A Redox-Probe-Free Immunosensor Based on Electrocatalytic Prussian Blue Nanostructured Film One-Step-Prepared for Zika Virus Diagnosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Native and Recombinant ZIKV Antigen Spiked Serum Samples
2.3. Electrochemical Measurements
2.4. Structural and Morphological Analyses
2.5. Synthesis of the CHI–CNT@PB Nanocomposite
2.6. Assembly of the CHI–CNT@PB Nanoelectrode SPE
2.7. Immobilization of Anti-ZIKV E and Immunoassay
3. Results and Discussion
3.1. CHI–CNT@PB Nanocomposite
3.1.1. Synthesis and Optimization of Experimental Conditions
3.1.2. Morphological Characterization
3.1.3. Study of Electrochemical Kinetic Properties
3.2. Assembly of the Anti-ZIKV E Immunosensor Platform
3.3. Analytical Responses to the ZIKV E Protein and ZIKV Isolated Culture
3.4. Long-Term Stability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kazmi, S.S.; Ali, W.; Bibi, N.; Nouroz, F. A Review on Zika Virus Outbreak, Epidemiology, Transmission and Infection Dynamics. J. Biol. Res. 2020, 27, 5. [Google Scholar] [CrossRef] [Green Version]
- Borges, E.D.; Vireque, A.A.; Berteli, T.S.; Ferreira, C.R.; Silva, A.S.; Navarro, P.A. An Update on the Aspects of Zika Virus Infection on Male Reproductive System. J. Assist. Reprod. Genet. 2019, 36, 1339–1349. [Google Scholar] [CrossRef] [PubMed]
- Song, B.H.; Yun, S.I.; Woolley, M.; Lee, Y.M. Zika Virus: History, Epidemiology, Transmission, and Clinical Presentation. J. Neuroimmunol. 2017, 308, 50–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulland, A. Zika Virus Is a Global Public Health Emergency, Declares WHO. BMJ 2016, 352, i657. [Google Scholar] [CrossRef] [Green Version]
- Merfeld, E.; Ben-Avi, L.; Kennon, M.; Cerveny, K.L. Potential Mechanisms of Zika-Linked Microcephaly. Wiley Interdiscip. Rev. Dev. Biol. 2017, 6, e273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, V.I.; Alvarenga, C.; Abreu, C.; Tozetto-Mendoza, T.R.; Do Canto, C.L.M.; Manuli, E.R.; Mendes-Correa, M.C.; Sabino, E.C.; Figueiredo, W.M.; Segurado, A.C.; et al. Potential Effect of Zika Virus Infection on Human Male Fertility? Rev. Inst. Med. Trop. Sao Paulo 2018, 60, 2–5. [Google Scholar] [CrossRef]
- Elfiky, A.A. Novel Guanosine Derivatives against Zika Virus Polymerase in Silico. J. Med. Virol. 2020, 92, 11–16. [Google Scholar] [CrossRef]
- Myhrvold, C.; Freije, C.A.; Gootenberg, J.S.; Abudayyeh, O.O.; Metsky, H.C.; Durbin, A.F.; Kellner, M.J.; Tan, A.L.; Paul, L.M.; Parham, L.A.; et al. Field-Deployable Viral Diagnostics Using CRISPR-Cas13. Science 2018, 360, 444–448. [Google Scholar] [CrossRef] [Green Version]
- Gourinat, A.C.; O’Connor, O.; Calvez, E.; Goarant, C.; Dupont-Rouzeyrol, M. Detection of Zika Virus in Urine. Emerg. Infect. Dis. 2015, 21, 84–86. [Google Scholar] [CrossRef]
- Rastogi, M.; Sharma, N.; Singh, S.K. Flavivirus NS1: A Multifaceted Enigmatic Viral Protein. Virol. J. 2016, 13, 131. [Google Scholar] [CrossRef] [Green Version]
- Mendonça, P.D.; Santos, L.K.B.; Foguel, M.V.; Rodrigues, M.A.B.; Cordeiro, M.T.; Gonçalves, L.M.; Marques, E.T.A.; Dutra, R.F. NS1 Glycoprotein Detection in Serum and Urine as an Electrochemical Screening Immunosensor for Dengue and Zika Virus. Anal. Bioanal. Chem. 2021, 413, 4873–4885. [Google Scholar] [CrossRef] [PubMed]
- Peters, R.; Stevenson, M. Zika Virus Diagnosis: Challenges and Solutions. Clin. Microbiol. Infect. 2019, 25, 142–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elfiky, A.A.; Ibrahim, I.M. Zika Virus Envelope–Heat Shock Protein A5 (GRP78) Binding Site Prediction. J. Biomol. Struct. Dyn. 2021, 39, 5248–5260. [Google Scholar] [CrossRef] [PubMed]
- Laureano, A.F.S.; Riboldi, M. The Different Tests for the Diagnosis of COVID-19—A Review in Brazil so Far. JBRA Assist. Reprod. 2020, 24, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Mao, X.; Juncker, D. Immunochromatographic Assay on Thread. Anal. Chem. 2012, 84, 7736–7743. [Google Scholar] [CrossRef]
- Koczula, K.M.; Gallotta, A. Lateral Flow Assays. Essays Biochem. 2016, 60, 111–120. [Google Scholar] [CrossRef]
- Cecchetto, J.; Fernandes, F.C.B.; Lopes, R.; Bueno, P.R. The Capacitive Sensing of NS1 Flavivirus Biomarker. Biosens. Bioelectron. 2017, 87, 949–956. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Chung, J.; Park, H.; Lee, G. A Simple and Facile Glucose Biosensor Based on Prussian Blue Modified Graphite String. J. Sens. 2016, 2016, 1859292. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Q.; Chandar, Y.J.; Cao, S.; Kharasch, E.D.; Singamaneni, S.; Morrissey, J.J. Rapid, Point-of-Care, Paper-Based Plasmonic Biosensor for Zika Virus Diagnosis. Adv. Biosyst. 2017, 1, 1700096. [Google Scholar] [CrossRef] [Green Version]
- Darwish, N.T.; Sekaran, S.D.; Alias, Y.; Khor, S.M. Immunofluorescence–Based Biosensor for the Determination of Dengue Virus NS1 in Clinical Samples. J. Pharm. Biomed. Anal. 2018, 149, 591–602. [Google Scholar] [CrossRef]
- Stambaugh, A.; Parks, J.W.; Stott, M.A.; Meena, G.G.; Hawkins, A.R.; Schmidt, H.; Kuno, G.; Chang, G.J.; Tsuchiya, K.R.; Karabatsos, N.; et al. Optofluidic Detection of Zika Nucleic Acid and Protein Biomarkers Using Multimode Interference Multiplexing. Biomed. Opt. Express 2018, 9, 3725–3730. [Google Scholar] [CrossRef] [PubMed]
- Silva, B.V.M.; Cordeiro, M.T.; Rodrigues, M.A.B.; Marques, E.T.A.; Dutra, R.F. A Label and Probe-Free Zika Virus Immunosensor Prussian Blue@carbon Nanotube-Based for Amperometric Detection of the Ns2b Protein. Biosensors 2021, 11, 157. [Google Scholar] [CrossRef] [PubMed]
- Landim, V.P.A.; Silva, B.V.M.; Sobral Filho, D.C.; Dutra, R.F. A Novel Redox-Free Immunosensor Concept Based on Cobalt Phthalocyanine@carbon Nanotubes Pseudocapacitor for Cardiac B-Type Natriuretic Peptide Detection. Electroanalysis 2021, 33, 2302–2309. [Google Scholar] [CrossRef]
- Trindade, E.K.G.; Silva, B.V.M.; Dutra, R.F. A Probeless and Label-Free Electrochemical Immunosensor for Cystatin C Detection Based on Ferrocene Functionalized-Graphene Platform. Biosens. Bioelectron. 2019, 138, 111311. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Hui, N.; Luo, X. Reagentless and Label-Free Voltammetric Immunosensor for Carcinoembryonic Antigen Based on Polyaniline Nanowires Grown on Porous Conducting Polymer Composite. Microchim. Acta 2017, 184, 889–896. [Google Scholar] [CrossRef]
- Cinti, S.; Arduini, F.; Vellucci, G.; Cacciotti, I.; Nanni, F.; Moscone, D. Carbon black assisted tailoring of Prussian Blue nanoparticles to tune sensitivity and detection limit towards H2O2 by using screen-printed electrode. Electrochem. Commun. 2014, 47, 63–66. [Google Scholar] [CrossRef]
- Chakraborty, N.; Jha, D.; Gautam, H.K.; Roy, I. Peroxidase-like Behavior and Photothermal Effect of Chitosan-Coated Prussian-Blue Nanoparticles: Dual-Modality Antibacterial Action with Enhanced Bioaffinity. Mater. Adv. 2020, 1, 774–782. [Google Scholar] [CrossRef]
- Che, X.; Yuan, R.; Chai, Y.; Li, J.; Song, Z.; Li, W.; Zhong, X. A Glucose Biosensor Based on Chitosan-Prussian Blue-Multiwall Carbon Nanotubes-Hollow PtCo Nanochains Formed by One-Step Electrodeposition. Colloids Surf. B Biointerfaces 2011, 84, 454–461. [Google Scholar] [CrossRef]
- Yang, L.; Wang, J.; Lü, H.; Hui, N. Electrochemical Sensor Based on Prussian Blue/Multi-Walled Carbon Nanotubes Functionalized Polypyrrole Nanowire Arrays for Hydrogen Peroxide and MicroRNA Detection. Microchim. Acta 2021, 188, 25. [Google Scholar] [CrossRef]
- Ahmad, A.; Siddique, J.A.; Setapar, S.H.M.; Lokhat, D.; Golandaj, A.; Ramjugernath, D. Recent Advances in Chitosan-Based Films for Novel Biosensor. In Electrically Conductive Polymer and Polymer Composites; 2018; pp. 137–161. Available online: https://doi.org/10.1002/9783527807918.ch7 (accessed on 9 June 2022).
- Marroquin, J.B.; Rhee, K.Y.; Park, S.J. Chitosan Nanocomposite Films: Enhanced Electrical Conductivity, Thermal Stability, and Mechanical Properties. Carbohydr. Polym. 2013, 92, 1783–1791. [Google Scholar] [CrossRef]
- Kaushik, A.; Khan, R.; Solanki, P.R.; Pandey, P.; Alam, J.; Ahmad, S.; Malhotra, B.D. Iron Oxide Nanoparticles-Chitosan Composite Based Glucose Biosensor. Biosens. Bioelectron. 2008, 24, 676–683. [Google Scholar] [CrossRef] [PubMed]
- Bo, Z.; Shuai, X.; Mao, S.; Yang, H.; Qian, J.; Chen, J.; Yan, J.; Cen, K. Green Preparation of Reduced Graphene Oxide for Sensing and Energy Storage Applications. Sci. Rep. 2014, 4684, 4684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jirakunakorn, R.; Khumngern, S.; Choosang, J.; Thavarungkul, P.; Kanatharana, P.; Numnuam, A. Uric Acid Enzyme Biosensor Based on a Screen-Printed Electrode Coated with Prussian Blue and Modified with Chitosan-Graphene Composite Cryogel. Microchem. J. 2020, 154, 104624. [Google Scholar] [CrossRef]
- Duanghathaipornsuk, S.; Kanel, S.; Haushalter, E.F.; Ruetz, J.E.; Kim, D.S. Detection of Hydroxyl Radicals Using Cerium Oxide/Graphene Oxide Composite on Prussian Blue. Nanomaterials 2020, 10, 1136. [Google Scholar] [CrossRef]
- Gomes-Filho, S.L.R.; Dias, A.C.M.S.; Silva, M.M.S.; Silva, B.V.M.; Dutra, R.F. A Carbon Nanotube-Based Electrochemical Immunosensor for Cardiac Troponin T. Microchem. J. 2013, 109, 10–15. [Google Scholar] [CrossRef]
- Mundinamani, S.P.; Rabinal, M.K. Cyclic Voltammetric Studies on the Role of Electrode, Electrode Surface Modification and Electrolyte Solution of an Electrochemical Cell. J. Appl. Chem. 2014, 7, 45–52. [Google Scholar] [CrossRef]
- Santana, G.M.; Silva, A.K.S.; Foguel, M.V.; Dutra, R.F. An Ultrasensitive Electrochemical Immunosensor for Hepatitis C Antibodies Based on One-Step-Eletrosynthetized Polypyrrole–Graphene Nanocomposite. J. Mater. Sci. 2022, 57, 5586–5595. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Peng, W.; Hua, P.; Chen, Z.; Sheng, J.; Yang, J.; Wu, Y. In Situ Formation of PH-Responsive Prussian Blue for Photoacoustic Imaging and Photothermal Therapy of Cancer. RSC Adv. 2017, 7, 18270–18276. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.; Sang, Y.; Wang, T.; Liu, W.; Wang, X. Electrochemical Immunosensor Based on Carboxylated Single-Walled Carbon Nanotube-Chitosan Functional Layer for the Detection of Cephalexin. Food Sci. Nutr. 2020, 8, 1001–1011. [Google Scholar] [CrossRef]
- Cho, G.; Azzouzi, S.; Zucchi, G.; Lebental, B. Electrical and Electrochemical Sensors Based on Carbon Nanotubes for the Monitoring of Chemicals in Water—A Review. Sensors 2022, 22, 218. [Google Scholar] [CrossRef]
- Trindade, E.K.G.; Dutra, R.F. A Label-Free and Reagentless Immunoelectrode for Antibodies against Hepatitis B Core Antigen (Anti-HBc) Detection. Colloids Surf. B Biointerfaces 2018, 172, 272–279. [Google Scholar] [CrossRef]
- Cabral-Miranda, G.; Cardoso, A.R.; Ferreira, L.C.S.; Sales, M.G.F.; Bachmann, M.F. Biosensor-Based Selective Detection of Zika Virus Specific Antibodies in Infected Individuals. Biosens. Bioelectron. 2018, 113, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Faria, A.M.; Mazon, T. Early Diagnosis of Zika Infection Using a ZnO Nanostructures-Based Rapid Electrochemical Biosensor. Talanta 2019, 203, 153–160. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, L.K.B.; Mendonça, P.D.; Assis, L.K.S.; Prudêncio, C.R.; Guedes, M.I.F.; Marques, E.T.A.; Dutra, R.F. A Redox-Probe-Free Immunosensor Based on Electrocatalytic Prussian Blue Nanostructured Film One-Step-Prepared for Zika Virus Diagnosis. Biosensors 2022, 12, 623. https://doi.org/10.3390/bios12080623
Santos LKB, Mendonça PD, Assis LKS, Prudêncio CR, Guedes MIF, Marques ETA, Dutra RF. A Redox-Probe-Free Immunosensor Based on Electrocatalytic Prussian Blue Nanostructured Film One-Step-Prepared for Zika Virus Diagnosis. Biosensors. 2022; 12(8):623. https://doi.org/10.3390/bios12080623
Chicago/Turabian StyleSantos, Lorenna K. B., Priscila D. Mendonça, LiLian K. S. Assis, Carlos R. Prudêncio, Maria Izabel F. Guedes, Ernesto T. A. Marques, and Rosa Fireman Dutra. 2022. "A Redox-Probe-Free Immunosensor Based on Electrocatalytic Prussian Blue Nanostructured Film One-Step-Prepared for Zika Virus Diagnosis" Biosensors 12, no. 8: 623. https://doi.org/10.3390/bios12080623