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Abstract: Sequence-specific detection of nucleic acids has been intensively studied in the
field of molecular diagnostics. In particular, the detection and analysis of single-nucleotide
polymorphisms (SNPs) is crucial for the identification of disease-causing genes and diagnosis
of diseases. Sequence-specific hybridization probes, such as molecular beacons bearing the
fluorophore and quencher at both ends of the stem, have been developed to enable DNA
mutation detection. Interestingly, DNA mutations can be detected using fluorescently labeled
oligonucleotide probes with only one fluorophore. This review summarizes recent research on
single-labeled oligonucleotide probes that exhibit fluorescence changes after encountering target
nucleic acids, such as guanine-quenching probes, cyanine-containing probes, probes containing
a fluorophore-labeled base, and microenvironment-sensitive probes.

Keywords: DNA; nucleic acids chemistry; oligonucleotides; fluorescent probes; single-nucleotide
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1. Introduction

Since the post-genome era, there has been a growing need for faster and more accurate detection
methods for nucleic acids. In particular, the interest in single-nucleotide polymorphisms (SNPs),
which involve a variation of a single nucleotide at a specific location in the genome, is increasing,
so typing an SNP using a DNA probe is very important [1–4]. Several methods for SNP typing
have been developed in efforts to establish an ideal typing system that exhibits very sensitive and
specific behavior for the target DNA, without costly and time-consuming steps. Among these methods,
molecular beacon (MB) probes have been widely used for the detection of SNPs, for the real-time
detection of nucleic acids, for the quantification of polymerase chain reactions (PCRs), for isothermal
amplification, as DNA microarray–immobilized probes, and as antisense probes for detecting RNA
in vivo [5–8].

An MB probe is an oligonucleotide that forms a hairpin-like stem-loop structure tagged with
a fluorophore at its 5′-terminus and a quencher at its 3′-terminus (Figure 1). The hairpin loop consists
of approximately 15–25 nucleotides (nt) that are complementary to the target DNA, and the terminal
stems are composed of 5–7 nt that are complementary to each other [9–11]. When the MB probe exists
in the form of a hairpin structure, the fluorescence disappears because the quencher is positioned
close to the fluorophore. When the MB probe meets its target DNA, however, the hairpin structure
is opened, and fluorescence is restored as a result of the separation of the fluorophore and quencher
units. The advantage of MB probes over single-dye probes (linear probes) is that they provide high
signal-to-noise ratios and high degrees of single-base mismatch discrimination. Despite these attractive
features, MB probes have a disadvantage in that they require a specific target sequence of 15–25 nt to
separate the fluorophore and quencher upon dimerization with the target. In addition, because the
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hairpin must be opened, the rate of dimer formation is slower than that of a corresponding linear probe.
In addition, both the fluorophore and quencher units are required, adding to the cost of preparation.
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Figure 2. (a) Guanine-quenching probe and (b) Guanine-dequenching probe. 
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As mentioned above, the interaction of fluorophores with nucleobases usually leads to the quenching 
of fluorescence. However, some cyanines such as thiazole orange (TO) and oxazole yellow (YO) are 

Figure 1. MB probe.

If fluorescent hairpin- and linear-oligonucleotides could be made to function in a manner similar to
that of MB probes, but without the need for quencher units, such probes would be simpler and cheaper
to prepare. Furthermore, quencher-free DNA probes could then be prepared with the fluorophore
positioned anywhere along the sequence, not only at the end of the stem. Examples of systems capable
of fluorescence-based sequence detection, discrimination of alleles, and DNA quantification using
oligonucleotide probes containing only fluorophore units (i.e., without quenchers) have been reported.
This article reviews recent progress in the development of single-labeled DNA probes that can sense
the presence of a specific nucleic acid through a change in fluorescence intensity.

2. Guanine-Quenching Probes

Fluorescence quenching between a guanosine residue and a fluorophore is commonly exploited
because guanine bases function as energy acceptors [12–14]. Two types of probes have been designed
using this principle (Figure 2). First, quenching of the fluorophores such as fluorescein, BODIPY,
6-carboxyfluorescein, and tetramethyl-6-carboxyrhodamine can be achieved by placing one or more
adjacent cytosine residues next to the fluorophore unit of the probe [15–17]; hybridization induces
a decrease in the fluorescence of the fluorophore close to one or more guanine residues in the
complementary strand. Second, dequenching can be induced by placing one or more guanine residues
next to the fluorescein unit in the probe [18]; the internal quenching is relaxed upon hybridization with
the target DNA, thereby enhancing the emission.
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3. Cyanine-Containing Probes

As mentioned above, the interaction of fluorophores with nucleobases usually leads to the
quenching of fluorescence. However, some cyanines such as thiazole orange (TO) and oxazole
yellow (YO) are notable exceptions because they are powerful reagents for nucleic acid staining.
In attempts to develop fluorescence “turn-on” probes, oligonucleotides containing these dyes have
been developed [19–25].

The Ishiguro group designed a YO-linked DNA probe [19]. A YO moiety was inserted at
an internal cytidine, C*, of a 13mer, 5′-CTCGC*GGGGGCTG-3′, complementary to the 5′-terminus
non-coded region of hepatitis C virus RNA (Figure 3a). The YO-linked DNA probe recognized the
complementary DNA or RNA and increased the fluorescence by the intercalation of the YO moiety
into the target DNA or RNA.
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The Asseline group reported a TO-linked DNA probe (Figure 3b) [20]. The fluorescence
intensities of the mismatched duplexes were greater than those of the corresponding matched duplexes.
The highest discrimination factor, which was the fluorescence intensity ratio between the mismatched
duplexes and the perfectly matched ones, was obtained when TO was linked in the position adjacent
to A (discrimination factor >4) and to T (discrimination factor >3).

The Seitz group developed forced intercalation probes (FIT probes, Figure 4a), TO-linked PNA
(peptide nucleic acid) probes, in which TO was utilized as a fluorescent base surrogate [21–23].
When these probes were hybridized to the matched DNA target, hybridization-induced fluorescence
enhancement was observed. TO fluorescence was sensitive to the structural disturbance of PNA/DNA
caused by an adjacent base mismatch (Figure 4b). The emission of a duplex (1/2C, Y = C) containing
a C/T mismatch was reduced 3.4- and 11-fold relative to that of a matched duplex (1/2A, Y = A) when
measured at 25 ◦C and 61 ◦C, respectively. The discrimination factor at 61 ◦C was higher because the
thermal stability of the mismatch duplex was 9 K lower compared to that of the matched duplex.

Other cyanine dyes such as oxazole yellow (YO), thiazolopyridine (MO), and oxazolopyridine
(JO) have also been tested (Figure 4c) [24]. The TO-PNA probe was able to discriminate the a/T
matches from a/A and a/G mismatches with 3-fold selectivity. However, it was not able to discriminate
a/C mismatches. This type of mismatch could be easily discriminated by the YO–PNA probe.
However, the YO-PNA probe was not able to discriminate an a/A mismatch. Discrimination of
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the match/mismatch at 60 ◦C increased to 4- to 6-fold for the TO–PNA probe and to 7-fold for the
YO-PNA probe. A glycerol-TO nucleotide-containing DNA probe has also been developed [25].
Emission of the matched duplex was at least 5.6-fold higher than those of mismatched duplexes at
25 ◦C. It was proposed that the increase in the available space introduced by mismatched base-pairs
reduced the emission of the “TO-nucleobase”.Molecules 2018, 23, 124 4 of 19 
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4. Probes Containing a Fluorescent Nucleobase Analog

The classical fluorescent nucleobase consists of an adenine analog 2-aminopurine that maintains
complementarity to thymine but also wobble pairs with cytosine. It has a high fluorescent quantum
yield but shows reduced fluorescence following its interaction with the base when inserted into the
oligonucleotide [26]. Thus, fluorescent base analogs that are structurally similar to native nucleobases,
capable of pairing with Watson-Crick pairs, and applicable as SNP probes are being developed.

The Fontecave group demonstrated that flavin (Fl) and deazaflavin (dFl) were able to hybridize to
a matched target DNA both in the solution and on a solid surface and that the hybridization could be
detected because of the dramatic quenching of the matched target DNA (Figure 5a) [27]. Significantly
decreased quenching of fluorescence could be detected when mismatched targets were hybridized.
This effect probably resulted from a combination of the increased distance between the dye and target
and reduced amounts of the hybridized probe at equilibrium, making it possible to detect mutations
in solution and on a solid support.
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The Hawkins group reported 3-MI-containing hybridization probe (Figure 5b) [28]. Following
the formation of a matched duplex, a bulge formed at the sites of 3-MI, leading to an increase of up to
27-fold in fluorescence intensity. They demonstrated that the bulge-formation technique could be used
to detect positive PCR products using an HIV-1 detection system.

The Saito group designed benzopyridopyrimidine (BPP) as an effective degenerate base, forming
stable base pairs in the Watson-Crick pairing mode for BPP/G and in the wobble mode for BPP/A
(Figure 6a) [29]. However, the fluorescence behavior of the BPP-containing oligodeoxynucleotide
(ODN) [ODN(BPP)] was strongly dependent on the purine bases opposite BPP. The fluorescence
quantum yield (ΦF) of ODN(BPP)/ODN(G) (i.e., when BPP met G, ΦF = 0.0018) was approximately
20-fold less than that observed for ODN(BPP)/ODN(A) (ΦF = 0.035). Therefore, BPP-containing ODN
is an effective probe for typing the A/G SNP. BPP-containing ODN was also applied for the detection
of a single nucleotide alteration in RNA [30]. ODN(BPP)/RNA(A) exhibited a pale blue fluorescence
that was clearly distinguished from the very weak emission observed for ODN(BPP)/RNA(G).
Naphthopyridopyrimidine (NPP) also could clearly distinguish the nucleobases opposite NPP,
particularly between the A and G bases [31]. The fluorescence quantum yield of ODN(NPP)/ODN(G)
(ΦF = 0.007) was approximately 14-fold less than that observed for ODN(NPP)/ODN(A) (ΦF = 0.096).
For the other mismatched duplexes ODN(NPP)/ODN(C) and ODN(NPP)/ODN(T), the emissions
were weak compared with that for ODN(NPP)/ODN(A) (ΦF = 0.021 and 0.051, respectively).
In addition, methoxybenzodeazaadenine (MDA) and methoxybenzodeazainosine (MDI) emitted strong
fluorescence only when the base on the complementary strand was C and T, respectively [32].

The Sekine group synthesized a bicyclic 4-N-carbamoyldeoxycytidine derivative (Chpp) as the
geometrically locked nucleoside and inserted it at the central position of a 13mer ODN (5′-CGCAAT
ChppTAACGC-3′) (Figure 6b) [33]. They found that Chpp forms stable base pairs with not only
the complementary guanine base but also the adenine base. Although the emission intensity was
very similar to that of the single-stranded ODN (ssODN) containing Chpp when the Chpp base faced
a mismatch base A, the emission of the duplex containing a Chpp/G base pair was significantly reduced.

The Hudson group synthesized [bis-ortho-(aminoethoxy)phenyl]pyrrolocytosine (boPhpC),
capable of additional hydrogen bonding with guanine, and a boPhpC-containing PNA (GTAGAT
CXCT-Lys, X = boPhpC) (Figure 6c) [34]. This PNA exhibited a significant increase in affinity
toward matched DNA and RNA (∆Tm = +11.5 and +10.0 relative those of natural PNA/DNA
and PNA/RNA duplexes, respectively) presumably due to an additional hydrogen bond to
guanine. Interestingly, duplex formation with mismatch DNAs showed a sharp decrease in Tm

(∆Tm ≥ −13.5 ◦C). The discrimination was equal to or greater than that of cytosine itself. However,
upon duplex formation, the quantum yield of the matched PNA/DNA duplex dramatically decreased
by ca. 50% compared to that observed for a single-stranded PNA.
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The Tor group designed a fluorescent nucleoside, 7-aminoquinazoline-2,4-(1H,3H)-dione,
which contains an electron-rich ring fused into an electron-deficient pyrimidine, and incorporated it
into the central position (X) of ODN (5′-GCGATGXGTAGCG-3′) [35]. When this nucleoside formed
duplexes with A, T, and C, a quenched emission was observed, but when it met with G, a fluorescence
increase of approximately 2-fold was observed. Therefore, this nucleoside sensed mismatched
pairings by displaying a G-specific fluorescence enhancement, a characteristic not observed in other
fluorescent nucleosides.

The Ueno group reported a fluorescent tricyclic base-linked acyclonucleoside, P and N.
(Figure 7a) [36,37]. When a discriminating base D of the probe was complementary to the DNA
target base Y, the base pairs between D and Y caused the fluorescent analog to flip outside of the
DNA helix, enhancing the fluorescence intensity of the analogs. However, when the target base Y
was mismatched with the discriminating base D, the analogs intercalated into the DNA helix resulted
in a decrease in the emission of the analogs. The results of the fluorescence experiment for the RNA
targets were similar to those observed for the DNA targets.

The Purse group designed the tricyclic cytidine analog 8-DEA-tC and incorporated it into the X of
ODN, 5′-CGCANXN′TCG-3′ (N and N′ = A, T, G, or C) (Figure 7b) [38]. The ssODNs were up to 5-fold
brighter than the 8-DEA-tC nucleoside and showed further emission increases in all sequences of up
to 4-fold when forming a matched duplex with the complementary DNA target. However, mispairing
8-DEA-tC with A resulted in an emission increase of less than 2-fold.

The Sigurdsson group designed the ssODN 5′-GACCTCGCfATCGTG-3′ containing another
cytidine analog Cf. Mispairing Cf with A resulted in the most fluorescent among all duplexes and was
similar to that of the single strand (Figure 8) [39]. The fluorescence emission of the mismatched
duplexes Cf/C and Cf/T was between that of Cf/A and the matched duplex Cf/G. They also
investigated the SNP typing of α- and β-anomers of phenotiazine (tC), which is a highly fluorescent
DNA base analog that forms Watson-Crick base pairs with guanine [40] and acts as an i-motif probe [41].
Neither anomer of tC was suitable for SNP detection because they were unable to detect mismatches
in any tested sequence [42]. However, phenoxazine (tCo) was able to detect mismatches for some
flanking sequences, but tCo did not perform as good as the Cf probe.
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5. Probes Containing a Fluorophore-Labeled Base

5.1. HyBeacon Probes

HyBeacon probes are linear oligonucleotides containing a fluorophore-labeled uracil base
at an internal position of the oligonucleotide (no quencher moiety) and a 3′-phosphate or
octanediol to prevent PCR extension (Figure 9) [43]. The fluorescent dyes 6-carboxyfluorescein,
tetrachloro-6-carboxyfluorescein, and hexachloro-6-carboxyfluorescein can be attached to the 5-position
uracil base through novel linkage chemistries. Hybridization of HyBeacons with complementary
target DNA increases the fluorescence intensity. HyBeacon probes can be integrated into real-time
PCR analysis to detect the presence and monitor the accumulation of specific DNA targets. In addition,
sequence differences as small as a single nucleotide can be detected and differentiated by measuring
the melting temperature.
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5.2. Probes Containing a Nucleobase-Labeled Fluorophore with an Acetylene Group

The Hudson group synthesized structurally simple 5-phenylethynyl derivatives of uracil,
MMEU, PhU, and MeOPhU, which are intrinsically fluorescent, and incorporated them into the X
(5′-CGCAATXTAACGC-3′) (Figure 10a) [44]. These ODNs exhibited 6-, 2-, and 6-fold increases in
fluorescence intensity in the presence of complementary DNA, respectively. Although there was
no significant reduction of fluorescence in the presence of mismatched DNAs, these fluorescent
nucleosides were responsive to their local structure/environment and therefore have potential use in
SNP probes.
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The Wagenknecht group designed 1-ethynylpyrene-labeled pyrimidines and purines (Figure 10b) [45].
A strong new absorption band appeared at ~420 nm (1 and 3) or ~400 nm (2 and 4) following
DNA-duplex formation. This absorption band may originate from the ground-state interaction of the
1-ethynylpyrene moiety with the adjacent base pairs (C/G). When a complementary DNA hybridized,
the fluorescence intensity increased up to 40-fold relative to ssODN (in case of 3). This difference in
fluorescence intensity was highest when the duplex was excited at ~420 nm (1 and 3) and ~400 nm
(2 and 4).

The Kim group incorporated pyrene-labeled deoxyadenosine (APY) into the 5′-end of hairpins
and examined the quenching effect of the neighboring bases (Figure 11). The fluorescence could be
quenched through photoinduced electron transfer (PET) from the fluorophore to neighboring C, T,
and G bases, but not to the A moiety. Their quenched emissions were recovered when they met
the matched targets [46]. They also developed a sensitive system for detecting AGG trinucleotide
repeats through the formation of intermolecular G-quadruplexes in the presence of added K+ ions
using a ssODN (5′-UPYGGTT-3′) (Figure 11c) [47]. When this probe interacted with the RNA target
sequence (5′-aggaggagga-3′), very strong fluorescence enhancements were observed (44.7-fold increase
in fluorescence). In the presence of the DNA target sequence (5′-AGGAGGAGGA-3′), a large increase
in fluorescence was also observed (35.0-fold).

The Hrdlicka group found that introduction of LNA nucleotides as direct neighbors into
UPY improved the discrimination of SNPs [48]. They synthesized a ssODN, 5′-GTGNUPyN
TGC-3′ (N = DNA nucleotide, A or LNA nucleotide, a). Hybridization of LNA-free ssODN with
complementary DNA and RNA resulted in approximately 1.3- and 2.7-fold increases in emission
relative to ssODN at 460 nm, respectively. Higher relative increases were observed when LNA
nucleotides were incorporated as direct neighbors (approximately 2.0- and 4.5-fold increases for
a duplex with complementary DNA and RNA, respectively). In contrast, mismatched duplexes were
consistently less emissive than matched duplexes when using ssODN bearing the flanking LNA
nucleotides. This strongly suggests that flanking LNA nucleotides can be used to produce probes with
greater diagnostic potential. However, APY was also investigated in the same way, but its ability as
a SNP probe was very limited.
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We have developed quencher-free MB probes that incorporate a 2-ethynylfluorene derivative
covalently attached to a 2′-deoxyuridine residue (UF) (Figure 12). Although fluorene (FL) derivatives
provide a high fluorescence yield, they do not significantly affect the stability of the DNA duplexes
because they have small volumes [49–55]. When an FL derivative was introduced at the C-5 position
of deoxyuridine, the DNA containing it had little effect on the stability of the double-stranded DNA
(dsDNA) formed upon hybridization with the complementary DNA [56–59]. In addition, an acetylene
bridge provided strong electronic bonding between the uridine moiety and the FL derivative.
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Deoxyuridine derivatives were labeled with FL units [60–62] as well as several FL derivatives:
2-ethynyl-9H-fluoren-9-one (FO) [63], dibenzofuran (DBF) [64], and dibenzothiophene (DBT) [64].
FL, FO, DBF, and DBT have dramatically different photophysical properties because different atoms
connect the two aromatic rings. To examine the effect of the flanking bases (FBs) on the emission
properties, we modified such ODNs mainly at the bases flanking the UF units. These ODNs were
15mers containing a UF residue at the central position (Table 1).

Table 1. Quencher-free linear beacons.

ODN 1 Sequence 2 ODN 1 Sequence 2

ODN1(UF) 5′-d(TGGACTAUFATCAATG)-3′ ODN1′(N) 3′-d(ACCTGATNTAGTTAC)-3′

ODN2(UF) 5′-d(TGGACTTUFTTCAATG)-3′ ODN2′(N) 3′-d(ACCTGAANAAGTTAC)-3′

ODN3(UF) 5′-d(TGGACTGUFGTCAATG)-3′ ODN3′(N) 3′-d(ACCTGACNCAGTTAC)-3′

ODN4(UF) 5′-d(TGGACTCUFCTCAATG)-3′ ODN4′(N) 3′-d(ACCTGAGNGAGTTAC)-3′

1 UF is UFL, UFO, UDBF, or UDBT. 2 Underlined bases are the FBs of the UF units.

In particular, ODN4(UFL) bearing C-FBs produced more efficient fluorescence ON/OFF systems
than did other ODNs having other combinations of FBs [62]. The intensities of the fluorescence of
the matched dsDNA formed between ODN4(UFL) and ODN4′(A) were increased 4.0-, 10.3-, 11.4-,
and 14.5-fold over those of ODN4(UFL) and the mismatched dsDNAs with T-, G-, and C-mismatched
targets, respectively. However, hybridization of the ODN4(UFO) bearing C-FBs with the matched target
ODN4′(A) resulted in only a 1.1-fold increase in emission intensity relative to that of ssODN4(UFO);
its total discrimination factors for the recognition of A/T, A/G, and A/C single-base mismatches
were 3.0, 1.9, and 3.8, respectively [63]. The DBF- and DBT-labeled deoxyuridines UDBF and UDBT,
respectively, were also introduced at the central positions of ODNs [64]. “Turn-on” responses to the
matched targets were observed when the UDBF and UDBT units of ODNs bearing pyrimidine-FBs
were positioned opposite to the four natural nucleobases. The total discrimination factors of the
ODN2(UDBF) probe bearing T-FBs for recognition of A/T, A/G, and A/C single-base mismatches
were 3.2, 7.0, and 2.8, respectively; those of the ODN2(UDBT) probe were 2.6, 4.8, and 2.3, respectively.
Interestingly, the fluorescence emissions of ODN4(UDBF) and ODN4(UDBT) bearing C-FBs decreased
greatly upon hybridization with all the mismatched targets, leading to total discrimination factors of
9.4 (T), 6.3 (C), and 11 (G) for the ODN4(UDBF) probe and 18 (T), 12 (C), and 20 (G) for the ODN4(UDBT)
probe. In comparison, the fluorescence intensity ratios of matched dsDNAs bearing C-FBs to ssDNAs
were 4.0 for FL, 1.1 for FO, 1.7 for DBF, and 5.0 for DBT (Figure 12b). Therefore, ODN4(UDBT) bearing
C-FBs represent a very efficient fluorescent “turn-on” system and are more sensitive than any other
quencher-free MB system.

Based on data from established studies on the reducibility of nucleobases, excitation of ODNs
containing 2′-deoxyuridine units labeled with pyrene or fluorene derivatives results in electron
injection into DNA, producing pyrenyl- or fluorenyl-radical cations and uracyl radical anions.
Photoexcited pyrene and FL derivatives are capable of reducing only their adjacent pyrimidine bases
(C or T), resulting in substantial quenching of emissions through base-to-base electron transfer [65–70].
Therefore, efficient quenching of ssDNAs containing a pyrene or FL derivative can be obtained
by placing C or T nucleobases adjacent to the pyrene or FL derivative. This quenching is, however,
inhibited when encountering a matched target, resulting in the intrinsic emission intensity of the pyrene
or FL derivative (Figure 13). In addition, ODN4(UF) bearing C-FBs exhibited significantly decreased
fluorescence emission when hybridized with all mismatched targets relative to that of the ssODN4(UF).
This dramatic quenching may have resulted from the close proximity of the FL derivative to the two
guanine units that were the complementary bases of the C-FBs and served as internal quenchers [12–14].
That is, ODN4(UF) bearing C-FBs could effectively discriminate mismatched targets by decreasing
the fluorescence intensity as a result of the guanine bases acting as internal quenchers as well as
photoinduced charge transfer to the C-FBs.



Molecules 2018, 23, 124 11 of 19
Molecules 2018, 23, 124 11 of 19 

 

 
Figure 13. Working mechanism of quencher-free linear beacon systems. 

5.3. BDF Probes 

The Saito group devised a novel strategy using pyrene-labeled base-discriminating fluorescent 
(BDF) oligonucleotides as probes for the discrimination of single-base alterations. The concept is 
based on the fluorescence change of the BDF base, which can be used to clearly distinguish the type 
of base in the opposite strand. 

PyU and PyC showed unique fluorescence properties depending on the nature of the base of the 
complementary strand and showed a large increase in fluorescence by distinguishing between A and 
G opposite the BDF base, respectively (Figure 14) [71,72]. Other pyrene-labeled pyrimidines, AMPyU, 
4′PyT, and Oxo-PyU, can also be used to efficiently discriminate A in a target DNA opposite the BDF base 
by displaying enhanced emission. Such clear fluorescence changes are very useful for SNP 
genotyping [73–75]. However, pyrene-labeled 7-deaza-2′-deoxyadenosine PyA exhibited increased 
emission when the bases opposite PyA were mismatched bases, and fluorescence intensity was 
completely quenched when a matched T was encountered [76]. 

 
Figure 14. BDF probes. 

6. Microenvironment-Sensitive Probes 

Fluorescent nucleosides have been employed as microenvironment-sensitive probes, utilizing 
their high sensitivity to changes in polarity, viscosity, and surrounding pH. DNA or RNA containing this 
nucleoside has been studied for the selective detection of target DNA/RNA, abasic sites, and so on. 

6.1. Probes Containing a Heterocycle-Conjugated Pyrimidine 

The Tor group designed furan-modified dU (1), thiophene-modified dU (2), furan-modified dC (3), 
and an extended ethynylfuran dU (4) as viscosity-sensitive fluorescent molecular probes, also referred to 
as molecular rotors (Figure 15a) [77,78]. Viscous media impeded the free rotation of these heterocycles 
to provide a structurally robust environment. This resulted in an increase in fluorescence intensity 
while reducing the contribution of the nonradiative decay pathway. Particularly, when the ODN 

Figure 13. Working mechanism of quencher-free linear beacon systems.

5.3. BDF Probes

The Saito group devised a novel strategy using pyrene-labeled base-discriminating fluorescent
(BDF) oligonucleotides as probes for the discrimination of single-base alterations. The concept is based
on the fluorescence change of the BDF base, which can be used to clearly distinguish the type of base
in the opposite strand.

PyU and PyC showed unique fluorescence properties depending on the nature of the base of
the complementary strand and showed a large increase in fluorescence by distinguishing between
A and G opposite the BDF base, respectively (Figure 14) [71,72]. Other pyrene-labeled pyrimidines,
AMPyU, 4′PyT, and Oxo-PyU, can also be used to efficiently discriminate A in a target DNA opposite
the BDF base by displaying enhanced emission. Such clear fluorescence changes are very useful
for SNP genotyping [73–75]. However, pyrene-labeled 7-deaza-2′-deoxyadenosine PyA exhibited
increased emission when the bases opposite PyA were mismatched bases, and fluorescence intensity
was completely quenched when a matched T was encountered [76].
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6. Microenvironment-Sensitive Probes

Fluorescent nucleosides have been employed as microenvironment-sensitive probes, utilizing
their high sensitivity to changes in polarity, viscosity, and surrounding pH. DNA or RNA containing
this nucleoside has been studied for the selective detection of target DNA/RNA, abasic sites, and so on.

6.1. Probes Containing a Heterocycle-Conjugated Pyrimidine

The Tor group designed furan-modified dU (1), thiophene-modified dU (2), furan-modified
dC (3), and an extended ethynylfuran dU (4) as viscosity-sensitive fluorescent molecular probes,
also referred to as molecular rotors (Figure 15a) [77,78]. Viscous media impeded the free rotation
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of these heterocycles to provide a structurally robust environment. This resulted in an increase in
fluorescence intensity while reducing the contribution of the nonradiative decay pathway. Particularly,
when the ODN containing furan-modified dU (1) was hybridized and the abasic site was located on the
opposite side of 1, a significant emission enhancement was observed compared to that of the matched
duplex. Although the exact structure around the abasic site is not clear, it is believed that the intrahelical
vacant but confined space between the neighboring base pairs effectively limited the free rotation of
the furan-uracil single bond, resulting in an increase in fluorescence. The thiophene-modified dU (2)
was demonstrated to be an efficient probe for the detection of G, 8-oxoG, and its transverse mutation
product T by providing significantly different emission intensities [79].

Molecules 2018, 23, 124 12 of 19 

 

containing furan-modified dU (1) was hybridized and the abasic site was located on the opposite side 
of 1, a significant emission enhancement was observed compared to that of the matched duplex. 
Although the exact structure around the abasic site is not clear, it is believed that the intrahelical 
vacant but confined space between the neighboring base pairs effectively limited the free rotation of 
the furan-uracil single bond, resulting in an increase in fluorescence. The thiophene-modified dU (2) 
was demonstrated to be an efficient probe for the detection of G, 8-oxoG, and its transverse mutation 
product T by providing significantly different emission intensities [79]. 

 
Figure 15. (a) Furan- or thiophene-modified pyrimidines and (b) incorporation of ribonucleoside 
triphosphate. 

The Srivatsan group synthesized benzofuran-labeled uridine and incorporated it into 
oligoribonucleotides using T7 RNA polymerase to produce fluorescent oligoribonucleotide 
constructs (Figure 15b) [80]. Abasic site-containing duplexes were constructed by hybridizing an 
RNA transcript to custom DNA and RNA oligonucleotides that contained an abasic-site surrogate. 
The abasic site-containing duplex (RNA/DNA) showed nearly a 4-fold higher emission than that of 
the perfect duplex. However, an RNA/RNA duplex that possessed an abasic site opposite the modified 
uracil showed slightly increased emission compared to that of the matched RNA-RNA duplex. In addition, 
they designed benzofuran-labeled 2′-deoxyuridine and demonstrated that it can discriminate an abasic 
site in a model depurinated sarcin/ricin RNA motif of a eukaryotic 28S rRNA [81]. 

6.2. ESF Probes 

The Saito group developed DNA probes containing an environmentally sensitive fluorescent 
(ESF) nucleoside. These probes could sense a target DNA through significant changes in fluorescence 
wavelength and intensity. A strong emission band appeared in polar environments. Both the 
emission intensity and emission wavelength of 2-anthracenecarboxamide-labeled 2′-deoxyuridine  
2-ANTU were significantly affected by solvent polarity (Figure 16) [82]. When a probe containing 2-ANTU 
was hybridized with DNA targets, strong fluorescence was observed only for its perfectly matched 
target. C7-naphthylethynylated 8-aza-7-deaza-2′-deoxyguanosine naG exhibited very weak fluorescence 
and emitted at a longer wavelength of 418 nm in polar solvents such as methanol [83]. Interestingly, 
the emission maximum was red-shifted by 29 nm to 409 nm compared to that of other mismatched 
targets only when naG hybridized with a matched target DNA. The fluorescence changes caused by 
the differences in the opposite bases of target DNAs can be attributed to changes in the local 
environment around the ESF bases 2-ANTU and naG. 

Figure 15. (a) Furan- or thiophene-modified pyrimidines and (b) incorporation of
ribonucleoside triphosphate.

The Srivatsan group synthesized benzofuran-labeled uridine and incorporated it into
oligoribonucleotides using T7 RNA polymerase to produce fluorescent oligoribonucleotide constructs
(Figure 15b) [80]. Abasic site-containing duplexes were constructed by hybridizing an RNA transcript
to custom DNA and RNA oligonucleotides that contained an abasic-site surrogate. The abasic
site-containing duplex (RNA/DNA) showed nearly a 4-fold higher emission than that of the perfect
duplex. However, an RNA/RNA duplex that possessed an abasic site opposite the modified uracil
showed slightly increased emission compared to that of the matched RNA-RNA duplex. In addition,
they designed benzofuran-labeled 2′-deoxyuridine and demonstrated that it can discriminate an abasic
site in a model depurinated sarcin/ricin RNA motif of a eukaryotic 28S rRNA [81].

6.2. ESF Probes

The Saito group developed DNA probes containing an environmentally sensitive fluorescent
(ESF) nucleoside. These probes could sense a target DNA through significant changes in fluorescence
wavelength and intensity. A strong emission band appeared in polar environments. Both the emission
intensity and emission wavelength of 2-anthracenecarboxamide-labeled 2′-deoxyuridine 2-ANTU were
significantly affected by solvent polarity (Figure 16) [82]. When a probe containing 2-ANTU was
hybridized with DNA targets, strong fluorescence was observed only for its perfectly matched target.
C7-naphthylethynylated 8-aza-7-deaza-2′-deoxyguanosine naG exhibited very weak fluorescence and
emitted at a longer wavelength of 418 nm in polar solvents such as methanol [83]. Interestingly,
the emission maximum was red-shifted by 29 nm to 409 nm compared to that of other mismatched
targets only when naG hybridized with a matched target DNA. The fluorescence changes caused by the
differences in the opposite bases of target DNAs can be attributed to changes in the local environment
around the ESF bases 2-ANTU and naG.
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cnaA, 3nzA, and 3n7zA displayed significant environmentally sensitive fluorescence properties,
which originate from the coplanar and non-coplanar conformers of the dye moiety and nucleobase.
ODN probes containing cnaA, 3nzA, and 3n7zA were used to sense a matched sequence and an abasic
site in the target DNA through significant changes in emission wavelength and intensity [84–86].

6.2.1. pH-Sensitive Probes

The Asanuma group designed a quencher-free MB by introducing 7-hydroxycoumarin (X) into
the stem region (Figure 17a) [87]. X showed quenched fluorescence upon protonation. The pKa of X
in a single strand was 8.8. However, it exceeded 10 in the DNA duplex because of the anionic and
hydrophobic microenvironment inside the duplex. Without the target at pH 8, the stem region formed
double strands, and the fluorescence was quenched. However, when the target was added, the MB
opened, and the dye was deprotonated, resulting in the fluorescence of the formed duplex being
10-fold higher than that observed for MB itself.
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The Saito group reported BIQA, which exhibited large changes in absorption and fluorescence
spectra upon the protonation/deprotonation of the N5 positions of BIQA. SNP identification of a C/T
(mutant/wild type) sequence of the breast cancer type 1 gene was examined using a DNA probe
containing BIQA at pH 7.5 (Figure 17b) [88]. When the opposite base of BIQA was thymine, an intense
emission band was observed. In contrast, when the opposite base was cytosine, fluorescence was
significantly reduced as protonation occurred.

We synthesized 2′-deoxyuridine derivatives UAF and UDAF labeled with 2-aminofluorene and
2-dimethylaminofluorene, respectively (Figure 17c) [89]. The pKa values of UAF and UDAF were
4.27 and 4.66, respectively, and their fluorescence increased under acidic conditions. Thus, ODNs
containing UAF and UDAF exhibited distinct pH-sensitive emission behaviors upon hybridization with
matched and mismatched targets [62]. ODNs bearing UAF and UDAF as a fluorescent nucleotide and
C- or T-FBs, especially ODN4 bearing UDAF and C-FBs, clearly discriminated their A-matched targets,
with increased emissions, under slightly acidic conditions (pH 6.5 and 6.0). However, ODN4 bearing
UFL and C-FBs allowed for efficient SNP typing, regardless of the tested pH value (pH 5.5–8.0).

Table 2 summarizes the characteristics and the fluorophore used for the single-labeled probes
discussed above.

Table 2. Single-labeled oligonucleotide probes.

No. Probes Notable Features Fluorophores Used Ref.

1 Guanine-quenching probes Utilization the quenching effect of
adjacent guanosine.

Fluorescein, BODIPY,
6-carboxyfluorescein, and
tetramethyl-6-carboxyrhodamine

[15–18]

2 Cyanine-containing probes
Interaction of cyanine derivatives with
nucleobases leads to the enhancement
of fluorescence

Thiazole orange (TO), oxazole yellow
(YO), thiazolopyridine (MO),
and oxazolopyridine (JO)

[19–25]

3 Probes containing a
fluorescent nucleobase analog

Utilization of fluorescent base analogs
that are structurally similar to native
nucleobases, capable of pairing with
Watson-Crick pairs, and applicable as
SNP probes

Flavin (Fl), deazaflavin (dFl), 3-methyl
isoxanthopterin (3-MI), etc. [27–39]

4 HyBeacon
HyBeacon probes can be integrated into
real-time PCR analysis to detect specific
DNA targets

6-Carboxyfluorescein,
tetrachloro-6-carboxyfluorescein,
and hexachloro-6-carboxyfluorescein

[43]

5
Nucleobase-labeled
fluorophore with
an acetylene group

Probes for SNP detection, trinucleotide
repeats, etc. have been developed Pyrene and fluorene derivatives [44–64]

6 BDF probes Clearly distinguish the type of base on
the opposite strand of the BDF base Pyrene [71–76]

7 Probes containing a heterocycle-
conjugated pyrimidine

Efficient probes for an abasic site,
8-oxoG, etc.

Furan-, thiophene-, or
benzofuran-modified pyrimidines [77–81]

8 ESF probes
DNA probes containing
an environmentally sensitive
fluorescent nucleoside

Pyrene and naphthalene derivatives [82–86]

9 pH-sensitive probes DNA probes exhibit pH-sensitive
emission behaviors

7-hydroxycoumarin,
benzo[g]imidazo[4,5-c]quinoline (BIQA),
and 2′-deoxyuridine labeled with
2-dimethylaminofluorene (UDAF)

[62,87–89]

7. Conclusions

Recently, single nucleotide polymorphism (SNP) detection techniques have evolved to become
automated, efficient, and relatively inexpensive. In particular, DNA probes labeled with a single
fluorophore are attractive because they are simple and inexpensive to fabricate. The following systems
have been developed for this purpose: (1) A single fluorophore is connected to the ODN, and a change
in fluorescence following duplex formation with the target nucleic acid is caused by the quenching
effect of the guanine base adjacent to the fluorophore; (2) Cyanines, such as thiazole orange and oxazole
yellow, have a property in which their fluorescence increases when intercalated into a nucleic acid
duplex. This property of a cyanine dye can be used to selectively recognize matched and mismatched
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targets; (3) Fluorescent nucleobase analogs with structures similar to those of native nucleobases and
capable of Watson-Crick base pairing have been developed and used for SNP typing; (4) Probes bearing
a fluorescently labeled base exhibit dramatic emission changes after detecting a specific sequence;
(5) Fluorescent nucleosides that are sensitive to polarity, viscosity, and surrounding pH have been
designed and applied to SNP typing. All of these single-labeled nucleosides can be inserted at any
position of the DNA according to the sequence to be designed. In addition, the biomolecules or
nanoparticles can be attached to the 5′- or 3′-end of these oligonucleotide probes, increasing their
applicability. Finally, no quencher is required and only a single fluorophore is included, making it
possible to build simple and inexpensive probe systems. Therefore, this type of probe system has the
potential to become a powerful tool for the detection of single nucleotide variations.
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