microporous Cu for Glucose Sensing. Langmuir 2022, 38, 13659. [Google Scholar] [CrossRef]
- Bai, H.; Wen, G.; Liang, A.; Jiang, Z. Ti(3)C(2)@Pd nanocatalytic amplification-polypeptide SERS/RRS/Abs trimode biosensoring platformfor ultratrace trinitrotoluene. Biosens. Bioelectron. 2022, 217, 114743. [Google Scholar] [CrossRef]
- Cao, Q.; Cheng, Z.; Dai, J.; Sun, T.; Li, G.; Zhao, L.; Yu, J.; Zhou, W.; Lin, J. Enhanced Hydrogen Evolution Reaction over Co Nanoparticles Embedded N-Doped Carbon Nanotubes Electrocatalyst with Zn as an Accelerant. Small 2022, 18, e2204827. [Google Scholar] [CrossRef]
- Chaudhary, V.; Khanna, V.; Awan, H.T.A.; Singh, K.; Khalid, M.; Mishra, Y.K.; Bhansali, S.; Li, C.Z.; Kaushik, A. Towards hospital-on-chip supported by 2D MXenes-based 5(th) generation intelligent biosensors. Biosens. Bioelectron. 2022, 220, 114847. [Google Scholar] [CrossRef]
- Cui, L.F.; Ying, Y.L.; Yu, R.J.; Ma, H.; Hu, P.; Long, Y.T. In Situ Characterization of Oxygen Evolution Electrocatalysis of Silver Salt Oxide on a Wireless Nanopore Electrode. Anal. Chem. 2022, 94, 15033. [Google Scholar] [CrossRef]
- Demkiv, O.; Gayda, G.; Stasyuk, N.; Brahinetz, O.; Gonchar, M.; Nisnevitch, M. Nanomaterials as Redox Mediators in Laccase-Based Amperometric Biosensors for Catechol Assay. Biosensors 2022, 12, 741. [Google Scholar] [CrossRef]
- Arivazhagan, M.; Santhosh, Y.M.; Maduraiveeran, G. Non-Enzymatic Glucose Detection Based on NiS Nanoclusters@NiS Nanosphere in Human Serum and Urine. Micromachines 2021, 12, 403. [Google Scholar] [CrossRef]
- Deschanvres, J.L.; Rey, P.; Delabouglise, G.; Labeau, M.; Joubert, J.C.; Peuzin, J.C. Characterization of piezoelectric properties of zinc oxide thin films deposited on silicon for sensors applications. Sens. Actuators A Phys. 1992, 33, 43. [Google Scholar] [CrossRef]
- Patella, B.; Moukri, N.; Regalbuto, G.; Cipollina, C.; Pace, E.; Di Vincenzo, S.; Aiello, G.; O’Riordan, A.; Inguanta, R. Electrochemical Synthesis of Zinc Oxide Nanostructures on Flexible Substrate and Application as an Electrochemical Immunoglobulin-G Immunosensor. Materials 2022, 15, 713. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.; Xu, X.; Huang, X.; Liu, L.; Wei, Q.; Cao, W. CoNi-RGO and NiCo(2)S(4)-ZIF/g-C(3)N(4) signal amplified electrochemical immunosensors for sensitive detection of CYFRA 21-1. Anal. Biochem. 2022, 659, 114950. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Peng, X.; Song, Y.; Du, Y. A Paper-Based Electrochemical Sensor Based on PtNP/COF(TFPB-DHzDS)@rGO for Sensitive Detection of Furazolidone. Biosensors 2022, 12, 904. [Google Scholar] [CrossRef]
- Elakkiya, R.; Maduraiveeran, G. A three-dimensional nickel–cobalt oxide nanomaterial as an enzyme-mimetic electrocatalyst for the glucose and lactic acid oxidation reaction. New J. Chem. 2019, 43, 14756. [Google Scholar] [CrossRef]
- Maduraiveeran, G.; Sasidharan, M.; Jin, W. Earth-abundant transition metal and metal oxide nanomaterials: Synthesis and electrochemical applications. Prog. Mater. Sci. 2019, 106, 100574. [Google Scholar] [CrossRef]
- Elakkiya, R.; Maduraiveeran, G. Two-Dimensional Earth-Abundant Transition Metal Oxides Nanomaterials: Synthesis and Application in Electrochemical Oxygen Evolution Reaction. Langmuir 2020, 36, 4728. [Google Scholar] [CrossRef]
- Maduraiveeran, G.; Jin, W. Carbon nanomaterials: Synthesis, properties and applications in electrochemical sensors and energy conversion systems. Mater. Sci. Engineer. B 2021, 272, 115341. [Google Scholar] [CrossRef]
- Arivazhagan, M.; Maduraiveeran, G. Ultra-fine nickel sulfide nanoclusters @ nickel sulfide microsphere as enzyme-free electrode materials for sensitive detection of lactic acid. J. Electroanal. Chem. 2020, 874, 114465. [Google Scholar] [CrossRef]
- Maduraiveeran, G.; Jin, W. Functional nanomaterial-derived electrochemical sensor and biosensor platforms for biomedical applications. In Handbook of Nanomaterials in Analytical Chemistry, Modern Trends in Analysis; Elsevier: Amsterdam, The Netherlands, 2020; p. 297. [Google Scholar]
- Shankar, A.; Elakkiya, R.; Maduraiveeran, G. Self-supported fabrication and electrochemical water splitting study of transition-metal sulphide nanostructured electrodes. New J. Chem. 2020, 44, 5071. [Google Scholar] [CrossRef]
- Yáñez-Sedeño, P.; González-Cortés, A.; Campuzano, S.; Pingarrón, J.M. Multimodal/Multifunctional Nanomaterials in (Bio)electrochemistry: Now and in the Coming Decade. Nanomaterials 2020, 10, 2556. [Google Scholar] [CrossRef] [PubMed]
- van de Looij, S.M.; Hebels, E.R.; Viola, M.; Hembury, M.; Oliveira, S.; Vermonden, T. Gold nanoclusters: Imaging, therapy, and theranostic roles in biomedical applications. Bioconjugate Chem. 2022, 33, 4. [Google Scholar] [CrossRef] [PubMed]
- Aslan, N.; Ocak, S.B.; Gokmen, U. Electroanalytical Determination of Ziram by Differential Pulse Voltammetry with Reduced Graphene Oxide/Gold Nanoparticles Modified Glassy Carbon Electrode. Acta Chim. Slov. 2022, 69, 638. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Ren, X.; Li, Y.; Yu, Z. Ni-Coated Diamond-like Carbon-Modified TiO(2) Nanotube Composite Electrode for Electrocatalytic Glucose Oxidation. Molecules 2022, 27, 5815. [Google Scholar] [CrossRef]
- Liu, K.; Pan, M.; Zhang, Z.; Hong, L.; Xie, X.; Yang, J.; Wang, S.; Wang, Z.; Song, Y.; Wang, S. Electrochemical sensor applying ZrO(2)/nitrogen-doped three-dimensional porous carbon nanocomposite for efficient detection of ultra-trace Hg(2+) ions. Anal. Chim. Acta 2022, 1231, 340392. [Google Scholar] [CrossRef]
- Sahu, Y.; Hashmi, A.; Patel, R.; Singh, A.K.; Susan, M.; Carabineiro, S.A.C. Potential Development of N-Doped Carbon Dots and Metal-Oxide Carbon Dot Composites for Chemical and Biosensing. Nanomaterials 2022, 12, 3434. [Google Scholar] [CrossRef]
- Al-Maliki, R.M.; Alsalhy, Q.F.; Al-Jubouri, S.; Salih, I.K.; AbdulRazak, A.A.; Shehab, M.A.; Nemeth, Z.; Hernadi, K. Classification of Nanomaterials and the Effect of Graphene Oxide (GO) and Recently Developed Nanoparticles on the Ultrafiltration Membrane and Their Applications: A Review. Membranes 2022, 12, 3434. [Google Scholar] [CrossRef]
- Chen, R.; Chen, X.; Liu, H.; Fang, L.; Chen, B.; Luan, T. Developing a robust method integrating with selective membrane-based preconcentration and signal amplification for field virus detection. Anal. Chim. Acta 2022, 1229, 340360. [Google Scholar] [CrossRef]
- Maduraiveeran, G.; Sasidharan, M.; Ganesan, V. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens. Bioelectron. 2018, 103, 113. [Google Scholar] [CrossRef]
- Xue, Y.; Maduraiveeran, G.; Wang, M.; Zheng, S.; Zhang, Y.; Jin, W. Hierarchical oxygen-implanted MoS2 nanoparticle decorated graphene for the non-enzymatic electrochemical sensing of hydrogen peroxide in alkaline media. Talanta 2018, 176, 397. [Google Scholar] [CrossRef]
- Rahman, M.; Niu, J.; Cui, X.; Zhou, C.; Tang, N.; Jin, H.; Cui, D. Electrochemical Biosensor Based on l-Arginine and rGO-AuNSs Deposited on the Electrode Combined with DNA Probes for Ultrasensitive Detection of the Gastric Cancer-Related PIK3CA Gene of ctDNA. ACS Appl. Bio. Mater. 2022, 5, 5094. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Zhang, Q.; Qin, L.; Hu, K.; Guo, Z.; Wang, S.; Hu, Y. Checkerboard arranged G4 nanostructure-supported electrochemical platform and its application to unique bio-enzymes examination. Bioelectrochemistry 2022, 149, 108282. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Rodriguez, M.A.; Cooper, C.D.; Rocchia, W.; Casalegno, M.; Lopez de Los Santos, Y.; Raos, G. Modeling of the Electrostatic Interaction and Catalytic Activity of [NiFe] Hydrogenases on a Planar Electrode. J. Phys. Chem. B 2022, 126, 8777. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Chen, J.; Wu, Z.; Maduraiveeran, G. Encapsulated spinel CuXCo3-XO4 in carbon nanotubes as efficient and stable oxygen electrocatalysts. Int. J. Hydrog. Energy 2019, 44, 11421. [Google Scholar] [CrossRef]
- Sidhureddy, B.; Prins, S.; Wen, J.; Thiruppathi, A.R.; Govindhan, M.; Chen, A. Synthesis and Electrochemical Study of Mesoporous Nickel-Cobalt Oxides for Efficient Oxygen Reduction. ACS Appl. Mater. Interfaces 2019, 11, 18295. [Google Scholar] [CrossRef]
- Gumpu, M.B.; Nesakumar, N.; Ramachandra, B.L.; Rayappan, J.B.B. Zinc oxide nanoparticles-based electrochemical sensor for the detection of nitrate ions in water with a low detection limit—A chemometric approach. J. Anal. Chem. 2017, 72, 316. [Google Scholar] [CrossRef]
- Fazio, E.; Spadaro, S.; Corsaro, C.; Neri, G.; Leonardi, S.G.; Neri, F.; Lavanya, N.; Sekar, C.; Donato, N.; Neri, G. Metal-Oxide Based Nanomaterials: Synthesis, Characterization and Their Applications in Electrical and Electrochemical Sensors. Sensors 2021, 21, 2494. [Google Scholar] [CrossRef]
- Khan, M.; Nagal, V.; Masrat, S.; Tuba, T.; Alam, S.; Bhat, K.S.; Wahid, I.; Ahmad, R. Vertically Oriented Zinc Oxide Nanorod-Based Electrolyte-Gated Field-Effect Transistor for High-Performance Glucose Sensing. Anal. Chem. 2022, 94, 8867. [Google Scholar] [CrossRef]
- Annadurai, K.; Sudha, V.; Murugadoss, G.; Thangamuthu, R. Electrochemical sensor based on hydrothermally prepared nickel oxide for the determination of 4-acetaminophen in paracetamol tablets and human blood serum samples. J. Alloys Compd. 2021, 852, 156911. [Google Scholar] [CrossRef]
- Yang, P.; Tong, X.; Wang, G.; Gao, Z.; Guo, X.; Qin, Y. NiO/SiC nanocomposite prepared by atomic layer deposition used as a novel electrocatalyst for nonenzymatic glucose sensing. ACS Appl. Mater. Interfaces 2015, 7, 4772. [Google Scholar] [CrossRef]
- Nagal, V.; Kumar, T.T.V.; Alam, S.; Ahmad, A.; Alshammari, M.B.; Hafiz, A.K.; Ahmad, R. A non-enzymatic electrochemical sensor composed of nano-berry shaped cobalt oxide nanostructures on a glassy carbon electrode for uric acid detection. New J. Chem. 2022, 46, 12333. [Google Scholar] [CrossRef]
- Bas, S.Z.; Cummins, C.; Borah, D.; Ozmen, M.; Morris, M.A. Electrochemical Sensing of Hydrogen Peroxide Using Block Copolymer Templated Iron Oxide Nanopatterns. Anal. Chem. 2018, 90, 1122. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Wu, R.; Chen, H.; Wang, H.; Nan, W. Highly sensitive cholesterol biosensor based on electron mediator thionine and cubic-shaped Cu2O nanomaterials. Microchem. J. 2023, 185, 108201. [Google Scholar] [CrossRef]
- Kharat, S.P.; Gaikwad, S.K.; Kambale, R.C.; Kolekar, Y.D.; Ramana, C.V. Correlation between Cation Distribution and Magnetic and Dielectric Properties of Dy(3+)-Substituted Fe-Rich Cobalt Ferrite. Inorg. Chem. 2022, 61, 19319. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, J.M.; de Faria, L.V.; Nascimento, A.B.; Germscheidt, R.L.; Patra, S.; Hernandez-Saravia, L.P.; Bonacin, J.A.; Munoz, R.A.A.; Angnes, L. Sensing performances of spinel ferrites MFe(2)O(4) (M = Mg, Ni, Co, Mn, Cu and Zn) based electrochemical sensors: A review. Anal. Chim. Acta 2022, 1233, 340362. [Google Scholar] [CrossRef]
- Lebechi, A.K.; Ipadeola, A.K.; Eid, K.; Abdullah, A.M.; Ozoemena, K.I. Porous spinel-type transition metal oxide nanostructures as emergent electrocatalysts for oxygen reduction reactions. Nanoscale 2022, 14, 10717–10737. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, J.M.; Rocha, D.P.; Silva, M.N.T.; Martins, P.R.; Nossol, E.; Angnes, L.; Rout, C.S.; Munoz, R.A.A. Feasible strategies to promote the sensing performances of spinel MCo2O4 (M = Ni, Fe, Mn, Cu and Zn) based electrochemical sensors: A review. J. Mater. Chem. C 2021, 9, 7852. [Google Scholar] [CrossRef]
- Wang, M.; Wang, C.; Liu, Y.; Hu, B.; He, L.; Ma, Y.; Zhang, Z.; Cui, B.; Du, M. Nonenzymatic amperometric sensor for hydrogen peroxide released from living cancer cells based on hierarchical NiCo(2)O(4)-CoNiO(2) hybrids embedded in partially reduced graphene oxide. Mikrochim. Acta 2020, 187, 436. [Google Scholar] [CrossRef]
- Lu, Z.; Wu, L.; Zhang, J.; Dai, W.; Mo, G.; Ye, J. Bifunctional and highly sensitive electrochemical non-enzymatic glucose and hydrogen peroxide biosensor based on NiCo(2)O(4) nanoflowers decorated 3D nitrogen doped holey graphene hydrogel. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 102, 708. [Google Scholar] [CrossRef]
- Ni, Y.; Xu, J.; Liu, H.; Shao, S. Fabrication of RGO-NiCo(2)O(4) nanorods composite from deep eutectic solvents for nonenzymatic amperometric sensing of glucose. Talanta 2018, 185, 335. [Google Scholar] [CrossRef]
- Luo, X.; Huang, M.; He, D.; Wang, M.; Zhang, Y.; Jiang, P. Porous NiCo(2)O(4) nanoarray-integrated binder-free 3D open electrode offers a highly efficient sensing platform for enzyme-free glucose detection. Analyst 2018, 143, 2546. [Google Scholar] [CrossRef] [PubMed]
- Bakavaty, S.I.; Karuppasamy, T.G. Assessing the electrochemical sensing behavior of manganese based inverse spinel towards ascorbic acid detection. Mater. Today Commun. 2022, 33, 104607. [Google Scholar]
- Durai, L.; Gopalakrishnan, A.; Badhulika, S. One-pot hydrothermal synthesis of NiCoZn a ternary mixed metal oxide nanorod based electrochemical sensor for trace level recognition of dopamine in biofluids. Mater. Lett. 2021, 298, 130044. [Google Scholar] [CrossRef]
- Alam, M.M.; Asiri, A.M.; Rahman, M.M.; Islam, M.A. Fabrication of dopamine sensor based on ternary AlMn0.645Cr1.76O7.47 nanoparticles. Mater. Chem. Phys. 2020, 244, 122740. [Google Scholar] [CrossRef]
- Hussain, M.M.; Asiri, A.M.; Rahman, M.M. Non-enzymatic simultaneous detection of acetylcholine and ascorbic acid using ZnO·CuO nanoleaves: Real sample analysis. Microchem. J. 2020, 159, 105534. [Google Scholar] [CrossRef]
- You, Q.; Liu, T.; Pang, J.; Jiang, D.; Chu, Z.; Jin, W. In situ fabrication of CuO nanowire film for high-sensitive ascorbic acid recognition. Sens. Actuators B Chem. 2019, 296, 126617. [Google Scholar] [CrossRef]
- Lin, L.-Y.; Karakocak, B.B.; Kavadiya, S.; Soundappan, T.; Biswas, P. A highly sensitive non-enzymatic glucose sensor based on Cu/Cu2O/CuO ternary composite hollow spheres prepared in a furnace aerosol reactor. Sens. Actuators B Chem. 2018, 259, 745. [Google Scholar] [CrossRef]
- Wang, X.; Ge, C.-Y.; Chen, K.; Zhang, Y.X. An ultrasensitive non-enzymatic glucose sensors based on controlled petal-like CuO nanostructure. Electrochim. Acta 2018, 259, 225. [Google Scholar] [CrossRef]
- VahidMohammadi, A.; Rosen, J.; Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021, 372, 1581. [Google Scholar] [CrossRef]
- Gao, Q.; Zhang, H. Magnetic i-MXenes: A new class of multifunctional two-dimensional materials. Nanoscale 2020, 12, 5995. [Google Scholar] [CrossRef]
- Kumar, S.; Lei, Y.; Alshareef, N.H.; Quevedo-Lopez, M.A.; Salama, K.N. Biofunctionalized two-dimensional Ti(3)C(2) MXenes for ultrasensitive detection of cancer biomarker. Biosens. Bioelectron. 2018, 121, 243. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Li, Z.; Lin, J.; Han, G.; Huang, P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 2018, 47, 5109. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Xu, H.; Xie, F.; Ma, X.; Niu, B.; Chen, M.; Zhang, H.; Zhang, Y.; Long, D. General synthesis of ultrafine metal oxide/reduced graphene oxide nanocomposites for ultrahigh-flux nanofiltration membrane. Nat. Commun. 2022, 13, 471. [Google Scholar] [CrossRef] [PubMed]
- Su, P.G.; Tsai, M.S.; Lu, C.J. Fabrication of noble metal (Au, Ag, Pt)/polythiophene/reduced graphene oxide ternary nanocomposites for NH(3) gas sensing at room temperature. Anal. Methods 2022, 14, 4113. [Google Scholar] [CrossRef]
- Zhou, K.; Shen, D.; Li, X.; Chen, Y.; Hou, L.; Zhang, Y.; Sha, J. Molybdenum oxide-based metal-organic framework/polypyrrole nanocomposites for enhancing electrochemical detection of dopamine. Talanta 2020, 209, 120507. [Google Scholar] [CrossRef]
- Lin, X.J.; Sun, T.Q.; Yang, L.P.; Sun, Y.G.; Bin, D.S.; Duan, S.Y.; Liu, Y.; Lv, R.W.; Cao, A.M. A facile synthetic strategy for the creation of hollow noble metal/transition metal oxide nanocomposites. Chem. Commun. 2019, 55, 1076. [Google Scholar] [CrossRef]
- Maduraiveeran, G.; Chen, A. Design of an enzyme-mimicking NiO@Au nanocomposite for the sensitive electrochemical detection of lactic acid in human serum and urine. Electrochim. Acta 2021, 368, 137612. [Google Scholar] [CrossRef]
- Norizan, M.N.; Abdullah, N.; Halim, N.A.; Demon, S.Z.N.; Mohamad, I.S. Heterojunctions of rGO/Metal Oxide Nanocomposites as Promising Gas-Sensing Materials—A Review. Nanomaterials 2022, 12, 2278. [Google Scholar] [CrossRef]
- Chen, A.; Su, Q.; Han, H.; Enriquez, E.; Jia, Q. Metal Oxide Nanocomposites: A Perspective from Strain, Defect, and Interface. Adv. Mater. 2019, 31, e1803241. [Google Scholar] [CrossRef]
- Lu, W.; Qin, X.; Asiri, A.M.; Al-Youbi, A.O.; Sun, X. Facile synthesis of novel Ni(II)-based metal-organic coordination polymer nanoparticle/reduced graphene oxide nanocomposites and their application for highly sensitive and selective nonenzymatic glucose sensing. Analyst 2013, 138, 429. [Google Scholar] [CrossRef]
- Zhou, S.; Wei, D.; Shi, H.; Feng, X.; Xue, K.; Zhang, F.; Song, W. Sodium dodecyl benzene sulfonate functionalized graphene for confined electrochemical growth of metal/oxide nanocomposites for sensing application. Talanta 2013, 107, 349. [Google Scholar] [CrossRef] [PubMed]
- Ponnaiah, S.K.; Periakaruppan, P.; Vellaichamy, B. New Electrochemical Sensor Based on a Silver-Doped Iron Oxide Nanocomposite Coupled with Polyaniline and Its Sensing Application for Picomolar-Level Detection of Uric Acid in Human Blood and Urine Samples. J. Phys. Chem. B 2018, 122, 3037. [Google Scholar] [CrossRef] [PubMed]
- Septevani, A.A.; Evans, D.A.C.; Hosseinmardi, A.; Martin, D.J.; Simonsen, J.; Conley, J.F., Jr.; Annamalai, P.K. Atomic Layer Deposition of Metal Oxide on Nanocellulose for Enabling Microscopic Characterization of Polymer Nanocomposites. Small 2018, 14, e1803439. [Google Scholar] [CrossRef]
- Dusoe, K.J.; Ye, X.; Kisslinger, K.; Stein, A.; Lee, S.W.; Nam, C.Y. Ultrahigh Elastic Strain Energy Storage in Metal-Oxide-Infiltrated Patterned Hybrid Polymer Nanocomposites. Nano Lett. 2017, 17, 7416. [Google Scholar] [CrossRef]
- Arsalani, N.; Ghadimi, L.S.; Ahadzadeh, I.; Tabrizi, A.G.; Nann, T. Green synthesized carbon quantum dots/cobalt sulfide nanocomposite as efficient electrode material for supercapacitors, Energy Fuels 2021, 35, 9635. 35.
- Zhao, L.; Zhang, N.; He, M.; Luo, P.; Tan, L. A nanozyme-based competitive electrochemical immunosensor for the determination of E-selectin. Mikrochim. Acta 2022, 189, 406. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, M.; Zhou, H.; Du, X.; Du, X. Assessment of Salt Stress to Arabidopsis Based on the Detection of Hydrogen Peroxide Released by Leaves Using an Electrochemical Sensor. Int. J. Mol. Sci. 2022, 23, 12502. [Google Scholar] [CrossRef]
- Molahalli, V.; Sharma, A.; Shetty, A.; Hegde, G. SnO(2)QDs Deposited on GO/PPy-Modified Glassy Carbon Electrode for Efficient Electrochemical Hydrogen Peroxide Sensor. Biosensors 2022, 12, 983. [Google Scholar] [CrossRef]
- Wahab, M.A.; Hossain, S.M.A.; Masud, M.K.; Park, H.; Ashok, A.; Mustapić, M.; Kim, M.; Patel, D.; Shahbazi, M.; Hossain, M.S.A.; et al. Nanoarchitectured superparamagnetic iron oxide-doped mesoporous carbon nanozymes for glucose sensing. Sens. Actuators B Chem. 2022, 366, 131980. [Google Scholar] [CrossRef]
- Zhao, P.; Huang, L.; Wang, H.; Wang, C.; Chen, J.; Yang, P.; Ni, M.; Chen, C.; Li, C.; Xie, Y.; et al. An ultrasensitive high-performance baicalin sensor based on C3N4-SWCNTs/reduced graphene oxide/cyclodextrin metal-organic framework nanocomposite. Sens. Actuators B Chem. 2022, 350, 130853. [Google Scholar] [CrossRef]
- Hu, Y.; Hojamberdiev, M.; Geng, D. Recent advances in enzyme-free electrochemical hydrogen peroxide sensors based on carbon hybrid nanocomposites. J. Mater. Chem. C 2021, 9, 6970. [Google Scholar] [CrossRef]
- Huang, H.; Feng, W.; Chen, Y. Two-dimensional biomaterials: Material science, biological effect and biomedical engineering applications. Chem. Soc. Rev. 2021, 50, 11381. [Google Scholar] [PubMed]
- Xu, L.; Zhang, X.; Wang, Z.; Haidry, A.A.; Yao, Z.; Haque, E.; Wang, Y.; Li, G.; Daeneke, T.; McConville, C.F.; et al. Low dimensional materials for glucose sensing. Nanoscale 2021, 13, 11017. [Google Scholar] [CrossRef] [PubMed]
- Kiranmai, S.; Kuchi, C.; Sravani, B.; Ƚuczak, T.; Kim, M.J.; Madhavi, G.; Reddy, Y.V.M. Construction of ultrasensitive electrochemical sensor using TiO2-reduced graphene oxide nanofibers nanocomposite for epinephrine detection. Surf. Interfaces 2022, 35, 102455. [Google Scholar] [CrossRef]
- Atacan, K.; Özacar, M. Construction of a non-enzymatic electrochemical sensor based on CuO/g-C3N4 composite for selective detection of hydrogen peroxide. Mater. Chem. Phys. 2021, 266, 124527. [Google Scholar] [CrossRef]
- Reddy, Y.V.M.; Shin, J.H.; Hwang, J.; Kweon, D.-H.; Choi, C.-H.; Park, K.; Kim, S.-K.; Madhavi, G.; Yi, H.; Park, J.P. Fine-tuning of MXene-nickel oxide-reduced graphene oxide nanocomposite bioelectrode: Sensor for the detection of influenza virus and viral protein. Biosens. Bioelectron. 2022, 214, 114511. [Google Scholar] [CrossRef]
- Ahmed, J.; Faisal, M.; Alsareii, S.A.; Jalalah, M.; Harraz, F.A. A novel gold-decorated porous silicon-poly(3-hexylthiophene) ternary nanocomposite as a highly sensitive and selective non-enzymatic dopamine electrochemical sensor. J. Alloys Compd. 2023, 931, 167403. [Google Scholar] [CrossRef]
- Xie, A.; Wang, H.; Lin, J.; Pan, J.; Li, M.; Wang, J.; Jiang, S.; Luo, S. 3D RGO/MWCNTs-loaded bimetallic-organic gel derived ZrFeOx as an electrochemical sensor for simultaneous detection of dopamine and paracetamol. J. Alloys Compd. 2023, 938, 168647. [Google Scholar] [CrossRef]
- Fayemi, O.E.; Adekunle, A.S.; Swamy, B.E.K.; Ebenso, E.E. Electrochemical sensor for the detection of dopamine in real samples using polyaniline/NiO, ZnO, and Fe3O4 nanocomposites on glassy carbon electrode. J. Electroanal. Chem. 2018, 818, 236. [Google Scholar] [CrossRef]
- Zhang, B.; Lu, Y.; Yang, C.; Guo, Q.; Nie, G. Simple “signal-on” photoelectrochemical aptasensor for ultrasensitive detecting AFB1 based on electrochemically reduced graphene oxide/poly(5-formylindole)/Au nanocomposites. Biosens. Bioelectron. 2019, 134, 42. [Google Scholar] [CrossRef]
- Wang, J.; Chen, J.; Liu, F.; Jia, M.; Zhang, Z.; Liu, M.; Jiang, L. Renewable WO3/Bi2O3 heterojunction for Photoelectrochemical and Visual Dual-mode Detection of Hydrogen Sulfide. Sens. Actuators B Chem. 2022, 369, 132274. [Google Scholar] [CrossRef]
- CVázquez, I.; Bruni, F.M.; Baruzzi, A.M.; Iglesias, R.A. CdS|TiO2 Non-Enzymatic Sulfide Photoelectrochemical Sensor. IEEE Sens. J. 2023, 23, 856. [Google Scholar] [CrossRef]
- Arivazhagan, M.; Maduraiveeran, G. Gold-dispersed hierarchical flower-like copper oxide microelectrodes for the sensitive detection of glucose and lactic acid in human serum and urine. Biomater. Sci. 2022, 10, 4538–4548. [Google Scholar] [CrossRef] [PubMed]
- Arivazhagan, M.; Kannan, P.; Maduraiveeran, G. Gold Nanoclusters Dispersed on Gold Dendrite-Based Carbon Fibre Microelectrodes for the Sensitive Detection of Nitric Oxide in Human Serum. Biosensors 2022, 12, 1128. [Google Scholar] [CrossRef] [PubMed]
- Arivazhagan, M.; Maduraiveeran, G. Hierarchical gold dispersed nickel oxide nanodendrites microarrays as a potential platform for the sensitive electrochemical detection of glucose and lactate in human serum and urine. Mater. Chem. Phys. 2023, 295, 127084. [Google Scholar] [CrossRef]
- Myndrul, V.; Coy, E.; Babayevska, N.; Zahorodna, V.; Balitskyi, V.; Baginskiy, I.; Gogotsi, O.; Bechelany, M.; Giardi, M.T.; Iatsunskyi, I. MXene nanoflakes decorating ZnO tetrapods for enhanced performance of skin-attachable stretchable enzymatic electrochemical glucose sensor. Biosens. Bioelectron. 2022, 207, 114141. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, M.; Xiong, C.; Zhu, X.; Chen, C.; Zhou, F.; Dong, Y.; Wang, Y.; Xu, J.; Li, Y.; et al. Dual confinement of high–loading enzymes within metal–organic frameworks for glucose sensor with enhanced cascade biocatalysis. Biosens. Bioelectron. 2022, 196, 113695. [Google Scholar] [CrossRef]
S. No. | Electrode Material | Analyte | Real Sample | LOD | Sensitivity | Linear Range | Ref. |
---|---|---|---|---|---|---|---|
1. | NiO NPs | 4-Acetaminophen | Tablet and Serum | 0.23 µM | 91.0 µA cm−2 mM−1 | 7.5 µM–3 mM | [36] |
2. | NiO NMs | Glucose | - | 0.32 μM | 2.037 mA mM−1 cm−2 | 4.0 μM to 7.5 mM | [37] |
3. | Co3O4 NBs | Uric acid | Urine | 2.4 µM | 206 μA mM−1 cm−2 | 5.0–3.0 mM | [38] |
4. | Fe3O4 NDs | H2O2 | Serum | 1.1 μM | - | 2.5–6.5 mM | [39] |
5. | Cu2O/ChOx/TH | Cholesterol | - | 1.8 nM | 70.2 µA µM−1 cm−2 | 10.0– 1000 µM | [40] |
6. | NiCo2O4 Nanoflowers | Glucose Lactic acid | - - | 1.0 mM 5.0 mM | 2.6 mA mM−1 cm−2 0.43 mA mM−1 cm−2 | 1.0–20.0 mM 5.0–50.0 mM | [13] |
7. | MCO NPs | Ascorbic acid | Tablets and Drinks | 0.085 µM | - | 5.0 μM–4.4 mM | [49] |
8. | NiCoZnO Nanorods | Dopamine | Blood | 0.01 nM | - | 1.0 nM–0.5 µM | [50] |
9. | Al–Mn0.65–Cr1.76-oxide | Dopamine | - | 96.8 pM | 55.8 μA μM−1 cm−2 | 0.1 nM–0.01 mM | [51] |
10. | ZnO/CuO Nanoleaves | Acetylcholine Ascorbic acid | - - | 14.7 pM 12.0 pM | 317.0 pA μM−1 cm−2 94.94 pA μM−1 cm−2 | 100 pM–100 mM 100 pM–100 mM | [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kannan, P.; Maduraiveeran, G. Metal Oxides Nanomaterials and Nanocomposite-Based Electrochemical Sensors for Healthcare Applications. Biosensors 2023, 13, 542. https://doi.org/10.3390/bios13050542
Kannan P, Maduraiveeran G. Metal Oxides Nanomaterials and Nanocomposite-Based Electrochemical Sensors for Healthcare Applications. Biosensors. 2023; 13(5):542. https://doi.org/10.3390/bios13050542
Chicago/Turabian StyleKannan, Palanisamy, and Govindhan Maduraiveeran. 2023. "Metal Oxides Nanomaterials and Nanocomposite-Based Electrochemical Sensors for Healthcare Applications" Biosensors 13, no. 5: 542. https://doi.org/10.3390/bios13050542
APA StyleKannan, P., & Maduraiveeran, G. (2023). Metal Oxides Nanomaterials and Nanocomposite-Based Electrochemical Sensors for Healthcare Applications. Biosensors, 13(5), 542. https://doi.org/10.3390/bios13050542