Design of a Quencher-Free Fluorescent Aptasensor for Ochratoxin A Detection in Red Wine Based on the Guanine-Quenching Ability
Abstract
:1. Introduction
2. Experimental
2.1. Reagents and Chemicals
2.2. Instrumentation
2.3. Experimental Method
2.3.1. Optimization of Reaction Conditions
2.3.2. OTA Aptasensing by Fluorescence Aptasensor
2.3.3. Specificity Assay
2.3.4. Detection of OTA in Wine Samples
3. Results and Discussion
3.1. Principle of OTA Detection
3.2. Optimization of OTA Detection Conditions
3.2.1. Optimization of the Ca2+ Concentration
3.2.2. Optimization of the Complementary Sequence and Its Concentration for F2 Aptasensor
3.3. Quantitative Analysis of OTA
3.4. Specificity Analysis and Application to Real Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Lai, B.S.; Juhas, M. Recent Advances in Aptamer Discovery and Applications. Molecules 2019, 24, 941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amero, P.; Khatua, S.; Rodriguez-Aguayo, C.; Lopez-Berestein, G. Aptamers: Novel Therapeutics and Potential Role in Neuro-Oncology. Cancers 2020, 12, 2889. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.; Li, D.; Liu, R.; Cui, C.; Guo, Z. Label-Free Aptasensor for Ochratoxin A Detection Using SYBR Gold as a Probe. Sens. Actuators B Chem. 2017, 246, 647–652. [Google Scholar] [CrossRef]
- Liu, R.; Wu, H.; Lv, L.; Kang, X.; Cui, C.; Feng, J.; Guo, Z. Fluorometric Aptamer Based Assay for Ochratoxin A Based on the Use of Exonuclease III. Microchim. Acta 2018, 185, 254. [Google Scholar] [CrossRef] [PubMed]
- Taghdisi, S.M.; Danesh, N.M.; Nameghi, M.A.; Ramezani, M.; Abnous, K. A Label-Free Fluorescent Aptasensor for Selective and Sensitive Detection of Streptomycin in Milk and Blood Serum. Food Chem. 2016, 203, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Wen, F.; Zheng, N.; Saive, M.; Fauconnier, M.L.; Wang, J. Aptamer-Based Biosensor for Detection of Mycotoxins. Front. Chem. 2020, 8, 195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhouati, A.; Yang, C.; Hayat, A.; Marty, J.L. Aptamers: A Promosing Tool for Ochratoxin a Detection in Food Analysis. Toxins 2013, 5, 1988–2008. [Google Scholar] [CrossRef]
- Peltomaa, R.; Benito-Peña, E.; Moreno-Bondi, M.C. Bioinspired Recognition Elements for Mycotoxin Sensors. Anal. Bioanal. Chem. 2018, 410, 747–771. [Google Scholar] [CrossRef]
- Shen, P.; Li, W.; Ding, Z.; Deng, Y.; Liu, Y.; Zhu, X.; Cai, T.; Li, J.; Zheng, T. A Competitive Aptamer Chemiluminescence Assay for Ochratoxin A Using a Single Silica Photonic Crystal Microsphere. Anal. Biochem. 2018, 554, 28–33. [Google Scholar] [CrossRef]
- Li, R.; Wen, Y.; Wang, F.; He, P. Recent Advances in Immunoassays and Biosensors for Mycotoxins Detection in Feedstuffs and Foods. J. Anim. Sci. Biotechnol. 2021, 12, 108. [Google Scholar] [CrossRef]
- Liu, M.; Li, X.; Li, B.; Du, J.; Yang, Z. A Fluorometric Aptamer-Based Assay for Ochratoxin A by Using Exonuclease III-Assisted Recycling Amplification. Microchim. Acta 2019, 187, 46. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Dong, S.; Abbsd, F.; Chu, X.; Fan, A.; Rhouati, A.; Mao, J.; Liu, Y. Label-Free Fluorescence Aptasensor for Ochratoxin A Using Crystal Violet as Displacement-Type Probe. Chin. J. Anal. Chem. 2021, 49, 55–62. [Google Scholar] [CrossRef]
- Zhao, H.; Xiang, X.; Chen, M.; Ma, C. Aptamer-Based Fluorometric Ochratoxin A Assay Based on Photoinduced Electron Transfer. Toxins 2019, 11, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torimura, M.; Kurata, S.; Yamada, K.; Yokomaku, T.; Kamagata, Y.; Kanagawa, T.; Kurane, R. Fluorescence-Quenching Phenomenon by Photoinduced Electron Transfer between a Fluorescent Dye and a Nucleotide Base. Anal. Sci. 2001, 17, 155–160. [Google Scholar] [CrossRef] [Green Version]
- Heinlein, T.; Knemeyer, J.; Piestert, O. Photoinduced Electron Transfer between Fluorescent Dyes and Guanosine Residues in DNA-Hairpins. J. Phys. Chem. 2003, 107, 7957–7964. [Google Scholar] [CrossRef]
- Liu, H.; Ma, L.; Ma, C.; Du, J.; Wang, M.; Wang, K. Quencher-Free Fluorescence Method for the Detection of Mercury (II) Based on Polymerase-Aided Photoinduced Electron Transfer Strategy. Sensors 2016, 16, 1945. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Jin, Y.; Zhao, Y.; Yue, X.; Zhang, C. Single-Labeled Hairpin Probe for Highly Specific and Sensitive Detection of Lead(II) Based on the Fluorescence Quenching of Deoxyguanosine and G-Quartet. Biosens. Bioelectron. 2013, 41, 137–142. [Google Scholar] [CrossRef]
- Hwang, G.T. Single-Labeled Oligonucleotides Showing Fluorescence Changes upon Hybridization with Target Nucleic Acids. Molecules 2018, 23, 124. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Wang, Y.; Marty, J.L.; Yang, X. Aptamer-Based Colorimetric Biosensing of Ochratoxin A Using Unmodified Gold Nanoparticles Indicator. Biosens. Bioelectron. 2011, 26, 2724–2727. [Google Scholar] [CrossRef]
- Mateo, R.; Medina, Á.; Mateo, E.M.; Mateo, F.; Jiménez, M. An Overview of Ochratoxin A in Beer and Wine. Int. J. Food Microbiol. 2007, 119, 79–83. [Google Scholar] [CrossRef]
- Cruz-Aguado, J.A.; Penner, G. Determination of Ochratoxin A with a DNA Aptamer. J. Agric. Food Chem. 2008, 56, 10456–10461. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Ren, J.; Wang, J.; Wang, E. Single-Walled Carbon Nanotubes Based Quenching of Free FAM-Aptamer for Selective Determination of Ochratoxin A. Talanta 2011, 85, 2517–2521. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Lates, V.; Prieto-Simón, B.; Marty, J.L.; Yang, X. Aptamer-DNAzyme Hairpins for Biosensing of Ochratoxin A. Biosens. Bioelectron. 2012, 32, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Peng, Z.; Li, Y.; Xiao, M.; Tan, G.; Wang, W.; Wang, Y.; Fang, M.; Zhang, S.; Tang, C.; et al. An Aptamer-Array-Based Sample-to-Answer Biosensor for Ochratoxin a Detection via Fluorescence Resonance Energy Transfer. Chemosensors 2021, 9, 309. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, Y.; Li, D.; Liu, Y.; Sun, B. Chemiluminescence Sensor Based on Composite Functional Nucleic Acid for Detection of Ochratoxin A in Wine. Chin. J. Anal. 2021, 49, 496–503. [Google Scholar] [CrossRef]
- Lv, L.; Cui, C.; Liang, C.; Quan, W.; Wang, S.; Guo, Z. Aptamer-Based Single-Walled Carbon Nanohorn Sensors for Ochratoxin A Detection. Food Control. 2016, 60, 296–301. [Google Scholar] [CrossRef]
- Yu, X.; Lin, Y.; Wang, X.; Xu, L.; Wang, Z.; Fu, F. Exonuclease-Assisted Multicolor Aptasensor for Visual Detection of Ochratoxin A Based on G-Quadruplex-Hemin DNAzyme-Mediated Etching of Gold Nanorod. Microchim. Acta 2018, 185, 259. [Google Scholar] [CrossRef]
- Zejli, H.; Goud, K.Y.; Louis, J. Talanta Label Free Aptasensor for Ochratoxin A Detection Using Polythiophene-3-Carboxylic Acid. Talanta 2018, 185, 513–519. [Google Scholar] [CrossRef]
Name | Complementary Chain Sequence | Number of Bases |
---|---|---|
Apt36F | 5′-GGGGATCGGGTGTGGGTGGCGTAAAGGGAGCATC-GGACA-FAM-3′ | 39 |
F1 | 5′-GGGGATCGGGTGTGGGTGGCGTAAAGGGAGCATC-FAM-3′ | 34 |
F2 | 5′-GGGGGATCGGGTGTGGGTGGCGTAAAGGGAGCATCC-FAM-3′ | 36 |
F2-A11 | 3′-TTTCCCTCGTA-5′ | 11 |
F2-A12 | 3′-ATTTCCCTCGTA-5′ | 12 |
F2-A13 | 3′-CATTTCCCTCGTA-5′ | 13 |
F2-A14 | 3′-GCATTTCCCTCGTA-5′ | 14 |
F2-A16 | 3′-CCGCATTTCCCTCGTA-5′ | 16 |
F2-A18 | 3′-CACCGCATTTCCCTCGTA-5′ | 18 |
Method/Material | Detection Limit (nmol/L) | Linear Range (nmol/L) | Reference |
---|---|---|---|
Fluorescence SYBR gold probe and exonuclease III | 11.6 | 19.8–2476 | [4] |
Fluorescence PIET system | 1.3 | 3–300 | [13] |
Fluorescence single-walled carbon-nanotubes (SWCNTs) | 24.1 | 25–200 | [22] |
Fluorescence gold nanoparticles | 22.7 | 25–300 | [26] |
Colorimetry G-quadruplex DNAzymes | 10 | 10–200 | [27] |
Electrochemistry polythiophene-3-carboxylic acid | 0.31 | 0.31–12.4 | [28] |
Quencher-free fluorescence (F1) | 0.69 | 0.69 to 8.0 | This work |
Quencher-free fluorescence (F2 with A13) | 0.36 | 0.36 to 4.0 | This work |
Method | Sample | Found (nmol/L) | Added (nmol/L) | Total Found (nmol/L) | Recovery (%) |
---|---|---|---|---|---|
F1 | 1 | Not detected | 4.0 | 3.89 ± 0.28 | 97.3 |
F1 | 2 | Not detected | 2.0 | 2.15 ± 0.26 | 107.7 |
F1 | 3 | Not detected | 1.0 | 0.89 ± 0.13 | 88.7 |
F2 + A13 | 4 | Not detected | 4.0 | 3.85 ± 0.12 | 96.2 |
F2 + A13 | 5 | Not detected | 2.0 | 2.09 ± 0.15 | 104.3 |
F2 + A13 | 6 | Not detected | 1.0 | 0.96 ± 0.12 | 95.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Abbas, F.; Rhouati, A.; Sun, Y.; Chu, X.; Cui, S.; Sun, B.; Xue, C. Design of a Quencher-Free Fluorescent Aptasensor for Ochratoxin A Detection in Red Wine Based on the Guanine-Quenching Ability. Biosensors 2022, 12, 297. https://doi.org/10.3390/bios12050297
Yang C, Abbas F, Rhouati A, Sun Y, Chu X, Cui S, Sun B, Xue C. Design of a Quencher-Free Fluorescent Aptasensor for Ochratoxin A Detection in Red Wine Based on the Guanine-Quenching Ability. Biosensors. 2022; 12(5):297. https://doi.org/10.3390/bios12050297
Chicago/Turabian StyleYang, Cheng, Fathimath Abbas, Amina Rhouati, Yingying Sun, Xiaolin Chu, Shengnan Cui, Bingbing Sun, and Changying Xue. 2022. "Design of a Quencher-Free Fluorescent Aptasensor for Ochratoxin A Detection in Red Wine Based on the Guanine-Quenching Ability" Biosensors 12, no. 5: 297. https://doi.org/10.3390/bios12050297
APA StyleYang, C., Abbas, F., Rhouati, A., Sun, Y., Chu, X., Cui, S., Sun, B., & Xue, C. (2022). Design of a Quencher-Free Fluorescent Aptasensor for Ochratoxin A Detection in Red Wine Based on the Guanine-Quenching Ability. Biosensors, 12(5), 297. https://doi.org/10.3390/bios12050297