A Portable and Flexible Self-Powered Multifunctional Sensor for Real-Time Monitoring in Swimming
Abstract
:1. Introduction
2. Experimental
2.1. Fabrication of Self-Powered Biosensor
2.2. Characterization and Measurement
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Niu, S.M.; Matsuhisa, N.; Beker, L.; Li, J.; Wang, S.; Wang, J.; Jiang, Y.; Yan, X.; Yun, Y.; Burnetts, W.; et al. A wireless body area sensor network based on stretchable passive tags. Nat. Electron. 2019, 2, 361–368. [Google Scholar] [CrossRef]
- Boutry, C.M.; Kaizawa, Y.; Schroeder, B.C.; Chortos, A.; Legrand, A.; Wang, Z.; Chang, J.; Fox, P.; Bao, Z. A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat. Electron. 2018, 1, 314–321. [Google Scholar] [CrossRef]
- Boutry, C.M.; Beker, L.; Kaizawa, Y.; Vassos, C.; Tran, H.; Hinckley, A.C.; Pfattner, R.; Niu, S.M.; Li, J.H.; Claverie, J.; et al. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 2019, 3, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Wang, Z.; Xu, L.; Wang, A.; Han, K.; Jiang, T.; Lai, Q.; Bai, Y.; Tang, W.; Fan, F.; et al. Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics. Nat. Commun. 2019, 10, 5147. [Google Scholar] [CrossRef] [Green Version]
- Mao, Y.; Yue, W.; Zhao, T.; Shen, M.; Liu, B.; Chen, S. A Self-Powered Biosensor for Monitoring Maximal Lactate Steady State in Sport Training. Biosensors 2020, 10, 75. [Google Scholar] [CrossRef] [PubMed]
- Senf, B.; Yeo, W.; Kim, J. Recent Advances in Portable Biosensors for Biomarker Detection in Body Fluids. Biosensors 2020, 10, 127. [Google Scholar] [CrossRef]
- Nugent, F.J.; Comyns, T.M.; Warrington, G.D. Quality Versus Quantity Debate in Swimming: Perceptions and Training Practices of Expert Swimming Coaches. J. Hum. Kinet. 2017, 57, 147–158. [Google Scholar] [CrossRef] [Green Version]
- Fantozzi, S.; Gatta, G.; Mangia, A.L.; Bartolomei, S.; Cortesi, M. Front-Crawl Swimming: Detection of the Stroke Phases through 3d Wrist Trajectory Using Inertial Sensors. J. Sport Sci. Med. 2019, 18, 438–447. [Google Scholar]
- Sanders, R.H.; Gonjo, T.; McCabe, C.B. Reliability of Three-Dimensional Angular Kinematics and Kinetics of Swimming Derived from Digitized Video. J. Sport Sci. Med. 2016, 15, 158–166. [Google Scholar]
- Zacca, R.; Neves, V.; Oliveira, T.D.; Soares, S.; Rama, L.M.P.L.; Castro, F.A.D.; Vilas-Boas, J.P.; Pyne, D.B.; Fernandes, R.J. 5 km front crawl in pool and open water swimming: Breath-by-breath energy expenditure and kinematic analysis. Eur. J. Appl. Physiol. 2020, 120, 2005–2018. [Google Scholar] [CrossRef] [PubMed]
- Burkhardt, D.; Born, D.P.; Singh, N.B.; Oberhofer, K.; Carradori, S.; Sinistaj, S.; Lorenzetti, S. Key performance indicators and leg positioning for the kick-start in competitive swimmers. Sport Biomech. 2020, 1–15. [Google Scholar] [CrossRef]
- Gonjo, T.; Fernandes, R.J.; Vilas-Boas, J.P.; Sanders, R. Upper body kinematic differences between maximum front crawl and backstroke swimming. J. Biomech. 2020, 98, 109452. [Google Scholar] [CrossRef]
- Dos Santos, K.B.; Payton, C.; Rodacki, A.L.F. Front crawl arm stroke trajectories of physically impaired swimmers: A preliminary study. Sci. Sport 2019, 34, 263–266. [Google Scholar] [CrossRef]
- Born, D.P.; Stoggl, T.; Petrov, A.; Burkhardt, D.; Luthy, F.; Romann, M. Analysis of Freestyle Swimming Sprint Start Performance After Maximal Strength or Vertical Jump Training in Competitive Female and Male Junior Swimmers. J. Strength Cond. Res. 2020, 34, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Gomes, L.E.; Diogo, V.; Castro, F.A.D.; Vilas-Boas, J.P.; Fernandes, R.J.; Figueiredo, P. Biomechanical analyses of synchronised swimming standard and contra-standard sculling. Sport Biomech. 2019, 18, 354–365. [Google Scholar] [CrossRef]
- Pereira, S.M.; Ruschel, C.; Hubert, M.; Machado, L.; Roesler, H.; Fernandes, R.J.; Vilas-Boas, J.P. Kinematic, kinetic and EMG analysis of four front crawl flip turn techniques. J. Sport Sci. Med. 2015, 33, 2006–2015. [Google Scholar] [CrossRef] [PubMed]
- De Jesus, K.; Figueiredo, P.; Goncalves, P.; Pereira, S.; Vilas-Boas, J.P.; Fernandes, R.J. Biomechanical Analysis of Backstroke Swimming Starts. J. Sport Sci. Med. 2011, 32, 546–551. [Google Scholar] [CrossRef] [PubMed]
- Olstad, B.H.; Zinner, C. Validation of the Polar OH1 and M600 optical heart rate sensors during front crawl swim training. PLoS ONE 2020, 15, e0231522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollock, S.; Gaoua, N.; Johnston, M.J.; Cooke, K.; Girard, O.; Mileva, K.N. Training Regimes and Recovery Monitoring Practices of Elite British Swimmers. J. Sport Sci. Med. 2019, 18, 577–585. [Google Scholar]
- Song, X.; Liu, X.; Peng, Y.; Xu, Z.; Liu, W.; Pang, K.; Wang, J.; Zhong, L.; Yang, Q.; Meng, J. A graphene-coated silk-spandex fabric strain sensor for human movement monitoring and recognition. Nanotechnology 2021, 32, 215501. [Google Scholar] [CrossRef]
- Luo, J.; Gao, W.; Wang, Z. The Triboelectric Nanogenerator as an Innovative Technology toward Intelligent Sports. Adv. Mater. 2021, 31, 2004178. [Google Scholar] [CrossRef]
- Ong, K.G.; Paulose, M.; Grimes, C.A. A wireless, passive, magnetically-soft harmonic sensor for monitoring sodium hypochlorite concentrations in water. Sensors 2003, 3, 11–18. [Google Scholar] [CrossRef]
- Roy, J.J.; Abraham, T.E.; Abhijith, K.S.; Kumar, P.V.S.; Thakur, M.S. Biosensor for the determination of phenols based on Cross-Linked Enzyme Crystals (CLEC) of laccase. Biosensors 2005, 21, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Shen, M.; Mao, L.; Mao, Y.; Ma, H. Self-powered Biosensor Big Data Intelligent Information Processing System for Real-time Motion Monitoring. Z. Anorg. Allg. Chem. 2020, 646, 500–506. [Google Scholar] [CrossRef]
- Zhao, T.; Zheng, C.; He, H.; Guan, H.; Zhong, T.; Xing, L.; Xue, X. A self-powered biosensing electronic-skin for real-time sweat Ca2+ detection and wireless data transmission. Smart Mater. Struct. 2019, 28, 085015. [Google Scholar] [CrossRef]
- Tavares, A.; Truta, L.; Moreira, F.; Minas, G.; Sales, M. Photovoltaics, plasmonics, plastic antibodies and electrochromism combined for a novel generation of self-powered and self-signalled electrochemical biomimetic sensors. Biosens. Bioelectron. 2019, 137, 72–81. [Google Scholar] [CrossRef]
- Guan, H.; Zhong, T.; He, H.; Zhao, T.; Xing, L.; Zhang, Y.; Xue, X. A self-powered wearable sweat-evaporation-biosensing analyzer for building sports big data. Nano Energy 2019, 59, 754–761. [Google Scholar] [CrossRef]
- Tarar, A.A.; Mohammad, U.; Srivastava, S.K. Wearable Skin Sensors and Their Challenges: A Review of Transdermal, Optical, and Mechanical Sensors. Biosensors 2020, 10, 56. [Google Scholar] [CrossRef]
- Wu, X.; Jiang, P.; Ding, Y.; Cai, W.; Xie, S.; Wang, Z. Mismatch strain induced formation of ZnO/ZnS heterostructured rings. Sci. Adv. Mater. 2007, 19, 2319. [Google Scholar] [CrossRef]
- Wang, J.; Qu, F.; Wu, X. Synthesis of Ultra-Thin ZnO Nanosheets: Photocatalytic and Superhydrophilic Properties. Sci. Adv. Mater. 2013, 5, 1052–1059. [Google Scholar] [CrossRef]
- Jing, W.; Qu, F.; Xiang, W. Photocatalytic Degradation of Organic Dyes with Hierarchical Ag2 O/ZnO Heterostructures. Sci. Adv. Mater. 2013, 5, 1364–1371. [Google Scholar]
- Yu, L.; Qu, F.; Wu, X. Facile hydrothermal synthesis of novel ZnO nanocubes. J. Alloy. Compd. 2010, 504, L1–L4. [Google Scholar] [CrossRef]
- Lei, Y.; Qu, F.; Wu, X. Assembling ZnO Nanorods into Microflowers through a Facile Solution Strategy: Morphology Control and Cathodoluminescence Properties. Nano-Micro Lett. 2012, 4, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Qu, F.; Wu, X. Solution synthesis and optimization of ZnO nanowindmills. Appl. Surf. Sci. 2011, 257, 7432–7435. [Google Scholar] [CrossRef]
- Gong, L.; Wu, X.; Ye, C.; Qu, F.; An, M. Aqueous phase approach to ZnO microspindles at low temperature. J. Alloy. Compd. 2010, 501, 375–379. [Google Scholar] [CrossRef]
- Chakraborty, S.; Settem, M.; Sant, S.B. Evolution of texture and nature of grain growth on annealing nanocrystalline Ni and Ni-18.5%Fe in air. Mater. Express 2013, 3, 99–108. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Zhang, J.; Li, J.; Liu, B. Enhanced optoelectronic performance of 3C–SiC/ZnO heterostructure photodetector based on Piezo-phototronic effects. Nano Energy 2020, 77, 105119. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Yang, W.; Leng, B.; Liu, B. High-performance flexible UV photodetectors based on AZO/ZnO/PVK/PEDOT:PSS heterostructures integrated on human hair. ACS Appl. Mater. 2019, 11, 24459–24467. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Leng, B.; Li, J.; Ma, Z.; Yang, W.; Liu, F.; Liu, B. Enhanced Performances of PVK/ZnO Nanorods/Graphene Heterostructure UV Photodetector via Piezo-Phototronic Interface Engineering. Adv. Mater. Interfaces 2019, 6, 1970145. [Google Scholar] [CrossRef]
- Lin, H.; Liu, Y.; Chen, S.; Xu, Q.; Wang, S.; Hu, T.; Pan, P.; Wang, Y.; Zhang, Y.; Li, N.; et al. Seesaw structured triboelectric nanogenerator with enhanced output performance and its applications in self-powered motion sensing. Nano Energy. 2019, 65, 103944. [Google Scholar] [CrossRef]
- Park, J.Y.; Choi, S.W.; Kim, S.S. A synthesis and sensing application of hollow ZnO nanofibers with uniform wall thicknesses grown using polymer templates. Nat. Nanotech. 2010, 21, 475601. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; He, M.; Jing, Q.; Yang, W.; Wang, S.; Liu, Y.; Zhang, Y.; Li, J.; Li, N.; Ma, Y.; et al. Angle-shaped triboelectric nanogenerator for harvesting environmental wind energy. Nano Energy 2019, 56, 269–276. [Google Scholar] [CrossRef]
- He, M.; Lin, Y.; Chiu, C.; Yang, W.; Zhang, B.; Yun, D.; Xie, Y.; Lin, Z. A flexible photo-thermoelectric nanogenerator based on MoS2/PU photothermal layer for infrared light harvesting. Nano Energy 2018, 49, 588–595. [Google Scholar] [CrossRef]
- Mao, Y.; Ba, N.; Gao, X.; Wang, Z.; Shen, M.; Liu, B.; Li, B.; Ma, X.; Chen, S. Self-Powered Wearable Sweat-Lactate Analyzer for Scheduling Training of Boat Race. J. Nanoelectron. Optoelectron. 2020, 15, 212–218. [Google Scholar] [CrossRef]
- Mao, Y.; Zhang, W.; Wang, Y.; Guan, R.; Liu, B.; Wang, X.; Sun, Z.; Xing, L.; Chen, S.; Xue, X. Self-Powered Wearable Athletics Monitoring Nanodevice Based on ZnO Nanowire Piezoelectric-Biosensing Unit Arrays. Sci. Adv. Mater. 2019, 11, 351–359. [Google Scholar] [CrossRef]
- Wang, J.X.; Sun, X.; Yang, Y.; Huang, H.; Lee, Y.; Tan, O.; Vayssieres, L. Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications. Nat. Nanotech. 2006, 17, 4995–4998. [Google Scholar] [CrossRef]
- Lozano, H.; Catalan, G.; Esteve, J.; Domingo, N.; Murillo, G. Non-linear nanoscale piezoresponse of single ZnO nanowires affected by piezotronic effect. Nat. Nanotech. 2021, 32, 025202. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, Y.; Zhu, Y.; Zhao, T.; Jia, C.; Bian, M.; Li, X.; Liu, Y.; Liu, B. A Portable and Flexible Self-Powered Multifunctional Sensor for Real-Time Monitoring in Swimming. Biosensors 2021, 11, 147. https://doi.org/10.3390/bios11050147
Mao Y, Zhu Y, Zhao T, Jia C, Bian M, Li X, Liu Y, Liu B. A Portable and Flexible Self-Powered Multifunctional Sensor for Real-Time Monitoring in Swimming. Biosensors. 2021; 11(5):147. https://doi.org/10.3390/bios11050147
Chicago/Turabian StyleMao, Yupeng, Yongsheng Zhu, Tianming Zhao, Changjun Jia, Meiyue Bian, Xinxing Li, Yuanguo Liu, and Baodan Liu. 2021. "A Portable and Flexible Self-Powered Multifunctional Sensor for Real-Time Monitoring in Swimming" Biosensors 11, no. 5: 147. https://doi.org/10.3390/bios11050147
APA StyleMao, Y., Zhu, Y., Zhao, T., Jia, C., Bian, M., Li, X., Liu, Y., & Liu, B. (2021). A Portable and Flexible Self-Powered Multifunctional Sensor for Real-Time Monitoring in Swimming. Biosensors, 11(5), 147. https://doi.org/10.3390/bios11050147