Analysis of Mn2+ and Zn2+ Ions in Macroalgae with Heteroelement-Doped Carbon-Based Fluorescent Probe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of R-CDs
2.2. Structural Characterization of R-CDs
2.3. Signal-Off Detection of Mn2+
2.4. Ratiometric Detection of Zn2+
2.5. Sample Pretreatment
2.6. FAAS Determination
3. Results and Discussion
3.1. Photoluminescence Performance of R-CDs
3.2. Structural Characterization of R-CDs
3.3. Stability of R-CDs
3.4. Photoluminescence Mechanism of R-CDs
3.5. Signal-Off Analysis of Mn2+
3.6. Ratiometric Analysis of Zn2+
3.7. Detection of Metal Elements in Macroalgae by R-CDs
3.8. Recovery
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sánchez-Quiles, D.; Marbà, N.; Tovar-Sánchez, A. Trace metal accumulation in marine macrophytes: Hotspots of coastal contamination worldwide. Sci. Total Environ. 2017, 576, 520–527. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wu, S.; Hua, C.; Han, X. Effect of synergistic sorption of Cr(VI) and Mn(II) in aqueous solution using magnetic nanoparticles. Desalin. Water Treat. 2014, 52, 22–24. [Google Scholar] [CrossRef]
- Dai, Z.; Canary, J.W. Tailoring tripodal ligands for zinc sensing. New J. Chem. 2007, 31, 1708–1718. [Google Scholar] [CrossRef]
- Nolan, E.M.; Lippard, S.J. Tools and Tactics for the Optical Detection of Mercuric Ion. ChemInform 2008, 39, 3443–3480. [Google Scholar] [CrossRef]
- Muhammad, S.; Muhammad, R.; Muhammad, H. Organic Material Based Fluorescent Sensor for Hg2+: A Brief Review on Recent Development. J. Fluoresc. 2017, 27, 257–317. [Google Scholar]
- Yu, Y.; Liu, C.; Tian, B.; Cai, X.; Zhu, H.; Jia, P.; Li, Z.; Zhang, X.; Sheng, W.; Zhu, B. A novel highly selective ratiometric fluorescent probe with large emission shift for detecting mercury ions in living cells and zebrafish. Dye. Pigment. 2020, 177, 108290. [Google Scholar] [CrossRef]
- Zhou, B.; Qin, S.; Chen, B.; Han, Y. A new BODIPY-based fluorescent “turn-on” probe for highly selective and rapid detection of mercury ions. Tetrahedron Lett. 2018, 59, 4359–4363. [Google Scholar] [CrossRef]
- Wu, Y.P.; Tian, J.W.; Liu, S.; Li, B.; Zhao, J.; Ma, L.F.; Li, D.-S.; Lan, Y.-Q.; Bu, X. Bi-Microporous Metal-Organic Frameworks with Cubane [M4(OH)4] (M = Ni, Co) Clusters and Pore-Space Partition for Electrocatalytic Methanol Oxidation Reaction. Angew. Chem. 2019, 58, 12313–12317. [Google Scholar] [CrossRef]
- Rong, Z.; Shulan, J.; Naixin, W.; Lin, W.; Guojun, Z.; Jian-Rong, L. Coordination-driven in situ self-assembly strategy for the preparation of metal-organic framework hybrid membranes. Angew. Chem. 2014, 53, 9775–9779. [Google Scholar]
- Lv, X.L.; Yuan, S.; Xie, L.H.; Darke, H.F.; Chen, Y.; He, T.; Dong, C.; Wang, B.; Zhang, Y.-Z.; Li, J.-R.; et al. Ligand Rigidification for Enhancing the Stability of Metal-Organic Frameworks. J. Am. Chem. Soc. 2019, 141, 10283–10293. [Google Scholar] [CrossRef]
- Chen, Y.; Li, S.; Pei, X.; Zhou, J.; Feng, X.; Zhang, S.; Cheng, Y.; Li, H.; Han, R.; Wang, B. A Solvent-Free Hot-Pressing Method for Preparing Metal-Organic-Framework Coatings. Angew. Chem. 2016, 55, 3419–3423. [Google Scholar] [CrossRef]
- Shamsipur, M.; Barati, A.; Karami, S. Long-wavelength, multicolor, and white-light emitting carbon-based dots: Achievements made, challenges remaining, and applications. Carbon 2017, 124, 429–472. [Google Scholar] [CrossRef]
- Wang, R.; Lu, K.Q.; Tang, Z.R.; Xu, Y.J. Recent progress in carbon quantum dots: Synthesis, properties and applications in photocatalysis. J. Mater. Chem. A 2017, 5, 3717–3734. [Google Scholar] [CrossRef]
- Li, K.; Liu, W.; Ni, Y.; Li, D.; Lin, D.; Su, Z.; Wei, G. Technical synthesis and biomedical applications of graphene quantum dots. J. Mater. Chem. B 2017, 5, 4811–4826. [Google Scholar] [CrossRef]
- Dong, J.; Wang, K.; Sun, L.; Sun, B.; Yang, M.; Chen, H.; Wang, Y.; Sun, J.; Dong, L. Application of graphene quantum dots for simultaneous fluorescence imaging and tumor-targeted drug delivery. Sens. Actuators B Chem. 2018, 256, 616–623. [Google Scholar] [CrossRef]
- Farshbaf, M.; Davaran, S.; Rahimi, F.; Annabi, N.; Salehi, R.; Akbarzadeh, A. Carbon quantum dots: Recent progresses on synthesis, surface modification and applications. Artif. Cells Nanomed. Biotechnol. 2017, 46, 1331–1348. [Google Scholar] [CrossRef]
- Shen, J.; Zhu, Y.; Yang, X.; Li, C. Graphene Quantum Dots: Emergent Nanolights for Bioimaging, Sensors, Catalysis and Photovoltaic Devices. ChemInform 2012, 43, 3686–3699. [Google Scholar]
- Hola, K.; Bourlinos, A.B.; Kozak, O.; Berka, K.; Siskova, K.; Havrdova, M.; Tucek, J.; Safarova, K.; Otyepka, M.; Giannelis, E.P.; et al. Photoluminescence effects of graphitic core size and surface functional groups in carbon dots: COO-Induced red-shift emission. Carbon 2014, 70, 279–286. [Google Scholar] [CrossRef]
- Ahmadian-Fard-Fini, S.; Salavati-Niasari, M.; Ghanbari, D. Hydrothermal green synthesis of magnetic Fe3O4 -carbon dots by lemon and grape fruit extracts and as a photoluminescence sensor for detecting of E. coli bacteria. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 203, 481–493. [Google Scholar] [CrossRef]
- Xu, Q.; Wei, J.; Wang, J.; Liu, Y.; Li, N.; Chen, Y.; Gao, C.; Znahg, W.; Sreeprased, T.S. Facile synthesis of copper doped carbon dots and their application as a turn-off fluorescent probe in the detection of Fe3+ ions. RSC Adv. 2016, 6, 28745–28750. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.; Liu, J.H.; Hou, P.; Zhou, J.; Huang, C.Z. Preparation of nitrogen-doped carbon dots with high quantum yield from Bombyx mori silk for Fe(iii) ions detection. RSC Adv. 2017, 7, 50584–50590. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Yang, Y.; Li, J.; Lai, X.; Chen, X.; Wang, L.; Zhang, W.; Huang, Y.; Zhang, P. Enhanced fluorescence of Zn-doped carbon quantum dots using zinc citrate chelate as precursor for fluorescent sensor applications. Mater. Sci. Eng. B 2021, 264, 114955. [Google Scholar] [CrossRef]
- Huang, L.; Zhao, Y.; Zhang, H.; Huang, K.; Yang, J.; Han, G. Expanding Anti-Stokes Shifting in Triplet-Triplet Annihilation Upconversion for In Vivo Anticancer Prodrug Activation. Angew. Chem. 2017, 56, 14592–14596. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Wu, X.; Wu, X.; Maudgal, R.; Zhang, H.; Han, G. In Vivo Repeatedly Charging Near-Infrared-Emitting Mesoporous SiO2/ZnGa2O4:Cr3+ Persistent Luminescence Nanocomposites. Adv. Sci. 2015, 2, 1500001. [Google Scholar] [CrossRef] [Green Version]
- Surana, K.; Mehra, R.M.; Soni, S.S.; Bhattacharya, B. Real-time photovoltaic parameters assessment of carbon quantum dots showing strong blue emission. RSC Adv. 2022, 12, 1352–1360. [Google Scholar] [CrossRef]
- Krishnaiah, P.; Atchudan, R.; Perumal, S.; Salama, E.; Lee, Y.R.; Jeon, B. Utilization of waste biomass of Poa pratensis for green synthesis of n-doped carbon dots and its application in detection of Mn2+ and Fe3+. Chemosphere 2022, 286, 131764. [Google Scholar] [CrossRef]
- Lu, S.; Sui, L.; Liu, J.; Zhu, S.; Chen, A.; Jin, M.; Yang, B. Near-Infrared Photoluminescent Polymer-Carbon Nanodots with Two-Photon Fluorescence. Adv. Mater. 2017, 29, 1603443. [Google Scholar] [CrossRef]
- Pan, L.; Sun, S.; Zhang, L.; Jiang, K.; Lin, H. Near-infrared emissive carbon dots for two-photon fluorescence bioimaging. Nanoscale 2016, 8, 17350–17356. [Google Scholar] [CrossRef]
- Zhu, S.; Song, Y.; Zhao, X.; Shao, J.; Zhang, J.; Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res. 2015, 8, 355–381. [Google Scholar] [CrossRef]
- Li, L.; Li, K.; Liu, Y.; Xu, H.; Yu, X. Red emission fluorescent probes for visualization of monoamine oxidase in living cells. Sci Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Miao, X.; Qu, D.; Yang, D.; Nie, B.; Zhao, Y.; Fan, H.; Sun, Z. Synthesis of Carbon Dots with Multiple Color Emission by Controlled Graphitization and Surface Functionalization. Adv. Mater. 2018, 30, 1704740. [Google Scholar] [CrossRef]
- Pan, L.; Sun, S.; Zhang, A.; Jiang, K.; Zhang, L.; Dong, C.; Huang, Q.; Wu, A.; Lin, H. Truly Fluorescent Excitation-Dependent Carbon Dots and Their Applications in Multicolor Cellular Imaging and Multidimensional Sensing. Adv. Mater. 2015, 27, 7782–7787. [Google Scholar] [CrossRef]
- Mercado-Zúñiga, C.; Torres-Torres, C.; Trejo-Valdez, M.; Torres-Martínez, R.; Cervantes-Sodi, F.; Vargas-García, J.R. Influence of silver decoration on the nonlinear optical absorption exhibited by multiwall carbon nanotubes. J. Nanopart. Res. 2014, 16, 1–9. [Google Scholar] [CrossRef]
- Jain, R.; Thakur, A.; Kaur, P.; Kim, K.; Devi, P. Advances in imaging-assisted sensing techniques for heavy metals in water: Trends, challenges, and opportunities. Trends Anal. Chem. 2020, 123, 115758. [Google Scholar] [CrossRef]
- Wang, Y.; Lao, S.; Ding, W.; Zhang, Z.; Liu, S. A novel ratiometric fluorescent probe for detection of iron ions and zinc ions based on dual-emission carbon dots. Sens. Actuators B 2018, 284, 186–192. [Google Scholar] [CrossRef]
- Kumar, V.V.; Thiagarajan, R.; Anthony, S.P. Fluorescent carbon quantum dots chemosensor for selective turn-on sensing of Zn2+ and turn-off sensing of Pb2+ in aqueous medium and Zebra fish egg. New J. Chem. 2017, 41, 15157–15164. [Google Scholar] [CrossRef]
- Yang, M.; Tang, Q.; Meng, Y.; Liu, J.; Feng, T.; Zhao, X.; Zhu, S.; Yu, W.; Yang, B. Reversible “Off–On” Fluorescence of-Passivated Carbon Dots: Mechanism and Potential for the Detection of EDTA and Zn2+. Langmuir 2018, 34, 7767–7775. [Google Scholar] [CrossRef]
- Roushani, M.; Saedi, Z.; Hamdi, F.; Dizajdizi, B.Z. Preparation an electrochemical sensor for detection of manganese (II) ions using glassy carbon electrode modified with multi walled carbon nanotube-chitosan-ionic liquid nanocomposite decorated with ion imprinted polymer. J. Electroanal. Chem. 2017, 804, 1–6. [Google Scholar] [CrossRef]
- He, Y.; Zhang, X. Ultrasensitive colorimetric detection of manganese(II) ions based on anti-aggregation of unmodified silver nanoparticles. Sens. Actuators B Chem. 2016, 222, 320–324. [Google Scholar] [CrossRef]
- Zhao, L.; Li, H.; Liu, H.; Liu, M.; Huang, N.; He, Z.; Li, Y.; Chen, Y.; Ding, L. Microwave-assisted facile synthesis of polymer dots as a fluorescent probe for detection of cobalt(II) and manganese(II). Anal. Bioanal. Chem. 2019, 411, 2373–2381. [Google Scholar] [CrossRef]
- Meng, L.; Yuan, Y.; Pu, G.; Xu, N. An “on–off–on” fluorescence assay based on silicon nanoparticles for selective detection of manganese(II). Anal. Methods 2017, 9, 2553–2560. [Google Scholar] [CrossRef]
- Giusti, L. Heavy metal contamination of brown seaweed and sediments from the UK coastline between the Wear river and the Tees river. Environ. Int. 2001, 26, 275–286. [Google Scholar] [CrossRef]
- Brito, G.B.; de Souza, T.L.; Bressy, F.C.; Moura, C.W.N.; Korn, M.G.A. Levels and spatial distribution of trace elements in macroalgae species from the Todos os Santos Bay, Bahia, Brazil. Mar. Pollut. Bull. 2012, 64, 2238–2244. [Google Scholar] [CrossRef]
- Winnett, M.R.; Mini, P.; Grace, M.R.; Tuck, K.L. Time-Resolved Terbium-Based Probe for the Detection of Zinc(II) Ions: Investigation of the Formation of a Luminescent Ternary Complex. Inorg. Chem. 2020, 59, 118–127. [Google Scholar] [CrossRef]
- So, H.; Cho, H.; Lee, H.; Tran, M.C.; Kim, K.; Kim, C. Detection of zinc (II) and hypochlorite by a thiourea-based chemosensor via two emission channels and its application in vivo. Microchem. J. 2020, 155, 104788. [Google Scholar] [CrossRef]
- Wang, P.; Wang, S.; Chen, L.; Wang, W.; Wang, B.; Liao, Y. A novel peptide-based fluorescent probe for sensitive detection of zinc (II) and its applicability in live cell imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 240, 118549. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, B.; Li, L.; Wu, L.; Chen, S.; Huang, L.; Yang, J.; Liang, S.; Xiao, K.; Hu, J.; et al. A micromilled microgrid sensor with delaminated MXene-bismuth nanocomposite assembly for simultaneous electrochemical detection of lead(II), cadmium(II) and zinc(II). Mikrochim. Acta 2019, 186, 1–7. [Google Scholar] [CrossRef]
Detection Method | Material | LOD | Linear Range | Ref. |
---|---|---|---|---|
Electrochemical | Mn(II)-IIP/MWCNT-Chit-IL/GC | 0.15 μmol/L | 2~9 μmol/L | [38] |
Colorimetric | Silver nanoparticles | 20 nmol/L | 0~700 nmol/L | [39] |
Fluorescence | Polymer dot | 0.4 μmol/L | 1.5~100 μmol/L | [40] |
Fluorescence | Silicon nanoparticles | 0.2 μmol/L | 2.5~250 μmol/L | [41] |
Fluorescence | R-CDs | 0.23 nmol/L | 18.2~910 nmol/L | This method |
Detection Method | Material | LOD | Linear Range | Ref. |
---|---|---|---|---|
Electrochemical | Bismuth—nitride nanocomposites | 0.5 μg/L | 1~20 μg/L | [44] |
Fluorescence | Lanthanide complexes | 1.2 μmol/L | - | [45] |
Fluorescence | Thiourea based chemical sensor | 0.67 μmol/L | - | [46] |
Fluorescence | Novel fluorescent peptide-based probe | 26.77 nmol/L | - | [47] |
Fluorescence | CDs | 19.1 nmol/L | 1~50 ng/mL | This method |
No. | R-CDs | RSD | FAAS | RSD |
---|---|---|---|---|
1 | 34.95 | 5.13% | 34.17 | 1.19% |
2 | 33.59 | 6.81% | 37.32 | 0.8% |
3 | 30.11 | 4.30% | 29.30 | 2.36% |
4 | 35.45 | 2.69% | 26.24 | 1.62% |
5 | 105.96 | 4.28% | 116.46 | 2.20% |
6 | 30.96 | 2.98% | 33.00 | 1.12% |
7 | 32.53 | 3.54% | 49.18 | 3.99% |
8 | 28.90 | 6.98% | 31.00 | 0.75% |
9 | 41.55 | 6.90% | 45.60 | 1.13% |
10 | 32.83 | 7.24% | 28.14 | 3.18% |
11 | 40.84 | 5.85% | 31.05 | 1.13% |
12 | 19.88 | 1.88% | 23.44 | 1.40% |
13 | 27.08 | 3.27% | 31.76 | 2.58% |
14 | 27.64 | 5.32% | 43.35 | 2.85% |
15 | 48.26 | 1.06% | 46.90 | 3.57% |
16 | 26.23 | 6.55% | 24.35 | 3.47% |
17 | 12.11 | 4.51% | 17.68 | 0.93% |
18 | 10.52 | 1.14% | 10.44 | 1.95% |
19 | 20.63 | 7.79% | 25.70 | 4.07% |
20 | 24.36 | 4.01% | 26.29 | 1.32% |
No. | R-CDs | RSD | FAAS | RSD |
---|---|---|---|---|
1 | 85.14 | 3.02% | 105.16 | 6.03% |
2 | 93.76 | 5.57% | 103.95 | 1.19% |
3 | 69.89 | 2.64% | 65.46 | 5.55% |
4 | 79.17 | 10.06% | 88.40 | 1.23% |
5 | 51.71 | 3.23% | 61.10 | 1.83% |
6 | 47.18 | 4.39% | 70.07 | 7.16% |
7 | 52.58 | 4.75% | 61.95 | 3.98% |
8 | 32.72 | 2.14% | 29.74 | 0.97% |
9 | 49.00 | 1.51% | 48.07 | 1.20% |
10 | 18.30 | 0.91% | 15.82 | 4.15% |
11 | 25.83 | 1.13% | 28.92 | 1.69% |
12 | 33.81 | 5.79% | 31.98 | 3.68% |
13 | 34.21 | 1.16% | 47.01 | 1.01% |
14 | 33.79 | 2.62% | 44.01 | 1.30% |
15 | 30.92 | 4.01% | 28.30 | 2.76% |
16 | 18.75 | 3.97% | 28.04 | 6.19% |
17 | 26.22 | 0.79% | 32.27 | 2.40% |
18 | 27.69 | 0.23% | 19.57 | 3.25% |
19 | 36.11 | 4.21% | 36.45 | 2.65% |
20 | 44.14 | 1.36% | 49.03 | 5.34% |
Sample | Original Content | Add Scalar | Final Content | Recovery | Recovery Rate | RSD |
---|---|---|---|---|---|---|
blank | 0.002 | 0.4 | 0.4002 | 0.409~0.432 | 102.2~107.9% | 7.6% |
blank | 0.002 | 2 | 2.002 | 2.136~2.36 | 106.7~117.7% | 3.5% |
blank | 0.002 | 4 | 4.002 | 3.30~3.483 | 82.4~95.7% | 9.47% |
18 | 0.168 | 0.4 | 0.568 | 0.558~0.594 | 98.3~104.6% | 2.19% |
18 | 0.168 | 2 | 2.168 | 1.807~2.193 | 83.3~101.2% | 7.0% |
18 | 0.168 | 4 | 4.168 | 4.205~4.393 | 100.9~105.4% | 1.73% |
Sample | Original Content | Add Scalar | Final Content | Recovery | Recovery Rate | RSD |
---|---|---|---|---|---|---|
blank | 0.0577 | 0.4 | 0.4577 | 0.461~0.475 | 100.7~103.7% | 1.16% |
blank | 0.0577 | 2 | 2.0577 | 2.115~2.141 | 102.9~104.0% | 2.01% |
blank | 0.0577 | 4 | 4.0577 | 3.943~4.120 | 97.2~101.53% | 8.81% |
10 | 0.293 | 0.4 | 0.693 | 0.734~0.751 | 106.1~108.4% | 2.59% |
10 | 0.293 | 2 | 2.293 | 2.719~2.722 | 118.5~118.7% | 5.28% |
10 | 0.293 | 4 | 4.293 | 4.158~4.201 | 98.09~99.1% | 3.87% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; You, X.; Lu, Y.; Liang, P.; Luo, Z.; Wang, Y.; Zeng, S.; Zeng, H. Analysis of Mn2+ and Zn2+ Ions in Macroalgae with Heteroelement-Doped Carbon-Based Fluorescent Probe. Biosensors 2022, 12, 359. https://doi.org/10.3390/bios12050359
Xu H, You X, Lu Y, Liang P, Luo Z, Wang Y, Zeng S, Zeng H. Analysis of Mn2+ and Zn2+ Ions in Macroalgae with Heteroelement-Doped Carbon-Based Fluorescent Probe. Biosensors. 2022; 12(5):359. https://doi.org/10.3390/bios12050359
Chicago/Turabian StyleXu, Hui, Xin You, Yue Lu, Peng Liang, Zhihui Luo, Yiwei Wang, Shaoxiao Zeng, and Hongliang Zeng. 2022. "Analysis of Mn2+ and Zn2+ Ions in Macroalgae with Heteroelement-Doped Carbon-Based Fluorescent Probe" Biosensors 12, no. 5: 359. https://doi.org/10.3390/bios12050359
APA StyleXu, H., You, X., Lu, Y., Liang, P., Luo, Z., Wang, Y., Zeng, S., & Zeng, H. (2022). Analysis of Mn2+ and Zn2+ Ions in Macroalgae with Heteroelement-Doped Carbon-Based Fluorescent Probe. Biosensors, 12(5), 359. https://doi.org/10.3390/bios12050359