Paper-Based Working Electrodes Coated with Mercury or Bismuth Films for Heavy Metals Determination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Fabrication of Paper-Based Electrodes
2.3. Modification of Paper Electrodes: Deposition of Mercury and Bismuth Films
2.4. Electrochemical Procedures
2.5. Water Analysis
3. Results and Discussions
3.1. Electrochemical Characterization of Mercury/Bismuth Films at Paper Electrodes
3.2. Determination of Heavy Metals at Paper-Based Electrodes with Mercury/Bismuth Films
3.3. Analysis of Water: Determination of Cd (II) and Pb (II)
3.4. Comparison of Methods
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Svancara, I.; Baldrianova, L.; Vlcek, M.; Metelka, R.; Vytras, K. A role of the plating regime in the deposition of bismuth films onto a carbon paste electrode. Microscopic study. Electroanalysis 2005, 17, 120–126. [Google Scholar] [CrossRef]
- Vyskočil, V.; Barek, J. Mercury electrodes-possibilities and limitations in environmental electroanalysis. Crit. Rev. Anal. Chem. 2009, 39, 173–188. [Google Scholar] [CrossRef]
- Domingos, R.F.; Huidobro, C.; Companys, E.; Galceran, J.; Puy, J.; Pinheiro, J.P. Comparison of AGNES (absence of gradients and Nernstian equilibrium stripping) and SSCP (scanned stripping chronopotentiometry) for trace metal speciation analysis. J. Electroanal. Chem. 2008, 617, 141–148. [Google Scholar] [CrossRef]
- Aguilar, D.; Galceran, J.; Companys, E.; Puy, J.; Parat, C.; Authier, L.; Potin-Gautier, M. Non-purged voltammetry explored with AGNES. Phys. Chem. Chem. Phys. 2013, 15, 17510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Vij, R.; Gupta, M.; Sharma, S.; Singh, S. Risk assessment of exposure to radon concentration and heavy metal analysis in drinking water samples in some areas of Jammu & Kashmir, India. J. Radioanal. Nucl. Chem. 2015, 304, 1009–1016. [Google Scholar]
- Teigen, S.W.; Andersen, R.A.; Daae, H.L.; Skaare, J.U. Heavy metal content in liver and kidneys of grey seals (Halichoerus grypus) in various life stages correlated with metallothionein levels: Some metal-binding characteristics of this protein. Environ. Toxicol. Chem. 1999, 18, 2364–2369. [Google Scholar] [CrossRef]
- Malar, S.; Sahi, S.V.; Favas, P.J.C.; Venkatachalam, P. Assessment of mercury heavy metal toxicity-induced physiochemical and molecular changes in Sesbania grandiflora L. Int. J. Environ. Sci. Technol. 2014, 12, 3273–3282. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Tian, B. Mercury-free disposable lead sensors based on potentiometric stripping analysis at gold-coated screen-printed electrodes. Anal. Chem. 1993, 65, 1529–1532. [Google Scholar] [CrossRef]
- Baldo, M.A.; Bragato, C.; Mazzocchin, G.A.; Daniele, S. Lead and copper deposition from dilute solutions onto carbon disc microelectrodes. Assessment of quantification procedures by anodic stripping voltammetry. Electrochim. Acta 1998, 43, 3413–3422. [Google Scholar] [CrossRef]
- Navrátil, T.; Šebková, S.; Kopanica, M. Voltammetry of lead cations on a new type of silver composite electrode in the presence of other cations. Anal. Bioanal. Chem. 2004, 379, 294–301. [Google Scholar] [CrossRef]
- Pérez-Ràfols, C.; Serrano, N.; Díaz-Cruz, J.M.; Ariño, C.; Esteban, M. Mercury films on commercial carbon screen-printed devices for the analysis of heavy metal ions: A critical evaluation. Electroanalysis 2015, 27, 1345–1349. [Google Scholar] [CrossRef] [Green Version]
- Heyrovsky, M. Early polarographic studies on proteins. Electroanalysis 2004, 16, 1067–1073. [Google Scholar] [CrossRef]
- Serrano, N.; Šestáková, I.; Díaz-Cruz, J.M.; Ariño, C. Adsorptive accumulation in constant current stripping chronopotentiometry as an alternative for the electrochemical study of metal complexation by thiol-containing peptides. J. Electroanal. Chem. 2006, 591, 105–117. [Google Scholar] [CrossRef]
- Gusmão, R.; Cavanillas, S.; Ariño, C.; Díaz-Cruz, J.M.; Esteban, M. Circular dichroism and voltammetry, assisted by multivariate curve resolution, and mass spectrometry of the competitive metal binding by phytochelatin PC 5. Anal. Chem. 2010, 82, 9006–9013. [Google Scholar] [CrossRef]
- Economou, A.; Fielden, P.R. Mercury film electrodes: Developments, trends and potentialities for electroanalysis. Analyst 2003, 128, 205–212. [Google Scholar] [CrossRef]
- Metelka, R.; Vytřas, K.; Bobrowski, A. Effect of the modification of mercuric oxide on the properties of mercury films at HgO-modified carbon paste electrodes. J. Solid State Electrochem. 2000, 4, 348–352. [Google Scholar] [CrossRef]
- Yosypchuk, B.; Fojta, M.; Barek, J. Preparation and properties of mercury film electrodes on solid amalgam surface. Electroanalysis 2010, 22, 1967–1973. [Google Scholar] [CrossRef]
- Wong, D.K.Y.; Ewing, A.G. Anodic stripping voltammetry at mercury films deposited on ultrasmall carbon-ring electrodes. Anal. Chem. 1990, 62, 2697–2702. [Google Scholar] [CrossRef]
- Fertonani, F.L.; Benedetti, A.V.; Servat, J.; Portillo, J.; Sanz, F. Electrodeposited thin mercury films on Pt ± Ir alloy electrodes. Thin Solid Films 1999, 349, 147–154. [Google Scholar] [CrossRef]
- Wang, J.; Lu, J.; Hocevar, S.B.; Farias, P.A.M.; Ogorevc, B. Bismuth-coated carbon electrodes for anodic stripping voltammetry. Anal. Chem. 2000, 72, 3218–3222. [Google Scholar] [CrossRef]
- Pauliukaitė, R.; Brett, C.M.A. Characterization and application of bismuth-film modified carbon film electrodes. Electroanalysis 2005, 17, 1354–1359. [Google Scholar] [CrossRef] [Green Version]
- Vereecken, P.M.; Rodbell, K.; Ji, C.; Searson, P.C. Electrodeposition of bismuth thin films on n-GaAs (110). Appl. Phys. Lett. 2005, 86, 121916. [Google Scholar] [CrossRef]
- Wang, J.; Lu, J.; Kirgöz, U.A.; Hocevar, S.B.; Ogorevc, B. Insights into the anodic stripping voltammetric behavior of bismuth film electrodes. Anal. Chim. Acta 2001, 434, 29–34. [Google Scholar] [CrossRef]
- Hutton, E.A.; Ogorevc, B.; Hočevar, S.B.; Weldon, F.; Smyth, M.R.; Wang, J. An introduction to bismuth film electrode for use in cathodic electrochemical detection. Electrochem. Commun. 2001, 3, 707–711. [Google Scholar] [CrossRef]
- Królicka, A.; Bobrowski, A. Bismuth film electrode for adsorptive stripping voltammetry—Electrochemical and microscopic study. Electrochem. Commun. 2004, 6, 99–104. [Google Scholar] [CrossRef]
- Martín-Yerga, D.; Álvarez-Martos, I.; Blanco-López, M.C.; Henry, C.S.; Fernández-Abedul, M.T. Point-of-need simultaneous electrochemical detection of lead and cadmium using low-cost stencil-printed transparency electrodes. Anal. Chim. Acta 2017, 981, 24–33. [Google Scholar] [CrossRef]
- Caldeira, A.; Gouveia-Caridade, C.; Pauliukaite, R.; Brett, C.M.A. Application of square wave anodic stripping voltammetry for determination of traces of Ti(I) at carbon electrode in situ modified with Bi films. Electroanalysis 2011, 23, 1301–1305. [Google Scholar] [CrossRef]
- Hocevar, S.B.; Wang, J.; Deo, R.P.; Ogorevc, B. Potentiometric stripping analysis at bismuth-film electrode. Electroanalysis 2002, 14, 112–115. [Google Scholar] [CrossRef]
- Hočevar, S.B.; Ogorevc, B.; Wang, J.; Pihlar, B. A study on operational parameters for advanced use of bismuth film electrode in anodic stripping voltammetry. Electroanalysis 2002, 14, 1707–1712. [Google Scholar] [CrossRef]
- Baldrianova, L.; Svancara, I.; Economou, A.; Sotiropoulos, S. Anodic stripping voltammetry at in situ bismuth-plated carbon and gold microdisc electrodes in variable electrolyte content unstirred solutions. Anal. Chim. Acta 2006, 580, 24–31. [Google Scholar] [CrossRef]
- Kefala, G.; Economou, A.; Voulgaropoulos, A.; Sofoniou, M. A study of bismuth-film electrodes for the detection of trace metals by anodic stripping voltammetry and their application to the determination of Pb and Zn in tapwater and human hair. Talanta 2003, 61, 603–610. [Google Scholar] [CrossRef]
- Baldrianova, L.; Svancara, I.; Vlcek, M.; Economou, A.; Sotiropoulos, S. Effect of Bi(III) concentration on the stripping voltammetric response of in situ bismuth-coated carbon paste and gold electrodes. Electrochim. Acta 2006, 52, 481–490. [Google Scholar] [CrossRef]
- Vladislavić, N.; Buzuk, M.; Brinić, S.; Buljac, M.; Bralić, M. Morphological characterization of ex situ prepared bismuth film electrodes and their application in electroanalytical determination of the biomolecules. J. Solid State Electrochem. 2016, 20, 2241–2250. [Google Scholar] [CrossRef]
- Serrano, N.; Díaz-Cruz, J.M.; Ariño, C.; Esteban, M. Ex situ deposited bismuth film on screen-printed carbon electrode: A disposable device for stripping voltammetry of heavy metal ions. Electroanalysis 2010, 22, 1460–1467. [Google Scholar] [CrossRef]
- Arribas, A.S.; Bermejo, E.; Chicharro, M.; Zapardiel, A. Voltammetric detection of the herbicide metamitron at a bismuth film electrode in nondeaerated solution. Electroanalysis 2006, 18, 2331–2336. [Google Scholar] [CrossRef]
- Mandil, A.; Pauliukaite, R.; Amine, A.; Brett, C.M.A. Electrochemical characterization of and stripping voltammetry at screen printed electrodes modified with different brands of multiwall carbon nanotubes and bismuth films. Anal. Lett. 2012, 45, 395–407. [Google Scholar] [CrossRef]
- Ping, J.F.; Wu, J.; Ying, Y.B. Determination of trace heavy metals in milk using an ionic liquid and bismuth oxide nanoparticles modified carbon paste electrode. Chin. Sci. Bull. 2012, 57, 1781–1787. [Google Scholar] [CrossRef] [Green Version]
- Niu, P.; Fernández-Sánchez, C.; Gich, M.; Ayora, C.; Roig, A. Electroanalytical assessment of heavy metals in waters with bismuth nanoparticle-porous carbon paste electrodes. Electrochim. Acta 2015, 165, 155–161. [Google Scholar] [CrossRef]
- Yang, H.; Li, J.; Lu, X.; Xi, G.; Yan, Y. Reliable synthesis of bismuth nanoparticles for heavy metal detection. Mater. Res. Bull. 2013, 48, 4718–4722. [Google Scholar] [CrossRef]
- Cadevall, M.; Ros, J.; Merkoçi, A. Bismuth nanoparticles integration into heavy metal electrochemical stripping sensor. Electrophoresis 2015, 36, 1872–1879. [Google Scholar] [CrossRef]
- Niu, P.; Fernández-Sánchez, C.; Gich, M.; Navarro-Hernández, C.; Fanjul-Bolado, P.; Roig, A. Screen-printed electrodes made of a bismuth nanoparticle porous carbon nanocomposite applied to the determination of heavy metal ions. Microchim. Acta 2016, 183, 617–623. [Google Scholar] [CrossRef]
- Luz, A.; Feldmann, C. Reversible photochromic effect and electrochemical voltage driven by light-induced Bi0-formation. J. Mater. Chem. 2009, 19, 8107–8111. [Google Scholar] [CrossRef]
- Cui, L.; Wu, J.; Ju, H. Synthesis of bismuth-nanoparticle-enriched nanoporous carbon on graphene for efficient electrochemical analysis of heavy-metal ions. Chem. Eur. J. 2015, 21, 11525–11530. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lu, J. Bismuth film electrodes for adsorptive stripping voltammetry of trace nickel. Electrochem. Commun. 2000, 2, 390–393. [Google Scholar] [CrossRef]
- Wang, J.; Anik Kirgöz, Ü.; Lu, J. Stripping voltammetry with the electrode material acting as a “built-in” internal standard. Electrochem. Commun. 2001, 3, 703–706. [Google Scholar] [CrossRef]
- Krolicka, A.; Bobrowski, A.; Kalcher, K.; Mocak, J.; Svancara, I.; Vytras, K. Study on Catalytic Adsorptive Stripping Voltammetry of Trace Cobalt at Bismuth Film Electrodes. Electroanalysis 2003, 15, 1859–1863. [Google Scholar] [CrossRef]
- Banks, C.E.; Kruusma, J.; Hyde, M.E.; Salimi, A.; Compton, R.G. Sonoelectroanalysis: Investigation of bismuth-film-modified glassy carbon electrodes. Anal. Bioanal. Chem. 2004, 379, 277–282. [Google Scholar] [CrossRef]
- Wang, J.; Lu, J.; Hocevar, S.B.; Ogorevc, B. Bismuth-coated screen-printed electrodes for stripping voltammetric measurements of trace lead. Electroanalysis 2001, 13, 13–16. [Google Scholar] [CrossRef]
- Honeychurch, K.C.; Hart, J.P. Screen-printed electrochemical sensors for monitoring metal pollutants. TrAC Trends Anal. Chem. 2003, 22, 456–469. [Google Scholar] [CrossRef]
- Domańska, K.; Tyszczuk-Rotko, K. Integrated three-electrode screen-printed sensor modified with bismuth film for voltammetric determination of thallium(I) at the ultratrace level. Anal. Chim. Acta 2018, 1036, 16–25. [Google Scholar] [CrossRef]
- Mettakoonpitak, J.; Boehle, K.; Nantaphol, S.; Teengam, P.; Adkins, J.A.; Srisa-Art, M.; Henry, C.S. Electrochemistry on paper-based analytical devices: A review. Electroanalysis 2016, 28, 1420–1436. [Google Scholar] [CrossRef]
- Meredith, N.A.; Quinn, C.; Cate, D.M.; Reilly, T.H.; Volckens, J.; Henry, C.S. Paper-based analytical devices for environmental analysis. Analyst 2016, 141, 1874–1887. [Google Scholar] [CrossRef] [PubMed]
- Amor-Gutiérrez, O.; Costa-Rama, E.; Fernández-Abedul, M.T. Sampling and multiplexing in lab-on-paper bioelectroanalytical devices for glucose determination. Biosens. Bioelectron. 2019, 135, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Ge, L.; Yan, M.; Yu, J.; Song, X.; Ge, S.; Huang, J. 3D microfluidic origami electrochemiluminescence immunodevice for sensitive point-of-care testing of carcinoma antigen 125. Sens. Actuators B Chem. 2013, 176, 1–8. [Google Scholar] [CrossRef]
- Zang, D.; Ge, L.; Yan, M.; Song, X.; Yu, J. Electrochemical immunoassay on a 3D microfluidic paper-based device. Chem. Commun. 2012, 48, 4683. [Google Scholar] [CrossRef]
- Medina-Sánchez, M.; Cadevall, M.; Ros, J.; Merkoçi, A. Eco-friendly electrochemical lab-on-paper for heavy metal detection. Anal. Bioanal. Chem. 2015, 407, 8445–8449. [Google Scholar] [CrossRef]
- Chen, G.H.; Chen, W.Y.; Yen, Y.C.; Wang, C.W.; Chang, H.T.; Chen, C.F. Detection of mercury(II) ions using colorimetric gold nanoparticles on paper-based analytical devices. Anal. Chem. 2014, 86, 6843–6849. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.J.; Wei, J.F.; Xu, J.R.; Wang, Y.H.; Zheng, G.X. Paper-based three-dimensional microfluidic device for monitoring of heavy metals with a camera cell phone. Anal. Bioanal. Chem. 2014, 406, 2799–2807. [Google Scholar] [CrossRef]
- Sánchez-Calvo, A.; Núñez-Bajo, E.; Fernández-Abedul, M.T.; Blanco-López, M.C.; Costa García, A. Optimization and characterization of nanostructured paper-based electrodes. Electrochim. Acta 2018, 265, 717–725. [Google Scholar] [CrossRef]
- Nantaphol, S.; Kava, A.A.; Channon, R.B.; Kondo, T.; Siangproh, W.; Chailapakul, O.; Henry, C.S. Janus electrochemistry: Simultaneous electrochemical detection at multiple working conditions in a paper-based analytical device. Anal. Chim. Acta 2019, 1056, 88–95. [Google Scholar] [CrossRef]
- Nantaphol, S.; Channon, R.B.; Kondo, T.; Siangproh, W.; Chailapakul, O.; Henry, C.S. Boron Doped Diamond Paste Electrodes for Microfluidic Paper-Based Analytical Devices. Anal. Chem. 2017, 89, 4100–4107. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.M.; Zhang, Q.; Shi, C.G.; Xu, J.J.; Bao, N.; Gu, H.Y. Using nanostructured conductive carbon tape modified with bismuth as the disposable working electrode for stripping analysis in paper-based analytical devices. Talanta 2013, 115, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Figueredo, F.; Jesús González-Pabón, M.; Cortón, E. Low cost layer by layer construction of CNT/Chitosan flexible paper-based electrodes: A versatile electrochemical platform for point of care and point of need testing. Electroanalysis 2018, 30, 497–508. [Google Scholar] [CrossRef]
- Nunez-Bajo, E.; Blanco-López, M.C.; Costa-García, A.; Fernández-Abedul, M.T. Electrogeneration of Gold Nanoparticles on Porous-Carbon Paper-Based Electrodes and Application to Inorganic Arsenic Analysis in White Wines by Chronoamperometric Stripping. Anal. Chem. 2017, 89, 6415–6423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amor-Gutiérrez, O.; Costa Rama, E.; Costa-García, A.; Fernández-Abedul, M.T. Paper-based maskless enzymatic sensor for glucose determination combining ink and wire electrodes. Biosens. Bioelectron. 2017, 93, 40–45. [Google Scholar] [CrossRef]
- Li, M.; Cao, R.; Nilghaz, A.; Guan, L.; Zhang, X.; Shen, W. “Periodic-Table-Style” Paper Device for Monitoring Heavy Metals in Water. Anal. Chem. 2015, 87, 2555–2559. [Google Scholar] [CrossRef]
- Galus, Z. Diffusion coefficients of metals in mercury. Pure Appl. Chem. 1984, 56, 635–644. [Google Scholar] [CrossRef]
- De Sanidad, G. Real Decreto 140/2003 de 7 de febrero, por el que se establecen los criterios sanitarios de la calidad del agua de consumo humano. Available online: https://www.lalosa.es/wp-content/uploads/2019/01/decret_legis_AGUA.pdf (accessed on 13 May 2020).
- European Commission. Council Directive 98/83/EC of 3 november 1998 on the quality of water intended for human consumption. Off. J. Eur. Commun. 1998, 1–23. [Google Scholar]
- Costa-Rama, E.; Nouws, H.P.A.; Delerue-Matos, C.; Blanco-López, M.C.; Fernández-Abedul, M.T. Preconcentration and sensitive determination of the anti-inflammatory drug diclofenac on a paper-based electroanalytical platform. Anal. Chim. Acta 2019, 1074, 89–97. [Google Scholar] [CrossRef]
- Chao, H.; Fu, L.; Li, Y.; Li, X.; Du, H. Sensitive stripping determination of cadmium (II) and lead (II) on disposable graphene modified screen-printed electrode. Electroanalysis 2013, 25, 2238–2243. [Google Scholar]
- Quinn, C.W.; Cate, D.M.; Miller-Lionberg, D.D.; Reilly, T.; Volckens, J.; Henry, C.S. Solid-phase extraction coupled to a paper-based technique for trace copper detection in drinking water. Environ. Sci. Technol. 2018, 52, 3567–3573. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Li, B.; Qi, A.; Tian, C.; Han, J.; Shi, Y.; Lin, B.; Chen, L. Improved assessment of accuracy and performance using a rotational paper-based device for multiplexed detection of heavy metals. Talanta 2018, 178, 426–431. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Cao, H.; Nie, Z.; Si, S.; Zhao, X.; Zeng, X. A disposable expanded graphite paper electrode with self-doped sulfonated polyaniline/antimony for stripping voltammetric determination of trace Cd and Pb. Anal. Methods 2016, 8, 1618–1625. [Google Scholar] [CrossRef]
- De Araujo, W.R.; Paixao, T.R.L.C. Fabrication of disposable electrochemical devices using silver ink and office paper. Analyst 2014, 139, 2742–2747. [Google Scholar] [CrossRef]
Bismuth Films | |||
RSD (%) | Linear Range (µg/mL) | Limit of Detection (µg/mL) | |
Cd | 4.3 | 2.5–10 | 1 |
Pb | 14.6 | 1–10 | 0.7 |
In | 9.6 | 1–4 | 0.6 |
Mercury films | |||
RSD (%) | Lineal range (µg/mL) | Limit of detection (µg/mL) | |
Cd | 6.4 | 0.5–10 | 0.4 |
Pb | 10.9 | 0.5–10 | 0.1 |
In | 9.1 | 0.1–5 | 0.04 |
Cu | 4.3 | 0.25–6.35 | 0.2 |
Sensor | Detection Technique | Analyte | Linear Range (µg/mL) | LOD (µg/mL) |
---|---|---|---|---|
Solid phase extraction-µPADs | Colorimetric [72] | Cu (II) | 0.02–500 | 0.02 |
Rotational paper-based device | Colorimetric [73] | Ni (II) | 1.5–60 | 4.8 |
Cu (II) | 0.5–80 | 1.6 | ||
Cr (VI) | 0.5–10 | 0.18 | ||
Table style paper device | Colorimetric [66] | Ni (II) | 0.3–5 | 0.3 |
Cu (II) | 0.6–3 | 0.6 | ||
Cr (VI) | 0.2–3 | 0.2 | ||
Three-dimensional microfluidic device | Colorimetric [58] | Cu (II) | 5–20 | 0.29 |
Cd (II) | 0.05–0.4 | 0.19 | ||
Ni (II) | 5–20 | 0.33 | ||
Cr (VI) | 0.2–1 | 0.35 | ||
Double-sided conductive adhesive carbon tape with bismuth | Electrochemical (SWASV) [62] | Pb (II) | 0.002–0.5 | 0.002 |
Cd (II) | 0.1–0.2 | 0.1 | ||
Zn (II) | 0.1–0.2 | 0.1 | ||
BDDPE-µPADs | Electrochemical (SWASV) [61] | Pb (II) | 0.001–0.2 | 0.001 |
Cd (II) | 0.025–0.2 | 0.025 | ||
Graphite paper electrode with sulfonated polyaniline/antimony | Electrochemical (DPASV) [74] | Pb (II) | 0.002–0.07 | 0.0002 |
Cd (II) | 0.002–0.07 | 0.00041 | ||
Electrochemical device with silver ink and office paper | Electrochemical (SWASV) [75] | Pb (II) | 1.87–9.95 | 0.35 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Calvo, A.; Blanco-López, M.C.; Costa-García, A. Paper-Based Working Electrodes Coated with Mercury or Bismuth Films for Heavy Metals Determination. Biosensors 2020, 10, 52. https://doi.org/10.3390/bios10050052
Sánchez-Calvo A, Blanco-López MC, Costa-García A. Paper-Based Working Electrodes Coated with Mercury or Bismuth Films for Heavy Metals Determination. Biosensors. 2020; 10(5):52. https://doi.org/10.3390/bios10050052
Chicago/Turabian StyleSánchez-Calvo, Alberto, Maria Carmen Blanco-López, and Agustín Costa-García. 2020. "Paper-Based Working Electrodes Coated with Mercury or Bismuth Films for Heavy Metals Determination" Biosensors 10, no. 5: 52. https://doi.org/10.3390/bios10050052
APA StyleSánchez-Calvo, A., Blanco-López, M. C., & Costa-García, A. (2020). Paper-Based Working Electrodes Coated with Mercury or Bismuth Films for Heavy Metals Determination. Biosensors, 10(5), 52. https://doi.org/10.3390/bios10050052