Electrochemical (Bio)Sensors for Pesticides Detection Using Screen-Printed Electrodes
Abstract
:1. Introduction
2. Electrochemical Techniques Used for Pesticides Detection
2.1. Cyclic Voltammetry
2.2. Differential Pulse Voltammetry
2.3. Square Wave Voltammetry
2.4. Chronoamperometry
2.5. Electrochemical Impedance Spectroscopy
3. Enzymatic Sensors
3.1. Enzymatic Inhibition
3.2. Catalytic Detection
4. Direct Detection of Electroactive Pesticides
5. Immunosensors
6. Aptasensors
7. Biological Sensors
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Human Biomonitoring: Facts and Figures; WHO Regional Office for Europe: Copenhagen, Denmark, 2015. [Google Scholar]
- WHO (World Health Organization). Available online: https://www.who.int/ (accessed on 30 December 2019).
- United States Environmental Protection Agency (US EPA). Available online: https://www.epa.gov/ (accessed on 30 December 2019).
- Consejo de la Unión Europea Directiva 98/83/CE del Consejo. Off. J. Eur. Communities 1998, L330, 32–54.
- Caso, E.L.; Plaguicidas, C.D.E.L.O.S. Análisis de la directiva europea 98/83/CE: Paradigma de la justificación y establecimiento de los valores paramétricos. El caso concreto de los plaguicidas. 2012, 86, 21–35. [Google Scholar]
- Oficial, D.; Comisi, D.E.L.A.; Europeo, P.; Europeo, P.; Alimentarius, C. Scientific support for preparing an EU position for the 45th Session of the Codex Committee on Pesticide Residues (CCPR). EFSA J. 2013, 11, 1–5. [Google Scholar]
- Human Resources Council. United Nations General Assembly. Report of the Special Rapporteur on the Right to food. Available online: https://www.ohchr.org/en/issues/food/pages/foodindex.aspx (accessed on 30 December 2019).
- Anagnostopoulos, C.; Miliadis, G.E. Development and validation of an easy multiresidue method for the determination of multiclass pesticide residues using GC-MS/MS and LC-MS/MS in olive oil and olives. Talanta 2013, 112, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Yang, Y.; Li, Y.; Fan, X.; Ding, S. Determination of neonicotinoid insecticides residues in eels using subcritical water extraction and ultra-performance liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta 2013, 777, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Shi, T.; Luo, X.; Xiong, H.; Min, F.; Chen, Y. Determination of multi-pesticide residues in green tea with a modi fi ed QuEChERS protocol coupled to HPLC-MS/MS. Food Chem. 2019, 275, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Timofeeva, I.; Shishov, A.; Kanashina, D.; Dzema, D.; Bulatov, A. On-line in-syringe sugaring-out liquid-liquid extraction coupled with HPLC-MS/MS for the determination of pesticides in fruit and berry juices. Talanta 2017, 167, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Song, N.; Lee, J.Y.; Mansur, A.R.; Jang, H.W.; Lim, M.; Lee, Y. Determination of 60 pesticides in hen eggs using the QuEChERS procedure followed by LC-MS/MS and GC-MS/MS. Food Chem. 2019, 298, 125050. [Google Scholar] [CrossRef]
- Zhu, B.; Xu, X.; Luo, J.; Jin, S.; Chen, W.; Liu, Z. Simultaneous determination of 131 pesticides in tea by on-line GPC-GC – MS/MS using graphitized multi-walled carbon nanotubes as dispersive solid phase extraction sorbent. Food Chem. 2019, 276, 202–208. [Google Scholar] [CrossRef]
- Li, M.; Li, D.; Xiu, G.; Long, Y. Applications of screen-printed electrodes in current environmental analysis. Curr. Opin. Electrochem. 2012, 3, 137–143. [Google Scholar] [CrossRef]
- Mullane, A.P.O. Electrochemistry. Ref. Modul. Chem. Mol. Sci. Chem. Eng. 2013, 2, 1–3. [Google Scholar]
- Oja, S.M.; Wood, M.; Zhang, B. Nanoscale electrochemistry. Anal. Chem. 2013, 85, 473–486. [Google Scholar] [CrossRef] [PubMed]
- Renedo, O.D.; Alonso-Lomillo, M.A.; Martínez, M.J.A. Recent developments in the field of screen-printed electrodes and their related applications. Talanta 2007, 73, 202–219. [Google Scholar] [CrossRef] [PubMed]
- Fanjul-Bolado, P.; Hernández-Santos, D.; Lamas-Ardisana, P.J.; Martín-Pernía, A.; Costa-García, A. Electrochemical characterization of screen-printed and conventional carbon paste electrodes. Electrochim. Acta 2008, 53, 3635–3642. [Google Scholar] [CrossRef]
- Lebik-elhadi, H.; Frontistis, Z.; Ait-amar, H.; Amrani, S. Electrochemical oxidation of pesticide thiamethoxam on boron doped diamond anode: Role of operating parameters and matrix effect. Process Saf. Environ. Prot. 2018, 116, 535–541. [Google Scholar] [CrossRef]
- Chorti, P.; Fischer, J.; Vyskocil, V.; Economou, A.; Barek, J. Electrochimica Acta Voltammetric Determination of Insecticide Thiamethoxam on Silver Solid Amalgam Electrode. Electrochim. Acta 2014, 140, 5–10. [Google Scholar] [CrossRef]
- Chu, Z.; Peng, J.; Jin, W. Advanced nanomaterial inks for screen-printed chemical sensors. Sens. Actuators B Chem. 2017, 243, 919–926. [Google Scholar] [CrossRef]
- Martín-Yerga, D.; Costa Rama, E.; Costa García, A.A. Electrochemical study and determination of electroactive species with screen-printed electrodes. J. Chem. Educ. 2016, 93, 1270–1276. [Google Scholar] [CrossRef]
- Arduini, F.; Micheli, L.; Moscone, D.; Palleschi, G.; Piermarini, S.; Ricci, F.; Volpe, G. Electrochemical biosensors based on nanomodified screen-printed electrodes: Recent applications in clinical analysis. Trends Anal. Chem. 2016, 79, 114–126. [Google Scholar] [CrossRef] [Green Version]
- Fahem, D.K.; El, O.M.; El-rahman, M.K.A.; Zaazaa, H.E. A point of care screen printed potentiometric sensor for therapeutic monitoring of vecuronium. Microchem. J. 2019, 147, 532–537. [Google Scholar] [CrossRef]
- Garcia, P.T.; Guimarães, L.N.; Dias, A.A.; Ulhoa, C.J.; Coltro, W.K.T. Amperometric detection of salivary α-amylase on screen-printed carbon electrodes as a simple and inexpensive alternative for point-of-care testing. Sens. Actuators B Chem. 2018, 258, 342–348. [Google Scholar] [CrossRef]
- Moreira, F.T.C.; Dutra, R.A.F.; Noronha, J.P.C.; Fernandes, J.C.S.; Sales, M.G.F. Novel biosensing device for point-of-care applications with plastic antibodies grown on Au-screen printed electrodes. Sens. Actuators B Chem. 2013, 182, 733–740. [Google Scholar] [CrossRef] [Green Version]
- Kampeera, J.; Pasakon, P.; Karuwan, C.; Arunrut, N. Point-of-care rapid detection of Vibrio parahaemolyticus in seafood using loop-mediated isothermal amplification and graphene-based screen-printed electrochemical sensor. Biosens. Bioelectron. 2019, 132, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Fernández, B.; Martín-Yerga, D.; Costa-García, A. Electrodeposition of nickel nanoflowers on screen-printed electrodes and its application to non-enzymatic determination of sugars. RSC Adv. 2016, 6, 83748–83757. [Google Scholar] [CrossRef]
- Pérez-Fernández, B.; Martín-Yerga, D.; Costa-García, A. Galvanostatic electrodeposition of copper nanoparticles on screen-printed carbon electrodes and their application for reducing sugars determination. Talanta 2017, 175, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Paredes, G.; González-García, M.B.; Costa-García, A. In situ electrochemical generation of gold nanostructured screen-printed carbon electrodes. Application to the detection of lead underpotential deposition. Electrochim. Acta 2009, 54, 4801–4808. [Google Scholar] [CrossRef]
- Kardaş, F.; Beytur, M.; Akyıldırım, O.; Yüksek, H.; Yola, M.L.; Atar, N. Electrochemical detection of atrazine in wastewater samples by copper oxide (CuO) nanoparticles ionic liquid modified electrode. J. Mol. Liq. 2017, 248, 360–363. [Google Scholar] [CrossRef]
- Zhao, H.; Zhou, C.; Teng, Y.; Chen, C.; Lan, M. Applied Surface Science Novel Pt nanowires modified screen-printed gold electrode by electrodeposited method. Appl. Surf. Sci. 2011, 257, 3793–3797. [Google Scholar] [CrossRef]
- Youse, A.; Babaei, A.; Delavar, M. Application of modified screen-printed carbon electrode with MWCNTs-Pt- doped CdS nanocomposite as a sensitive sensor for determination of natamycin in yoghurt drink and cheese. J. Electroanal. Chem. 2018, 822, 1–9. [Google Scholar] [CrossRef]
- Song, Y.; Chen, J.; Sun, M.; Gong, C.; Shen, Y.; Song, Y.; Wang, L. A simple electrochemical biosensor based on AuNPs / MPS / Au electrode sensing layer for monitoring carbamate pesticides in real samples. J. Hazard. Mater. 2016, 304, 103–109. [Google Scholar] [CrossRef]
- Tajik, S.; Safaei, M.; Beitollahi, H. A sensitive voltammetric sertraline nanosensor based on ZnFe2O4 nanoparticles modified screen printed electrode. Measurement 2019, 143, 51–57. [Google Scholar] [CrossRef]
- Zia, S.; Beitollahi, H.; Allahabadi, H.; Rohani, T. Disposable electrochemical sensor based on modified screen printed electrode for sensitive cabergoline quantification. J. Electroanal. Chem. 2019, 847, 113223. [Google Scholar]
- Chen, Y.; Kirankumar, R.; Kao, C.; Chen, P. Electrodeposited Ag, Au, and AuAg nanoparticles on graphene oxide-modified screen-printed carbon electrodes for the voltammetric determination of free sulfide in alkaline solutions. Electrochim. Acta 2016, 205, 124–131. [Google Scholar] [CrossRef]
- Jeromiyas, N.; Elaiyappillai, E.; Senthil, A. Bismuth nanoparticles decorated graphenated carbon nanotubes modified screen-printed electrode for mercury detection. J. Taiwan Inst. Chem. Eng. 2019, 95, 466–474. [Google Scholar] [CrossRef]
- Xuan, N.; Xuan, N.; Takamura, Y. Development of highly sensitive electrochemical immunosensor based on single-walled carbon nanotube modified screen-printed carbon electrode. Mater. Chem. Phys. 2019, 227, 123–129. [Google Scholar]
- Tpra, R. Electrochemiluminescence study of AuNPs/CdTe-QDs/SWCNTs/chitosan nanocomposite modified carbon nanofiber screen-printed electrode with [Ru(bpy)3]2+/TPrA. Inorg. Chem. Commun. 2019, 106, 54–60. [Google Scholar]
- Singh, M.; Tiwari, I.; Foster, C.W.; Banks, C.E. Highly sensitive and selective determination of dopamine using screen- printed electrodes modified with nanocomposite of N′-phenyl-p-phenylenediamine/multiwalled carbon nanotubes/nafion. Mater. Res. Bull. 2018, 101, 253–263. [Google Scholar] [CrossRef]
- Lamas-Ardisana, P.A.; Queipo, P.; Fanjul-Bolado, P.; Costa-garcia, A. Multiwalled carbon nanotube modified screen-printed electrodes for the detection of p -aminophenol: Optimisation and application in alkaline phosphatase-based assays. Anal. Chim. Acta 2008, 615, 30–38. [Google Scholar] [CrossRef]
- García-González, R.; Fernández-Abedul, M.T.; Costa-García, A. Nafion modified-screen printed gold electrodes and their carbon nanostructuration for electrochemical sensors applications. Talanta 2013, 107, 376–381. [Google Scholar] [CrossRef]
- Calder, J.A.; Nagles, E.; García-beltr, O. Evaluation of the usefulness of a novel electrochemical sensor in detecting uric acid and dopamine in the presence of ascorbic acid using a screen-printed carbon electrode modi fi ed with single walled carbon nanotubes and ionic liquids. Electrochim. Acta 2017, 258, 512–523. [Google Scholar]
- Gutiérrez, C.; Squella, J.A. Carbon nanofiber screen printed electrode joined to a flow injection system for nimodipine sensing. Sens. Actuators B Chem. 2015, 220, 456–462. [Google Scholar]
- Nellaiappan, S.; Senthil, A. Electrocatalytic oxidation and flow injection analysis of isoniazid drug using a gold nanoparticles decorated carbon nanofibers-chitosan modified carbon screen printed electrode in neutral pH. J. Electroanal. Chem. 2017, 801, 171–178. [Google Scholar] [CrossRef]
- Pérez-ràfols, C.; Serrano, N.; Díaz-cruz, J.M.; Ariño, C.; Esteban, M. Glutathione modified screen-printed carbon nanofiber electrode for the voltammetric determination of metal ions in natural samples. Talanta 2016, 155, 8–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamas-ardisana, P.J.; Fanjul-bolado, P.; Costa-garcía, A. Manufacture and evaluation of cup-stacked carbon nanofiber-modified screen printed electrodes as electrochemical tools. JEAC 2016, 775, 129–134. [Google Scholar] [CrossRef]
- Samie, H.A.; Arvand, M. RuO2 nanowires on electrospun CeO2 -Au nanofibers/functionalized carbon nanotubes / graphite oxide nanocomposite modified screen-printed carbon electrode for simultaneous determination of serotonin, dopamine and ascorbic acid. J. Alloys Compd. 2019, 782, 824–836. [Google Scholar] [CrossRef]
- Chan, K.F.; Lim, H.N.; Shams, N.; Jayabal, S.; Pandikumar, A.; Huang, N.M. Fabrication of graphene / gold-modified screen-printed electrode for detection of carcinoembryonic antigen. Mater. Sci. Eng. C 2016, 58, 666–674. [Google Scholar] [CrossRef]
- Sánchez Calvo, A.; Botas, C.; Martín-Yerga, D.; Álvarez, P.; Menéndez, R.; Costa-García, A. Comparative Study of Screen-Printed Electrodes Modified with Graphene Oxides Reduced by a Constant Current. J. Electrochem. Soc. 2015, 162, B282–B290. [Google Scholar] [CrossRef]
- Jaiswal, N.; Tiwari, I.; Foster, C.W.; Banks, C.E. Highly sensitive amperometric sensing of nitrite utilizing bulk-modified MnO2 decorated Graphene oxide nanocomposite screen-printed electrodes. Electrochim. Acta 2017, 227, 255–266. [Google Scholar] [CrossRef]
- Thunkhamrak, C.; Chuntib, P.; Ounnunkad, K.; Banet, P. Highly sensitive voltammetric immunosensor for the detection of prostate specific antigen based on silver nanoprobe assisted graphene oxide modified screen printed carbon electrode. Talanta 2020, 208, 120389. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Q.; Lu, Y.; Ji, D.; Zhang, D.; Wu, J.; Chen, X.; Liu, Q. One step electrochemical deposition and reduction of graphene oxide on screen printed electrodes for impedance detection of glucose. Sens. Actuators B Chem. 2017, 244, 290–298. [Google Scholar] [CrossRef]
- Singh, M.; Jaiswal, N.; Tiwari, I.; Foster, C.W.; Banks, C.E. A reduced graphene oxide-cyclodextrin-platinum nanocomposite modified screen printed electrode for the detection of cysteine. J. Electroanal. Chem. 2018, 829, 230–240. [Google Scholar] [CrossRef]
- Maity, D.; Minitha, C.R.; Rajendra Kumar, R.T. Glucose oxidase immobilized amine terminated multiwall carbon nanotubes/reduced graphene oxide/polyaniline/gold nanoparticles modified screen-printed carbon electrode for highly sensitive amperometric glucose detection. Mater. Sci. Eng. C 2019, 105, 110075. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez-Redín, G.; Wilson, D.; Gonçalves, D.; Oliveira, O.N., Jr. Low-cost screen-printed electrodes based on electrochemically reduced graphene oxide-carbon black nanocomposites for dopamine, epinephrine and paracetamol detection. J. Colloid Interface Sci. 2018, 515, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, B.; Dai, W.; Ye, J.; Xu, B. Sensitive determination of capsaicin on Ag / Ag 2 O nanoparticles / reduced graphene oxide modified screen-printed electrode. JEAC 2016, 776, 93–100. [Google Scholar] [CrossRef]
- Martín-Yerga, D.; Costa-García, A. Stabilization of electrogenerated copper species at quantum dots-modified electrodes. Phys. Chem. Chem. Phys. 2017, 74, 53–56. [Google Scholar]
- Kokkinos, C.; Prodromidis, M.; Economou, A.; Petrou, P. Disposable integrated bismuth citrate-modified screen-printed immunosensor for ultrasensitive quantum dot-based electrochemical assay of C-reactive protein in human serum. Anal. Chim. Acta 2015, 886, 29–36. [Google Scholar] [CrossRef]
- Martín-yerga, D.; González-garcía, M.B.; Costa-garcía, A. Electrochemical immunosensor for anti-tissue transglutaminase antibodies based on the in situ detection of quantum dots. Talanta 2014, 130, 598–602. [Google Scholar] [CrossRef]
- García, C.; Navarro, F.; Celis, F.; Ruiz, D.; Toledo, S.; Sanhueza, L.; Qui, A. Electrochemical, spectroscopic and electrochemiluminescent characterization of self-assembled 3-aminopropyltriethoxysilane/CdTe quantum dots hybrids on screen-printed electrodes. Electrochim. Acta 2018, 276, 64–72. [Google Scholar] [CrossRef]
- Roushani, M.; Jalilian, Z.; Nezhadali, A. Screen printed carbon electrode sensor with thiol graphene quantum dots and gold nanoparticles for voltammetric determination of solatol. Heliyon 2019, 5, e01984. [Google Scholar] [CrossRef] [Green Version]
- Campuzano, S.; Paloma, Y.; Asadpour-zeynali, K. Ultrasensitive determination of receptor tyrosine kinase with a label- free electrochemical immunosensor using graphene quantum dots- modified screen-printed electrodes. Anal. Chim. Acta 2018, 1011, 28–34. [Google Scholar]
- Centi, S.; Laschi, S.; Fr, M.; Mascini, M. A disposable immunomagnetic electrochemical sensor based on functionalised magnetic beads and carbon-based screen-printed electrodes (SPCEs) for the detection of polychlorinated biphenyls (PCBs). Anal. Chim. Acta 2005, 538, 205–212. [Google Scholar] [CrossRef]
- Eguílaz, M.; Moreno-guzmán, M.; Campuzano, S.; González-cortés, A.; Pingarrón, J.M.; Yá, P. An electrochemical immunosensor for testosterone using functionalized magnetic beads and screen-printed carbon electrodes. Biosens. Bioelectron. 2010, 26, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Biscay, J.; Begoña, M.; García, G.; Costa, A. Electrochemical biotin detection based on magnetic beads and a new magnetic flow cell for screen printed electrode. Talanta 2015, 131, 706–711. [Google Scholar] [CrossRef] [PubMed]
- Biscay, J.; García, M.B.G.; García, A.C. Electrochemical biotin determination based on a screen printed carbon electrode array and magnetic beads. Sens. Actuators B Chem. 2014, 205, 426–432. [Google Scholar] [CrossRef]
- Panraksa, Y.; Siangproh, W.; Khampieng, T.; Chailapakul, O.; Apilux, A. Paper-based amperometric sensor for determination of acetylcholinesterase using screen-printed graphene electrode. Talanta 2018, 178, 1017–1023. [Google Scholar] [CrossRef]
- Biscay, J.; Rama, E.C.; García, M.B.G.; Carrazón, J.M.P.; García, A.C. Enzymatic sensor using mediator-screen-printed carbon electrodes. Electroanalysis 2011, 23, 209–214. [Google Scholar] [CrossRef]
- Wang, J.; Nascimento, V.B.; Kane, S.A.; Rogers, K.; Smyth, M.R.; Angnes, L. Screen-printed tyrosinase-containing electrodes for the biosensing of enzyme inhibitors. Talanta 1996, 43, 1903–1907. [Google Scholar] [CrossRef]
- Alonso-lomillo, M.A.; Domínguez-renedo, O. Sensitive enzyme-biosensor based on screen-printed electrodes for Ochratoxin A. Biosens. Bioelectron. 2010, 25, 1333–1337. [Google Scholar] [CrossRef]
- Alvarado-gámez, A.L.; Alonso-lomillo, M.A.; Domínguez-renedo, O.; Arcos-martínez, M.J. Vanadium determination in water using alkaline phosphatase based screen-printed carbon electrodes modified with gold nanoparticles. J. Electroanal. Chem. 2013, 693, 51–55. [Google Scholar] [CrossRef]
- Biscay, J.; Costa Rama, E.; González García, M.B.; Julio Reviejo, A.; Pingarrón Carrazón, J.M.; García, A.C. Amperometric fructose sensor based on ferrocyanide modified screen-printed carbon electrode. Talanta 2012, 88, 432–438. [Google Scholar] [CrossRef]
- Karim, N.; Jin, H. Amperometric phenol biosensor based on covalent immobilization of tyrosinase on Au nanoparticle modified screen printed carbon electrodes. Talanta 2013, 116, 991–996. [Google Scholar] [CrossRef] [PubMed]
- Soln, R.; Ruzgas, T.; Skl, P. Amperometric screen-printed biosensor arrays with co-immobilised oxidoreductases and cholinesterases. Anal. Chim. Acta 2005, 528, 9–19. [Google Scholar] [CrossRef]
- Sapelniko, S.; Dock, E.; Ruzgas, T.; Emne, J. Amperometric sensors based on tyrosinase-modified screen- printed arrays. Talanta 2003, 61, 473–483. [Google Scholar] [CrossRef]
- Hatada, M.; Tsugawa, W.; Kamio, E.; Loew, N.; Klonoff, D.C. Development of a screen-printed carbon electrode based disposable enzyme sensor strip for the measurement of glycated albumin. Biosens. Bioelectron. 2017, 88, 167–173. [Google Scholar] [CrossRef]
- Cerrato-alvarez, M.; Bernalte, E.; Bernalte-garcía, M.J.; Pinilla-gil, E. Fast and direct amperometric analysis of polyphenols in beers using tyrosinase-modified screen-printed gold nanoparticles biosensors. Talanta 2019, 193, 93–99. [Google Scholar] [CrossRef]
- Dontsova, E.A.; Zeifman, Y.S.; Budashov, I.A.; Eremenko, A.V.; Kalnov, S.L.; Kurochkin, I.N. Screen-printed carbon electrode for choline based on MnO2 nanoparticles and choline oxidase/polyelectrolyte layers. Sens. Actuators B Chem. 2011, 159, 261–270. [Google Scholar] [CrossRef]
- Yan, M.; Zang, D.; Ge, S.; Ge, L.; Yu, J. A disposable electrochemical immunosensor based on carbon screen-printed electrodes for the detection of prostate specific antigen. Biosens. Bioelectron. 2012, 38, 355–361. [Google Scholar] [CrossRef]
- Goud, K.Y.; Kumar, V.S.; Hayat, A.; Gobi, K.V.; Song, H.; Kim, K.; Louis, J. A highly sensitive electrochemical immunosensor for zearalenone using screen-printed disposable electrodes. J. Electroanal. Chem. 2019, 832, 336–342. [Google Scholar] [CrossRef]
- Hern, D. Development of an immunosensor for the determination of rabbit IgG using streptavidin modified screen-printed carbon electrodes. Talanta 2005, 65, 565–573. [Google Scholar]
- Deepthy, S.; Layek, K.; Mukherjee, R.; Kumar, K.; Ghosh, M. Development of screen-printed electrode based immunosensor for the detection of HER2 antigen in human serum samples. Bioelectrochemistry 2017, 118, 25–30. [Google Scholar]
- Jampasa, S.; Siangproh, W.; Laocharoensuk, R.; Vilaivan, T. Electrochemical detection of c-reactive protein based on anthraquinone- labeled antibody using a screen-printed graphene electrode. Talanta 2018, 183, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Baradoke, A.; Jose, B.; Pauliukaite, R.; Forster, R.J. Properties of Anti-CA125 antibody layers on screen-printed carbon electrodes modified by gold and platinum nanostructures. Electrochim. Acta 2019, 306, 299–306. [Google Scholar] [CrossRef]
- Ibáñez-redín, G.; Furuta, R.H.M.; Wilson, D.; Shimizu, F.M.; Materon, E.M.; Maria, L.; Batista, R.; Melendez, M.E.; Carvalho, A.L.; Manuel, R.; et al. Screen-printed interdigitated electrodes modified with nanostructured carbon nano-onion films for detecting the cancer biomarker CA19-9. Mater. Sci. Eng. C 2019, 99, 1502–1508. [Google Scholar] [CrossRef] [PubMed]
- Eissa, S. A comparison of the performance of voltammetric aptasensors for glycated haemoglobin on different carbon nanomaterials-modified screen printed electrodes. Mater. Sci. Eng. C 2019, 101, 423–430. [Google Scholar] [CrossRef]
- Erdem, A.; Congur, G.; Mayer, G. Aptasensor platform based on carbon nanofibers enriched screen printed electrodes for impedimetric detection of thrombin. JEAC 2015, 758, 12–19. [Google Scholar] [CrossRef]
- Xie, D.; Li, C.; Shangguan, L.; Qi, H.; Xue, D.; Gao, Q. Click chemistry-assisted self-assembly of DNA aptamer on gold nanoparticles-modified screen-printed carbon electrodes for label-free electrochemical aptasensor. Sens. Actuators B Chem. 2014, 192, 558–564. [Google Scholar] [CrossRef]
- Hashkavayi, A.B.; Raoof, J.B. Design an aptasensor based on structure-switching aptamer on dendritic gold nanostructures/Fe3O4@SiO2/DABCO modified screen printed electrode for highly selective detection of epirubicin. Biosens. Bioelectron. 2017, 91, 650–657. [Google Scholar] [CrossRef]
- Yeh, F.; Liu, T.; Tseng, I.; Yang, C.; Lu, L.; Lin, C. Gold nanoparticles conjugates-amplified aptamer immunosensing screen-printed carbon electrode strips for thrombin detection. Biosens. Bioelectron. 2014, 61, 336–343. [Google Scholar] [CrossRef]
- Jo, H.; Her, J.; Lee, H.; Shim, Y.; Ban, C. Highly sensitive amperometric detection of cardiac troponin I using sandwich aptamers and screen-printed carbon electrodes. Talanta 2017, 165, 442–448. [Google Scholar] [CrossRef]
- Ren, R.; Leng, C.; Zhang, S. A chronocoulometric DNA sensor based on screen-printed electrode doped with ionic liquid and polyaniline nanotubes. Biosens. Bioelectron. 2010, 25, 2089–2094. [Google Scholar] [CrossRef]
- Evtugyn, G.; Mingaleva, A.; Budnikov, H.; Stoikova, E.; Vinter, V.; Eremin, S. Affinity biosensors based on disposable screen-printed electrodes modified with DNA. Anal. Chim. Acta 2003, 479, 125–134. [Google Scholar] [CrossRef]
- Malecka, K.; Stachyra, A.; Góra-sochacka, A.; Sirko, A.; Zagórski-ostoja, W.; Radecka, H.; Radecki, J. Electrochemical genosensor based on disc and screen printed gold electrodes for detection of specific DNA and RNA sequences derived from Avian Influenza Virus H5N1. Sens. Actuators B Chem. 2016, 224, 290–297. [Google Scholar] [CrossRef] [Green Version]
- Khairy, M.; Khorshed, A.A.; Rashwan, F.A.; Salah, G.A.; Abdel-wadood, H.M.; Banks, C.E. Sensitive determination of amlodipine besylate using bare/unmodified and DNA-modified screen-printed electrodes in tablets and biological fluids. Sens. Actuators B Chem. 2017, 239, 768–775. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Geng, X.; Ai, J.; Gao, Q.; Qi, H. Signal amplification detection of DNA using a sensor fabricated by one-step covalent immobilization of amino-terminated probe DNA onto the polydopamine-modified screen-printed carbon electrode. Sens. Actuators B Chem. 2015, 221, 1535–1541. [Google Scholar] [CrossRef]
- Jiang, D.; Liu, Y.; Jiang, H.; Rao, S.; Fang, W.; Wu, M.; Yuan, L. A novel screen-printed mast cell-based electrochemical sensor for detecting spoilage bacterial quorum signaling molecules (N-acyl-homoserine-lactones) in freshwater fish. Biosens. Bioelectron. 2018, 102, 396–402. [Google Scholar] [CrossRef]
- Chang, J.; Lien, C.; Vijayakumar, P.S.; Hsieh, P.; Zen, J. Electrochemical regulation of microbial growth on disposable screen printed carbon electrodes. Electrochim. Acta 2012, 82, 103–108. [Google Scholar] [CrossRef]
- Wen, J.; He, D.; Yu, Z.; Zhou, S. In situ detection of microbial c-type cytochrome based on intrinsic peroxidase-like activity using screen-printed carbon electrode. Biosens. Bioelectron. 2018, 113, 52–57. [Google Scholar] [CrossRef]
- Mulchandani, A.; Rajesh. Microbial biosensors for organophosphate pesticides. Appl. Biochem. Biotechnol. 2011, 165, 687–699. [Google Scholar] [CrossRef]
- Kurbanoglu, S.; Ozkan, S.A.; Merkoçi, A. Nanomaterials-based enzyme electrochemical biosensors operating through inhibition for biosensing applications. Biosens. Bioelectron. 2017, 89, 886–898. [Google Scholar] [CrossRef]
- Dou, J.; Fan, F.; Ding, A.; Cheng, L.; Sekar, R.; Wang, H.; Li, S. A screen-printed, amperometric biosensor for the determination of organophosphorus pesticides in water samples. J. Environ. Sci. 2012, 24, 956–962. [Google Scholar] [CrossRef]
- Arduini, F.; Ricci, F.; Tuta, C.S.; Moscone, D.; Amine, A.; Palleschi, G. Detection of carbamic and organophosphorous pesticides in water samples using a cholinesterase biosensor based on Prussian Blue-modified screen-printed electrode. Anal. Chim. Acta 2006, 580, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Istamboulie, G.; Sikora, T.; Jubete, E.; Ochoteco, E.; Marty, J.; Noguer, T. Screen-printed poly (3, 4-ethylenedioxythiophene) (PEDOT): A new electrochemical mediator for acetylcholinesterase-based biosensors. Talanta 2010, 82, 957–961. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.; Jeanty, G.; Marty, J. Enzyme immobilization procedures on screen-printed electrodes used for the detection of anticholinesterase pesticides Comparative study. Anal. Chim. Acta 2004, 523, 107–115. [Google Scholar] [CrossRef]
- Ivanov, A.N.; Younusov, R.R.; Evtugyn, G.A.; Arduini, F.; Moscone, D.; Palleschi, G. Acetylcholinesterase biosensor based on single-walled carbon nanotubes—Co phtalocyanine for organophosphorus pesticides detection. Talanta 2011, 85, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Haddaoui, M.; Raouafi, N. Chlortoluron-induced enzymatic activity inhibition in tyrosinase/ZnO NPs/SPCE biosensor for the detection of ppb levels of herbicide. Sens. Actuators B Chem. 2015, 219, 171–178. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, G.; Chen, D.; Wang, Z.; Liu, G. A sensitive acetylcholinesterase biosensor based on screen printed electrode modified with Fe3O4 nanoparticle and graphene for chlorpyrifos determination. Int. J. Electrochem. Sci. 2016, 11, 10906–10918. [Google Scholar] [CrossRef]
- Shi, M.; Xu, J.; Zhang, S.; Liu, B.; Kong, J. A mediator-free screen-printed amperometric biosensor for screening of organophosphorus pesticides with flow-injection analysis (FIA) system. Talanta 2006, 68, 1089–1095. [Google Scholar] [CrossRef]
- Cinti, S.; Neagu, D.; Carbone, M.; Cacciotti, I.; Moscone, D.; Arduini, F. Novel carbon black-cobalt phthalocyanine nanocomposite as sensing platform to detect organophosphorus pollutants at screen-printed electrode. Electrochim. Acta 2016, 188, 574–581. [Google Scholar] [CrossRef]
- Crew, A.; Lonsdale, D.; Byrd, N.; Pittson, R.; Hart, J.P. A screen-printed, amperometric biosensor array incorporated into a novel automated system for the simultaneous determination of organophosphate pesticides. Biosens. Bioelectron. 2011, 26, 2847–2851. [Google Scholar] [CrossRef]
- Arduini, F.; Guidone, S.; Amine, A.; Palleschi, G.; Moscone, D. Acetylcholinesterase biosensor based on self-assembled monolayer-modified gold-screen printed electrodes for organophosphorus insecticide detection. Sens. Actuators B Chem. 2013, 179, 201–208. [Google Scholar] [CrossRef]
- De Albuquerque, Y.D.T.; Ferreira, L.F. Amperometric biosensing of carbamate and organophosphate pesticides utilizing screen-printed tyrosinase-modified electrodes. Anal. Chim. Acta 2007, 596, 210–221. [Google Scholar] [CrossRef]
- Gogol, E.V.; Evtugyn, G.A.; Marty, J.; Budnikov, H.C.; Winter, V.G. Amperometric biosensors based on nafion coated screen-printed electrodes for the determination of cholinesterase inhibitors. Talanta 2000, 53, 379–389. [Google Scholar] [CrossRef]
- Sajjadi, S.; Ghourchian, H.; Tavakoli, H. Choline oxidase as a selective recognition element for determination of paraoxon. Biosens. Bioelectron. 2009, 24, 2509–2514. [Google Scholar] [CrossRef]
- Dounin, V.; Veloso, A.J.; Schulze, H.; Bachmann, T.T.; Kerman, K. Disposable electrochemical printed gold chips for the analysis of acetylcholinesterase inhibition. Anal. Chim. Acta 2010, 669, 63–67. [Google Scholar] [CrossRef]
- Mayorga-Martinez, C.C.; Pino, F.; Kurbanoglu, S.; Rivas, L.; Ozkan, S.A.; Merkoçi, A. Iridium oxide nanoparticle induced dual catalytic/inhibition based detection of phenol and pesticide compounds. J. Mater. Chem. B 2014, 2, 2233–2239. [Google Scholar] [CrossRef]
- Catalina, D.; Carvajal, S.; Peñuela, G. Effect of chlorpyrifos on the inhibition of the enzyme acetylcholinesterase by cross-linking in water-supply samples and milk from dairy cattle. Talanta 2013, 111, 1–7. [Google Scholar] [CrossRef]
- Chen, D.; Liu, Z.; Fu, J.; Guo, Y.; Sun, X.; Yang, Q.; Wang, X. Electrochemical acetylcholinesterase biosensor based on multi-walled carbon nanotubes/dicyclohexyl phthalate modified screen-printed electrode for detection of chlorpyrifos. J. Electroanal. Chem. 2017, 801, 185–191. [Google Scholar] [CrossRef]
- Shi, Q.; Teng, Y.; Zhang, Y.; Liu, W. Rapid detection of organophosphorus pesticide residue on Prussian blue modified dual-channel screen-printed electrodes combing with portable potentiostat. Chin. Chem. Lett. 2018, 29, 1379–1382. [Google Scholar] [CrossRef]
- Domínguez-renedo, O.; Alonso-lomillo, M.A.; Recio-cebrián, P.; Arcos-martínez, M.J. Screen-printed acetylcholinesterase-based biosensors for inhibitive determination of permethrin. Sci. Total Environ. 2012, 426, 346–350. [Google Scholar] [CrossRef]
- Jin, R.; Kong, D.; Zhao, X.; Li, H.; Yan, X.; Liu, F.; Sun, P.; Du, D.; Lin, Y.; Lu, G. Tandem catalysis driven by enzymes directed hybrid nanoflowers for on-site ultrasensitive detection of organophosphorus pesticide. Biosens. Bioelectron. 2019, 141, 111473. [Google Scholar] [CrossRef]
- Arduini, F.; Forchielli, M.; Amine, A.; Neagu, D.; Cacciotti, I.; Nanni, F.; Moscone, D.; Palleschi, G. Screen-printed biosensor modified with carbon black nanoparticles for the determination of paraoxon based on the inhibition of butyrylcholinesterase. Microchim. Acta 2014, 182, 643–651. [Google Scholar] [CrossRef]
- Gan, N.; Yang, X.; Xie, D.; Wu, Y.; Wen, W. A disposable organophosphorus pesticides enzyme biosensor based on magnetic composite nano-particles modified screen printed carbon electrode. Sensors 2010, 10, 625–638. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, A.; Evtugyn, G.; Budnikov, H.; Ricci, F.; Moscone, D.; Palleschi, G. Cholinesterase sensors based on screen-printed electrodes for detection of organophosphorus and carbamic pesticides. Anal. Bioanal. Chem. 2003, 377, 624–631. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Jiao, Y.; Jia, H.; Guo, Y.; Sun, X.; Wang, X.; Xu, J. Acetylcholinesterase biosensor for chlorpyrifos detection based on multi-walled carbon nanotubes-SnO2-chitosan nanocomposite modified screen-printed electrode. Int. J. Electrochem. Sci. 2015, 10, 10491–10501. [Google Scholar]
- El-Moghazy, A.Y.; Soliman, E.A.; Ibrahim, H.Z.; Marty, J.L.; Istamboulie, G.; Noguer, T. Biosensor based on electrospun blended chitosan-poly (vinyl alcohol) nanofibrous enzymatically sensitized membranes for pirimiphos-methyl detection in olive oil. Talanta 2016, 155, 258–264. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, Q.; Guo, Y.; Sun, X.; Wang, X. Acetylcholinesterase biosensor based on the mesoporous carbon/ferroferric oxide modified electrode for detecting organophosphorus pesticides. RSC Adv. 2016, 6, 24698–24703. [Google Scholar] [CrossRef]
- Tang, W.; Fan, K.; Zhou, J.; Wu, J.; Ji, F. Unmodified screen-printed silver electrode for facile detection of organophosphorus pesticide. Ionics 2015, 21, 587–592. [Google Scholar] [CrossRef]
- Joshi, K.A.; Tang, J.; Haddon, R.; Wang, J.; Chen, W.; Mulchandani, A. A disposable biosensor for organophosphorus nerve agents based on carbon nanotubes modified thick film strip electrode. Electroanalysis 2005, 17, 54–58. [Google Scholar] [CrossRef]
- Sinha, R.; Ganesana, M.; Andreescu, S.; Stanciu, L. AChE biosensor based on zinc oxide sol-gel for the detection of pesticides. Anal. Chim. Acta 2010, 661, 195–199. [Google Scholar] [CrossRef]
- Bonnet, C.; Andreescu, S.; Marty, J. Adsorption: An easy and efficient immobilisation of acetylcholinesterase on screen-printed electrodes. Anal. Chim. Acta 2003, 481, 209–211. [Google Scholar] [CrossRef]
- Chen, D.; Fu, J.; Liu, Z.; Guo, Y.; Sun, X.; Wang, X.; Wang, Z. A Simple acetylcholinesterase biosensor based on ionic liquid/multiwalled carbon nanotubes-modified screen-printed electrode for rapid detecting chlorpyrifos. Int. J. Electrochem. Sci. 2017, 12, 9465–9477. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, A.; Du, D.; Lin, Y. Biosensor based on Prussian blue nanocubes/reduced graphene oxide nanocomposite for detection of organophosphorus pesticides. Nanoscale 2012, 4, 4674–4679. [Google Scholar] [CrossRef]
- Bucur, B.; Fournier, D.; Danet, A.; Marty, J.L. Biosensors based on highly sensitive acetylcholinesterases for enhanced carbamate insecticides detection. Anal. Chim. Acta 2006, 562, 115–121. [Google Scholar] [CrossRef]
- Laschi, S.; Ogończyk, D.; Palchetti, I.; Mascini, M. Evaluation of pesticide-induced acetylcholinesterase inhibition by means of disposable carbon-modified electrochemical biosensors. Enzyme Microb. Technol. 2007, 40, 485–489. [Google Scholar] [CrossRef]
- Del Carlo, M.; Mascini, M.; Pepe, A.; Compagnone, D.; Mascini, M. Electrochemical bioassay for the investigation of chlorpyrifos-methyl in vine samples. J. Agric. Food Chem. 2002, 50, 7206–7210. [Google Scholar] [CrossRef]
- Li, Y.G.; Zhou, Y.X.; Feng, J.L.; Jiang, Z.H.; Ma, L.R. Immobilization of enzyme on screen-printed electrode by exposure to glutaraldehyde vapour for the construction of amperometric acetylcholinesterase electrodes. Anal. Chim. Acta 1999, 382, 277–282. [Google Scholar] [CrossRef]
- Del Carlo, M.; Mascini, M.; Pepe, A.; Diletti, G.; Compagnone, D. Screening of food samples for carbamate and organophosphate pesticides using an electrochemical bioassay. Food Chem. 2004, 84, 651–656. [Google Scholar] [CrossRef]
- Law, K.A.; Higson, S.P.J. Sonochemically fabricated acetylcholinesterase micro-electrode arrays within a flow injection analyser for the determination of organophosphate pesticides. Biosens. Bioelectron. 2005, 20, 1914–1924. [Google Scholar] [CrossRef]
- Di Sioudi, B.D.; Miller, C.E.; Lai, K.; Grimsley, J.K.; Wild, J.R. Rational design of organophosphorus hydrolase for altered substrate specificities. Chem. Biol. Interact. 1999, 119–120, 211–223. [Google Scholar] [CrossRef]
- Efremenko, E.N.; Sergeeva, V.S. Organophosphate hydrolase—An enzyme catalyzing degradation of phosphorus-containing toxins and pesticides. Russ. Chem. Bull. 2001, 50, 1826–1832. [Google Scholar] [CrossRef]
- Shimazu, M.; Mulchandani, A.; Chen, W. Simultaneous degradation of organophosphorus pesticides and p-nitrophenol by a genetically engineered Moraxella sp. with surface-expressed organophosphorus hydrolase. Biotechnol. Bioeng. 2001, 76, 318–324. [Google Scholar] [CrossRef]
- Chough, S.H.; Mulchandani, A.; Mulchandani, P.; Chen, W.; Wang, J.; Rogers, K.R. Organophosphorus Hydrolase-Based Amperometric Sensor: Modulation of Sensitivity and Substrate Selectivity. Electroanalysis 2002, 14, 273–276. [Google Scholar] [CrossRef]
- Lei, Y.; Mulchandani, P.; Wang, J.; Chen, W.; Mulchandani, A. Highly sensitive and selective amperometric microbial biosensor for direct determination of p-nitrophenyl-substituted organophosphate nerve agents. Environ. Sci. Technol. 2005, 39, 8853–8857. [Google Scholar] [CrossRef]
- Mulchandani, A.; Chen, W.; Mulchandani, P.; Wang, J.; Rogers, K.R. Biosensors for direct determination of organophosphate pesticides. Biosens. Bioelectron. 2001, 16, 225–230. [Google Scholar] [CrossRef]
- Mulchandani, A. Amperometric Thick-Film Strip Electrodes for Monitoring Organophosphate Nerve Agents Based on Immobilized Organophosphorus Hydrolase. Anal. Chem. 1999, 71, 2246–2249. [Google Scholar] [CrossRef]
- Joshi, K.A.; Prouza, M.; Kum, M.; Wang, J.; Tang, J.; Haddon, R.; Chen, W.; Mulchandani, A. V-type nerve agent detection using a carbon nanotube-based amperometric enzyme electrode. Anal. Chem. 2006, 78, 331–336. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, W.; Lin, Y.; Du, D. The vital function of Fe3O4@Au nanocomposites for hydrolase biosensor design and its application in detection of methyl parathion. Nanoscale 2013, 5, 1121–1126. [Google Scholar] [CrossRef]
- Sacks, V.; Eshkenazi, I.; Neufeld, T.; Dosoretz, C.; Rishpon, J. Immobilized Parathion Hydrolase: An Amperometric Sensor for Parathion. Anal. Chem. 2000, 72, 2055–2058. [Google Scholar] [CrossRef]
- Mulyasuryani, A.; Dofir, M. Enzyme Biosensor for Detection of Organophosphate Pesticide Residues Base on Screen Printed Carbon Electrode (SPCE)-Bovine Serum Albumin (BSA). Engineering 2014, 6, 230–235. [Google Scholar] [CrossRef] [Green Version]
- Primožič, M.; Čolnik, M.; Knez, Ž.; Leitgeb, M. Advantages and disadvantages of using SC CO2 for enzyme release from halophilic fungi. J. Supercrit. Fluids 2019, 143, 286–293. [Google Scholar] [CrossRef]
- Brahim, M.B.; Belhadj Ammar, H.; Abdelhédi, R.; Samet, Y. Electrochemical behavior and analytical detection of Imidacloprid insecticide on a BDD electrode using square-wave voltammetric method. Chin. Chem. Lett. 2016, 27, 666–672. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, H.T.; Xie, T.J.; Yang, X.; Dong, A.J.; Zhang, H.; Wang, J.; Wang, Z.Y. Molecularly imprinted polymer on graphene surface for selective and sensitive electrochemical sensing imidacloprid. Sens. Actuators B Chem. 2017, 252, 991–1002. [Google Scholar] [CrossRef]
- Geto, A.; Safaa, J.; Mortensen, J.; Svendsen, W.E.; Dimaki, M. Electrochemical determination of bentazone using simple screen-printed carbon electrodes. Environ. Int. 2019, 129, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Della Pelle, F.; Angelini, C.; Sergi, M.; Del Carlo, M.; Pepe, A.; Compagnone, D. Nano carbon black-based screen printed sensor for carbofuran, isoprocarb, carbaryl and fenobucarb detection: Application to grain samples. Talanta 2018, 186, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Lezi, N.; Economou, A. Voltammetric Determination of Neonicotinoid Pesticides at Disposable Screen-Printed Sensors Featuring a Sputtered Bismuth Electrode. Electroanalysis 2015, 27, 2313–2321. [Google Scholar] [CrossRef]
- Khairy, M.; Ayoub, H.A.; Banks, C.E. Non-enzymatic electrochemical platform for parathion pesticide sensing based on nanometer-sized nickel oxide modified screen-printed electrodes. Food Chem. 2018, 255, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Charoenkitamorn, K.; Chailapakul, O.; Siangproh, W. Development of gold nanoparticles modified screen-printed carbon electrode for the analysis of thiram, disulfiram and their derivative in food using ultra-high performance liquid chromatography. Talanta 2015, 132, 416–423. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, F.; She, Y.; Hong, S.; Cao, X.; Zheng, L.; Wang, S.; Li, T.; Wang, M.; Jin, M.; et al. A disposable molecularly imprinted sensor based on Graphe@AuNPs modified screen-printed electrode for highly selective and sensitive detection of cyhexatin in pear samples. Sens. Actuators B Chem. 2019, 284, 13–22. [Google Scholar] [CrossRef]
- Jubete, E.; Zelechowska, K.; Loaiza, O.A.; Lamas, P.J.; Ochoteco, E.; Farmer, K.D.; Roberts, K.P.; Biernat, J.F. Derivatization of SWCNTs with cobalt phthalocyanine residues and applications in screen printed electrodes for electrochemical detection of thiocholine. Electrochim. Acta 2011, 56, 3988–3995. [Google Scholar] [CrossRef]
- Habekost, A. Rapid and sensitive spectroelectrochemical and electrochemical detection of glyphosate and AMPA with screen-printed electrodes. Talanta 2017, 162, 583–588. [Google Scholar] [CrossRef]
- Karuppiah, C.; Palanisamy, S.; Chen, S.; Kannan, S.; Periakaruppan, P. A novel and sensitive amperometric hydrazine sensor based on gold nanoparticles decorated graphite nanosheets modified screen printed carbon electrode. Electrochim. Acta 2014, 139, 157–164. [Google Scholar] [CrossRef]
- Thirumalraj, B.; Rajkumar, C.; Chen, S.; Lin, K. Determination of 4-nitrophenol in water by use of a screen-printed carbon electrode modified with chitosan-crafted ZnO nanoneedles. J. Colloid Interface Sci. 2017, 499, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Arvinte, A.; Mahosenaho, M.; Pinteala, M.; Sesay, A.M.; Virtanen, V. Electrochemical oxidation of p-nitrophenol using graphene-modified electrodes, and a comparison to the performance of MWNT-based electrodes. Microchim. Acta 2011, 174, 337–343. [Google Scholar] [CrossRef]
- De Oliveira, R.; Amorim, É.; Rogério, A. Electrochemically activated multi-walled carbon nanotubes modified screen-printed electrode for voltammetric determination of sulfentrazone. J. Electroanal. Chem. 2019, 835, 220–226. [Google Scholar]
- Sun, H.; Zhao, S.; Qu, F. Gold nanoparticles modified ceria nanoparticles for the oxidation of hydrazine with disposable screen-printed electrode. Measurement 2012, 45, 1111–1113. [Google Scholar] [CrossRef]
- Pino, F.; Mayorga-Martinez, C.C.; Merkoçi, A. High-performance sensor based on copper oxide nanoparticles for dual detection of phenolic compounds and a pesticide. Electrochem. Commun. 2016, 71, 33–37. [Google Scholar] [CrossRef]
- Saengsookwaow, C.; Rangkupan, R.; Chailapakul, O. Nitrogen-doped graphene-polyvinylpyrrolidone/gold nanoparticles modified electrode as a novel hydrazine sensor. Sens. Actuators B Chem. 2016, 227, 524–532. [Google Scholar] [CrossRef]
- Chuntib, P.; Themsirimongkon, S.; Saipanya, S.; Jakmunee, J. Sequential injection differential pulse voltammetric method based on screen printed carbon electrode modified with carbon nanotube/Nafion for sensitive determination of paraquat. Talanta 2017, 170, 1–8. [Google Scholar] [CrossRef]
- Jirasirichote, A.; Punrat, E.; Suea-ngam, A.; Chailapakul, O. Voltammetric detection of carbofuran determination using screen-printed carbon electrodes modified with gold nanoparticles and graphene oxide. Talanta 2017, 175, 331–337. [Google Scholar] [CrossRef]
- Govindasamy, M.; Mani, V.; Chen, S.M.; Chen, T.W.; Sundramoorthy, A.K. Methyl parathion detection in vegetables and fruits using silver@graphene nanoribbons nanocomposite modified screen printed electrode. Sci. Rep. 2017, 7, 46471. [Google Scholar] [CrossRef]
- Arduini, F.; Cassisi, A.; Amine, A.; Ricci, F.; Moscone, D.; Palleschi, G. Electrocatalytic oxidation of thiocholine at chemically modified cobalt hexacyanoferrate screen-printed electrodes. J. Electroanal. Chem. 2009, 626, 66–74. [Google Scholar] [CrossRef]
- Mehta, J.; Vinayak, P.; Tuteja, S.K.; Chhabra, V.A.; Bhardwaj, N.; Paul, A.K.; Kim, K.; Deep, A. Graphene modified screen printed immunosensor for highly sensitive detection of parathion. Biosens. Bioelectron. 2016, 83, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Mehta, J.; Bhardwaj, N.; Bhardwaj, S.K.; Tuteja, S.K.; Vinayak, P.; Paul, A.K.; Kim, K.; Deep, A. Graphene quantum dot modified screen printed immunosensor for the determination of parathion. Anal. Biochem. 2017, 523, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Dzantiev, B.B.; Yazynina, E.V.; Zherdev, A.V.; Plekhanova, Y.V.; Reshetilov, A.N.; Chang, S.; Mcneil, C.J. Determination of the herbicide chlorsulfuron by amperometric sensor based on separation-free bienzyme immunoassay. Sens. Actuators B Chem. 2004, 98, 254–261. [Google Scholar] [CrossRef]
- Pérez-Fernández, B.; Mercader, J.V.; Checa-Orrego, B.I.; de la Escosura-Muñiz, A.; Costa-García, A. A monoclonal antibody-based immunosensor for the electrochemical detection of imidacloprid pesticide. Analyst 2019, 144, 2936–2941. [Google Scholar] [CrossRef]
- Pérez-fernández, B.; Mercader, J.V.; Abad-fuentes, A.; Brenda, I.; De Escosura-muñiz, A.; Costa-garcía, A. Direct competitive immunosensor for Imidacloprid pesticide detection on gold nanoparticle-modified electrodes. Talanta 2019, 209, 120465. [Google Scholar] [CrossRef]
- Wei, W.; Zong, X.; Wang, X.; Yin, L.; Pu, Y.; Liu, S. A disposable amperometric immunosensor for chlorpyrifos-methyl based on immunogen/platinum doped silica sol – gel film modified screen-printed carbon electrode. Food Chem. 2012, 135, 888–892. [Google Scholar] [CrossRef]
- Grennan, K.; Strachan, G.; Porter, A.J.; Killard, A.J.; Smyth, M.R. Atrazine analysis using an amperometric immunosensor based on single-chain antibody fragments and regeneration-free multi-calibrant measurement. Anal. Chim. Acta 2003, 500, 287–298. [Google Scholar] [CrossRef] [Green Version]
- Skla, P. The immunosensors for measurement of 2, 4-dichlorophenoxyacetic acid based on electrochemical impedance spectroscopy. Bioelectrochemistry 2004, 62, 11–18. [Google Scholar]
- Stoltenburg, R.; Reinemann, C.; Strehlitz, B. SELEX—A (r) evolutionary method to generate high-affinity nucleic acid ligands. Biomol. Eng. 2007, 24, 381–403. [Google Scholar] [CrossRef]
- Madianos, L.; Tsekenis, G.; Skotadis, E.; Patsiouras, L.; Tsoukalas, D. A highly sensitive impedimetric aptasensor for the selective detection of acetamiprid and atrazine based on microwires formed by platinum nanoparticles. Biosens. Bioelectron. 2018, 101, 268–274. [Google Scholar] [CrossRef]
- Madianos, L.; Skotadis, E.; Tsekenis, G.; Patsiouras, L.; Tsigkourakos, M.; Tsoukalas, D. Ιmpedimetric nanoparticle aptasensor for selective and label free pesticide detection. Microelectron. Eng. 2018, 189, 39–45. [Google Scholar] [CrossRef]
- Jiao, Y.; Hou, W.; Fu, J.; Guo, Y.; Sun, X. A nanostructured electrochemical aptasensor for highly sensitive detection of chlorpyrifos. Sens. Actuators B Chem. 2017, 243, 1164–1170. [Google Scholar] [CrossRef]
- Rapini, R.; Marrazza, G. Electrochemical aptasensors for contaminants detection in food and environment: Recent advances. Bioelectrochemistry 2017, 118, 47–61. [Google Scholar] [CrossRef] [PubMed]
- Erdem, A.; Eksin, E.; Muti, M. Chitosan—Graphene oxide based aptasensor for the impedimetric detection of lysozyme. Colloids Surfaces B Biointerfaces 2014, 115, 205–211. [Google Scholar] [CrossRef]
- Wang, C.; Chen, B.; Zou, M.; Cheng, G. Cyclic RGD-modified chitosan / graphene oxide polymers for drug delivery and cellular imaging. Colloids Surfaces B Biointerfaces 2014, 122, 332–340. [Google Scholar] [CrossRef]
- Liu, M.; Khan, A.; Wang, Z.; Liu, Y.; Yang, G.; Deng, Y.; He, N. Aptasensors for pesticide detection. Biosens. Bioelectron. 2019, 130, 174–184. [Google Scholar] [CrossRef]
- Fei, A.; Liu, Q.; Huan, J.; Qian, J.; Dong, X.; Qiu, B.; Mao, H.; Wang, K. Label-free impedimetric aptasensor for detection of femtomole level acetamiprid using gold nanoparticles decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites. Biosens. Bioelectron. 2015, 70, 122–129. [Google Scholar] [CrossRef]
- Rapini, R.; Cincinelli, A.; Marrazza, G. Acetamiprid multidetection by disposable electrochemical DNA aptasensor. Talanta 2016, 161, 15–21. [Google Scholar] [CrossRef]
- Fu, J.; An, X.; Yao, Y.; Guo, Y.; Sun, X. Electrochemical aptasensor based on one step co-electrodeposition of aptamer and GO-CuNPs nanocomposite for organophosphorus pesticide detection. Sens. Actuators B Chem. 2019, 287, 503–509. [Google Scholar] [CrossRef]
- Hassani, S.; Akmal, M.R.; Salek-Maghsoudi, A.; Rahmani, S.; Ganjali, M.R.; Norouzi, P.; Abdollahi, M. Novel label-free electrochemical aptasensor for determination of Diazinon using gold nanoparticles-modified screen-printed gold electrode. Biosens. Bioelectron. 2018, 120, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Mulchandani, A.; Mulchandani, P.; Chauhan, S.; Kaneva, I.; Chen, W. A Potentiometric Microbial Biosensor for Direct Determination of Organophosphate Nerve Agents. Electroanalysis 1998, 10, 733–737. [Google Scholar] [CrossRef]
- Chen, W.; Mulchandani, A. Flow Injection Amperometric Enzyme Biosensor for Direct Determination of Organophosphate Nerve Agents. Environ. Sci. Technol. 2001, 35, 2562–2565. [Google Scholar]
- Mulchandani, P.; Mulchandani, A.; Kaneva, I.; Chen, W. Biosensor for direct determination of organophosphate nerve agents. 1. Potentiometric enzyme electrode. Biosens. Bioelectron. 1999, 14, 77–85. [Google Scholar] [CrossRef]
- Touloupakis, E.; Giannoudi, L.; Piletsky, S.A.; Guzzella, L.; Pozzoni, F.; Giardi, M.T. A multi-biosensor based on immobilized Photosystem II on screen-printed electrodes for the detection of herbicides in river water. Biosens. Bioelectron. 2005, 20, 1984–1992. [Google Scholar] [CrossRef] [PubMed]
- Chatzipetrou, M.; Milano, F.; Giotta, L.; Chirizzi, D.; Trotta, M.; Massaouti, M.; Guascito, M.R.; Zergioti, I. Functionalization of gold screen printed electrodes with bacterial photosynthetic reaction centers by laser printing technology for mediatorless herbicide biosensing. Electrochem. Commun. 2016, 64, 46–50. [Google Scholar] [CrossRef]
- Kumar, J.; Souza, S.F.D. Microbial biosensor for detection of methyl parathion using screen printed carbon electrode and cyclic voltammetry. Biosens. Bioelectron. 2011, 26, 4289–4293. [Google Scholar] [CrossRef]
Electrode | Enzyme | Analyte | Lineal Range | LoD | Ref |
---|---|---|---|---|---|
SPGE (array) | AChE | Carbaryl Heptenophos Fenitrothion Dichlorvos Phosphamide | 0.8 nM–2.4 µM | 0.80 nM 9.2 nM 85 nM 77 nM 130 nM | [74] |
BChE | Carbaryl Heptenophos Fenitrothion Dichlorvos Phosphamide | 93 nM 2.8 nM 6.9 nM 14 nM 2390 nM | |||
Thick-film SPCE | Tyr | Diethyldithio carbamate | – | 2 µM | [79] |
SPCE | AChE | Dichlorvos Monocrotophs Parathion | 16–28 nM | 18.1 nM 26.4 nM 14.4 nM | [104] |
PB/SPCE | AChE | Aldicarb Carbaryl | 63–315 nM 124–497 nM | 63 nM 124 nM | [105] |
BChE | Paraoxon Chlorpyrifos-methyl oxon | 7–18 nM 1.6–6 nM | 7 nM 1.6 nM | ||
PEDOT:PSS/SPGE | AChE | Chlorpyrifos-oxon | 4–760 nM | 4.4 nM | [106] |
TCNQ/SPGE | AChE | Aldicarb Carbaryl Carbofuran Methomyl | 10–500 nM 5–500 nM 1–750 nM 2.5–700 nM | 8 nM 4 nM 1 nM 2 nM | [107] |
CoPc/SWCNTs/ SPCE | AChE | Paraoxon Malaoxon | 18–181 nM 6–159 nM | 11 nM 6 nM | [108] |
GA/ZnONPs/ SPCE | Tyr | Chlortoluron | 1–100 nM | 0.47 nM | [109] |
Fe3O4/GR/SPCE | AChE | Chlorpyrifos | 0.14–285 nM | 0.06 nM | [110] |
Al2O3/SPCE | AChE | Dichlorvos | 1–60 µM | 0.8 µM | [111] |
CB/CoPc/SPCE | BChE | Paraoxon | Up to 100 nM | 18 nM | [112] |
CoPc/SPCE | AChE | Organophosphates | 10−5–10−9 M | – | [113] |
Cyst/GA/AuSPE | AChE | Paraoxon | Up to 145 nM | 7.3 nM | [114] |
CoPc/CGCE | Tyr | Methyl parathion Diazinon Carbofuran Carbaryl | 22.8–379.9 nM 62.4–164.3 nM 22.6–406.8 nM 49.7–248.5 nM | – | [115] |
Nf/SPGE | BChE | Trichlorfon Coumaphos | 4 × 10−7–8 × 10−7 M 2 × 10−7–5.5 × 10−6 M | 3.5 × 10-7 M 1.5 × 10-7 M | [116] |
PB/SPGE | ChO | Paraoxon | 0.1–1 µM | 0.1 µM | [117] |
DEP-Au chips | AChE | Paraoxon Carbofuran | – | 36.3 nM 36.1 nM | [118] |
GA/IrOxNPs/ SPCE | Tyr | Chlorpyrifos | 0.01–0.1 µM | 3 nM | [119] |
SPCE | AChE | Chlorpyrifos | 1 × 10−6–5 × 10−2 M | 5 µM | [120] |
DCHP/MWCNT/SPCE | AChE | Chlorpyrifos | 0.14–2.85 nM | 0.14 nM | [121] |
Nf/PB/DSPCE | AChE | Isocarbophos Chlorpyrifos Trochlorfon | 0.33–16.72 µM | 0.33 µM | [122] |
SPCE | AChE | Permethrin | 6.2–41 µM | 8.1 µM | [123] |
Cu3(PO4)2/HNFs/ SPCE | AChE/ ChO | Paraoxon | 2.18 × 10−5–2.18 nM | 21.8 fM | [124] |
GA/Nf/BSA/ CBNPs/SPGE | BChE | Paraoxon | 18.2–109 nM | 18.2 nM | [125] |
Nf/PB/ZrO2/ CNT/SPCE | GMP-AChE | Dimethoate | 0.004–43.6 nM | 2 pM | [126] |
TCNQ/SPCE | BChE | Chlorpyrifos-methyl Coumaphos Carbofuran | 3 × 10−8–3 × 10−7 M 1 × 10−7–4 × 10−6 M 3 × 10−8–1 × 10−7 M | 20nM 50 nM 10 nM | [127] |
PB/SPCE | AChE/ ChO | Chlorpyrifos-methyl Carbofuran | 4 × 10−8–5 × 10−7 M 1 × 10−8–1 × 10−7 M | 30 nM 8 nM | [127] |
MWCNTs/SnO2/ CHIT/SPCE | AChE | Chlorpyrifos | 0.14–2.85 × 103 nM | < 0.14 nM | [128] |
CS/PVA NFM/SPCE | AChE | Pirimiphos-methyl oxon | 1 × 10−10–8 × 10−9 M | 0.2 nM | [129] |
OMC-CHIT/ Fe3O4-CS/SPCE | AChE | Methamidophos Chlorpyrifos | – | 7.09 nM 0.14 nM | [130] |
SPSE | AChE | Chlorpyrifos | 0–71.3 nM | 7.13 nM | [131] |
CS/CB/SPCE | AChE | Paraoxon | 0.36–1.82 nM | 0.18 nM | |
MWCNT/SPCE | AChE | Paraoxon | Up to 6.9 nM | 0.5 nM | [132] |
ZnO/SPCE | AChE | Paraoxon | Up to 5 µM | 0.13 µM | [133] |
SPGE | AChE | Chlorpyrifos ethyl oxon | 0–2 × 10−8 M 5 × 10−8–2 × 10−7 M | 3.6 pM | [134] |
MWCNT/IL/ SPCE | AChE | Chlorpyrifos | 0.14–2.85 × 105 nM | 0.14 nM | [135] |
PBNCs/rGO/ SPCE | AChE | Monocrotophos | 4.5–2688 nM | 0.45 nM | [136] |
TCNQ/SPGE | AChE | Carbaryl Carbofuran Pirimicard | Up to 5 × 10−7 M Up to 1 × 10−7 M Up to 5 × 10−7 M | 10 nM 0.8 nM 0.2 nM | [137] |
CoPc/SPCE | AChE | Carbofuran | 10−10–10−8 M | 0.5 nM | [138] |
TCNQ/Nf/SPGE | AChE | Chlorpyrifos methyl | 3–930 nM | 68 nM | [139] |
TCNQ/BSA/GA/ SPCE | AChE | Paraoxon | 1.8 × 10−7–5.4 × 10−5 M | 0.18 µM | [140] |
TCNQ/Nf/SPCE | AChE | Carbaryl Parathion methyl | 9.9–447.3 nM 3.8–379.9 nM | 9.9 nM 3.8 nM | [141] |
CoPc/SPCE | AChE | Dichlorvos Parathion Azinphos | 1 × 10−17–1 × 10−4 M 1 × 10−16–1 × 10−4 M 1 × 10−16–1 × 10−4 M | fM 0.1 fM 0.1 fM | [142] |
Electrode | Enzyme | Analyte | Lineal Range | LoD | Ref |
---|---|---|---|---|---|
Nf/SPCE | OPH | Paraoxon Methyl parathion | 4.6–46 µM Up to 5 µM | 0.9 µM 0.4 µM | [148,149] |
MWCNT/SPCE | OPH | Demeton-S | Up to 85 µM | 1 µM | [150] |
Fe3O4@Au-NC/ SPCE | MPH | Methyl parathion | 1.9–3799 nM | 0.38 nM | [151] |
SPCE | PH | Parathion | 34–343 nM | 3.4 nM | [152] |
BSA/GA/SPCE | OPH | Diazinon | – | 0.59 µM | [153] |
Electrode | Analyte | Lineal range | LoD | Ref |
---|---|---|---|---|
SPCE | Bentazone | 0.19–50 µM | 34 mM | [157] |
CB/SPCE | Carbofuran Isoprocarb Carbaryl Fenobucarb | 0.1–100 µM 0.1–100 µM 0.1–100 µM 0.1–100 µM | 49 nM 79 nM 48 nM 80 nM | [158] |
Thick-film Bi/SPCE | Imidacloprid Thiamethoxam Dinotefuran Clothianidin Nitenpyram | 0–110.26 µM | 2.97 µM 2.68 µM 7.67 µM 4.12 µM 4.36 µM | [159] |
NiO/SPCE | Parathion | 0.1–5 µM and 5–30 µM | 24 nM | [160] |
AuNPs/SPCE | Thiram DEDMTDS Disulfiram | 0.29–62.39 µM 0.15–26.62 µM 1.69–50.58 µM | 90 nM 50 nM 550 nM | [161] |
MIP/AuNPs/ERGO/ SPCE | Cyhexatin | 2.60–1298.18 nM | 0.52 nM | [162] |
CoPc/SWCNT/SPGE | Thiocholine | 0.07–0.45 mM | 38 µM | [163] |
ZnONPs/MWCNTs/ SPCE ZnONPs/Au-SPCE | Glyphosate AMPA | 1–10 µM 10–100 µM | 300 nM 3 µM | [164] |
AG/AuNPs/SPCE | Hydrazine | 0.002–936 µM | 0.57 nM | [165] |
CHIT/ZnO/SPCE | 4-nitrophenol | 0.5–400.6 µM | 230 nM | [166] |
Graphene/Nf/SPCE MWCNT/Nf/SPCE | 4-nitrophenol | 10–620 µM 25–620 µM | 600 nM 1.3 µM | [167] |
MWCNT-SPE | Sulfentrazone | 1–30 µM | 150 nM | [168] |
AuNP/CeO2/SPGE | Hydrazine | 0.01–10 mM | – | [169] |
CuONPs/SPCE | DCMU | 0.5–2.5 µM | 47 nM | [170] |
NG-PVP/ AuNPs/SPCE | Hydrazine | 2–300 µM | 70 nM | [171] |
Nafion/CNT/SPCE | Paraquat | 0.54–4.30 µM | 170 nM | [172] |
AuNPs/GO/SPCE | Carbofuran | 1–30 µM 30–250 µM | 220 nM | [173] |
Ag@GNRs/SPCE | Methyl parathion | 0.005–2780 µM | 0.5 nM | [174] |
CoHCF/SPGE | Thiocholine | 5 × 10−7–1 × 10−5 M | 500 nM | [175] |
CB/CoPc/SPCE | Thiocholine | Up to 6 mM | 4 µM | [112] |
Electrode | Analyte | Lineal range | LoD | Ref |
---|---|---|---|---|
Ab/fG-SPCE | Parathion | 0.3–3.43 × 103 pM | 0.18 pM | [176] |
Ab/NH2-GQD/SPCE | Parathion | 0.03–3.43 × 106 pM | 0.16 pM | [177] |
PO-SPCE | Chlorsulfuron | 0.03–3.88 nM | 30 pM | [178] |
BSA-IMD/SPCE | Imidacloprid | 50–10000 pM | 24 pM | [179] |
Ab/AuNP/SPCE | Imidacloprid | 50–10000 pM | 22 pM | [180] |
BSA-Ag/Pt/SiO2/SPCE | Chlorpyrifos methyl | 1.24–62 nM | 70 pM | [181] |
Ab/PANI/PVS/SPCE | Atrazine | 0.02–0.22 µM | 4.6 nM | [182] |
Ab/ATPh/GA/AuSPE | 2,4-D | 45 nM–0.45 mM | – | [183] |
Electrode | Analyte | Lineal range | LoD | Ref |
---|---|---|---|---|
Apt/PANI/AuNPs/SPGE | Acetamiprid | 0.25–2 µM | 86 nM | [193] |
BSA/Apt/rGO-CuNPs/SPCE | Profenofos Phorate Isocarbophos Omethoate | 0.01–100 nM 1–1000 nM 0.1–1000 nM 1–500 nM | 3 pM 300 pM 30 pM 300 pM | [194] |
Apt/MCH/AuNP/AuSPE | Diazinon | 0.1–1000 nM | 17 pM | [195] |
Bacteria | Analyte | Lineal range | LoD | Ref |
---|---|---|---|---|
Spinacia oleracea Snecio vulgaris | DIU ATR SIM TER DET | 1 × 10−8–1 × 10−6 M 1 × 10−8–1 × 10−6 M 1 × 10−8–1 × 10−6 M 1 × 10−9–1 × 10−6 M 1 × 10−8–1 × 10−6 M | 15 nM 13 nM 41 nM 25 nM 24 nM | [199] |
Rhodobacter sphaeroides | Terbutryn | 0.001–10 µM | 8 nM | [200] |
Escherichia coli | Methyl parathion | 2–80 µM | 0.5 µM | [201] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Fernández, B.; Costa-García, A.; Muñiz, A.d.l.E.-. Electrochemical (Bio)Sensors for Pesticides Detection Using Screen-Printed Electrodes. Biosensors 2020, 10, 32. https://doi.org/10.3390/bios10040032
Pérez-Fernández B, Costa-García A, Muñiz AdlE-. Electrochemical (Bio)Sensors for Pesticides Detection Using Screen-Printed Electrodes. Biosensors. 2020; 10(4):32. https://doi.org/10.3390/bios10040032
Chicago/Turabian StylePérez-Fernández, Beatriz, Agustín Costa-García, and Alfredo de la Escosura- Muñiz. 2020. "Electrochemical (Bio)Sensors for Pesticides Detection Using Screen-Printed Electrodes" Biosensors 10, no. 4: 32. https://doi.org/10.3390/bios10040032
APA StylePérez-Fernández, B., Costa-García, A., & Muñiz, A. d. l. E. -. (2020). Electrochemical (Bio)Sensors for Pesticides Detection Using Screen-Printed Electrodes. Biosensors, 10(4), 32. https://doi.org/10.3390/bios10040032