Biosensors for Detecting Lymphocytes and Immunoglobulins
Abstract
:1. Introduction
2. B Cells and Immunoglobulins
2.1. Electrochemical Biosensors
2.1.1. Impedimetric Biosensors
2.1.2. Field Effect Transistors
2.2. Optical Biosensors
2.3. Piezoelectric Biosensors
3. T Cells
3.1. Electrochemical Biosensors
3.2. Optical Biosensor
4. NK Cells
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Omman, R.A.; Kini, A.R. Leukocyte development, kinetics, and functions. In Rodak’s Hematology: Clinical Principles and Applications; Keohane, E.M., Otto, C.N., Walenga, J.M., Eds.; Saunders (Elsevier): Philadelphia, PA, USA, 2019; pp. 117–135. [Google Scholar]
- Cohn, L.; Hawrylowicz, C.; Ray, A. Biology of Lymphocytes. In Middleton’s Allergy, 8th ed.; Adkinson, N.F., Bochner, B.S., Burks, A.W., Busse, W.W., Holgate, S.T., Lemanske, R.F., O’Hehir, R.E., Eds.; Elsevier: London, UK, 2014; pp. 203–214. [Google Scholar]
- Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Lymphocytes and the Cellular Basis of Adaptive Immunity. In Molecular Biology of the Cell, 4th ed.; Garland Science: New York, NY, USA, 2002; pp. 125–152. [Google Scholar]
- Mollarasouli, F.; Kurbanoglu, S.; Ozkan, S.A. The Role of Electrochemical Immunosensors in Clinical Analysis. Biosensors 2019, 9, 86. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.A.; Ahmed, M.U. Introduction to Immunosensors. In Detection Science; Ahmed, M.U., Zourob, M., Tamiya, E., Eds.; Royal Society of Chemistry: Cambridge, UK, 2019; pp. 1–20. ISBN 978-1-78801-437-3. [Google Scholar]
- Schroeder, H.W.; Cavacini, L. Structure and function of immunoglobulins. J. Allergy Clin. Immunol. 2010, 125, S41–S52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Antibody Binding Sites Are Especially Versatile. In Molecular Biology of the Cell, 4th ed.; Garland Science: New York, NY, USA, 2002; pp. 125–152. [Google Scholar]
- Corthay, A. How do Regulatory T Cells Work? Scand. J. Immunol. 2009, 70, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Ma, X.; Gong, R.; Zhu, J.; Wei, L.; Yao, J. Recent advances in CD8+ regulatory T cell research. Oncol. Lett. 2018, 15, 8187–8194. [Google Scholar] [CrossRef] [PubMed]
- Davy-Mendez, T.; Napravnik, S.; Zakharova, O.; Kuruc, J.; Gay, C.; Hicks, C.B.; Mcgee, K.S.; Eron, J.J. Acute hiv infection and CD4/CD8 ratio normalization after antiretroviral therapy initiation. J. Acquir. Immune Defic. Syndr. 1999 2018, 79, 510–518. [Google Scholar] [CrossRef]
- Abel, A.M.; Yang, C.; Thakar, M.S.; Malarkannan, S. Natural Killer Cells: Development, Maturation, and Clinical Utilization. Front. Immunol. 2018, 9, 1869. [Google Scholar] [CrossRef] [Green Version]
- Naeim, F.; Nagesh Rao, P.; Song, S.X.; Grody, W.W. Lymphocytopenia and Lymphocytosis. In Atlas of Hematopathology; Academic Press: Cambridge, MA, USA, 2013; pp. 627–633. [Google Scholar]
- Zidar, D.A.; Al-Kindi, S.G.; Liu, Y.; Krieger, N.I.; Perzynski, A.T.; Osnard, M.; Nmai, C.; Anthony, D.D.; Lederman, M.M.; Freeman, M.L.; et al. Association of Lymphopenia With Risk of Mortality Among Adults in the US General Population. JAMA Netw. Open 2019, 2, e1916526. [Google Scholar] [CrossRef] [Green Version]
- Mims, M.P. Lymphocytosis, Lymphocytopenia, Hypergammaglobulinemia, and Hypogammaglobulinemia. In Hematology; Elsevier: Amsterdam, The Netherlands, 2018; pp. 682–690. [Google Scholar]
- Jahan-Tigh, R.R.; Ryan, C.; Obermoser, G.; Schwarzenberger, K. Flow cytometry. J. Investig. Dermatol. 2012, 132, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Cheung, K.C.; Di Berardino, M.; Schade-Kampmann, G.; Hebeisen, M.; Pierzchalski, A.; Bocsi, J.; Mittag, A.; Tárnok, A. Microfluidic impedance-based flow cytometry. Cytometry A 2010, 77, 648–666. [Google Scholar] [CrossRef]
- Chen, J.; Xue, C.; Zhao, Y.; Chen, D.; Wu, M.-H.; Wang, J. Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization. Int. J. Mol. Sci. 2015, 16, 9804–9830. [Google Scholar] [CrossRef] [Green Version]
- Vitelli-Avelar, D.M.; Sathler-Avelar, R.; Wendling, A.P.B.; Rocha, R.D.R.; Teixeira-Carvalho, A.; Martins, N.É.; Dias, J.C.P.; Rassi, A.; Luquetti, A.O.; Elói-Santos, S.M.; et al. Non-conventional flow cytometry approaches to detect anti-Trypanosoma cruzi immunoglobulin G in the clinical laboratory. J. Immunol. Methods 2007, 318, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Bardales, R.H.; Al-Katib, A.M.; Carrato, A.; Koziner, B. Detection of intracytoplasmic immunoglobulin by flow cytometry in B-cell malignancies. J. Histochem. Cytochem. 1989, 37, 83–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemos, E.M.; Gomes, I.T.; Carvalho, S.F.G.; Rocha, R.D.R.; Pissinate, J.F.; Martins-Filho, O.A.; Dietze, R. Detection of Anti-Leishmania (Leishmania) chagasi Immunoglobulin G by Flow Cytometry for Cure Assessment following Chemotherapeutic Treatment of American Visceral Leishmaniasis. Clin. Vaccine Immunol. 2007, 14, 569–576. [Google Scholar] [CrossRef] [Green Version]
- Millán, O.; Brunet, M. Flow Cytometry as Platform for Biomarker Discovery and Clinical Validation. In General Methods in Biomarker Research and Their Applications; Preedy, V.R., Patel, V.B., Eds.; Biomarkers in Disease: Methods, Discoveries and Applications; Springer Netherlands: Dordrecht, The Netherlands, 2015; pp. 141–164. [Google Scholar]
- Wismans, P.J.; van Hattum, J.; De Gast, G.C.; Endeman, H.J.; Poel, J.; Stolk, B.; Maikoe, T.; Mudde, G.C. The spot-ELISA: A sensitive in vitro method to study the immune response to hepatitis B surface antigen. Clin. Exp. Immunol. 1989, 78, 75–79. [Google Scholar] [PubMed]
- King, C.L.; Thyphronitis, G.; Nutman, T.B. Enumeration of IgE secreting B cells. J. Immunol. Methods 1990, 132, 37–43. [Google Scholar] [CrossRef]
- Schie, I.W.; Rüger, J.; Mondol, A.S.; Ramoji, A.; Neugebauer, U.; Krafft, C.; Popp, J. High-Throughput Screening Raman Spectroscopy Platform for Label-Free Cellomics. Anal. Chem. 2018, 90, 2023–2030. [Google Scholar] [CrossRef]
- Cheng, X.; Liu, Y.; Irimia, D.; Demirci, U.; Yang, L.; Zamir, L.; Rodríguez, W.R.; Toner, M.; Bashir, R. Cell detection and counting through cell lysate impedance spectroscopy in microfluidic devices. Lab. Chip 2007, 7, 746–755. [Google Scholar] [CrossRef] [Green Version]
- Wong, J.C.Y.; Li, P.H. Carbamazepine-induced B-cell aplasia: Overlooked and overtreated. Ann. Allergy Asthma Immunol. 2020, 124, 89–91. [Google Scholar] [CrossRef]
- Nye, L.; Merrett, T.G.; Landon, J.; White, R.J. A detailed investigation of circulating IgE levels in a normal population. Clin. Exp. Allergy 1975, 5, 13–24. [Google Scholar] [CrossRef]
- Qiu, C.; Zhong, L.; Huang, C.; Long, J.; Ye, X.; Wu, J.; Dai, W.; Lv, W.; Xie, C.; Zhang, J. Cell-bound IgE and plasma IgE as a combined clinical diagnostic indicator for allergic patients. Sci. Rep. 2020, 10, 4700. [Google Scholar] [CrossRef]
- Vladutiu, A.O. Immunoglobulin D: Properties, Measurement, and Clinical Relevance. Clin. Diagn. Lab. Immunol. 2000, 7, 131–140. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, O.; Oweity, T.; Ibrahim, S. Is an increase in CD4/CD8 T-cell ratio in lymph node fine needle aspiration helpful for diagnosing Hodgkin lymphoma? A study of 85 lymph node FNAs with increased CD4/CD8 ratio. CytoJournal 2005, 2, 14. [Google Scholar] [CrossRef]
- Ronkainen, N.J.; Halsall, H.B.; Heineman, W.R. Electrochemical biosensors. Chem. Soc. Rev. 2010, 39, 1747–1763. [Google Scholar] [CrossRef] [PubMed]
- Ribone, M.E.; Belluzo, M.S.; Pagani, D.; Macipar, I.S.; Lagier, C.M. Amperometric bioelectrode for specific human immunoglobulin G determination: Optimization of the method to diagnose American trypanosomiasis. Anal. Biochem. 2006, 350, 61–70. [Google Scholar] [CrossRef]
- Kreuzer, M.P.; O’Sullivan, C.K.; Pravda, M.; Guilbault, G.G. Development of an immunosensor for the determination of allergy antibody (IgE) in blood samples. Anal. Chim. Acta 2001, 442, 45–53. [Google Scholar] [CrossRef]
- Wang, S.-B.; Tang, D.-Y. Electrochemical immune-biosensor for immunoglobulin G based bioelectrocatalytic reaction on micro-comb electrodes. Bioprocess Biosyst. Eng. 2008, 31, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Scholz, F. Voltammetric techniques of analysis: The essentials. ChemTexts 2015, 1, 17. [Google Scholar] [CrossRef] [Green Version]
- Papamichael, K.; Kreuzer, M.; Guilbault, G. Viability of allergy (IgE) detection using an alternative aptamer receptor and electrochemical means. Sens. Actuators B Chem. 2007, 121, 178–186. [Google Scholar] [CrossRef]
- Dunn, M.R.; Jimenez, R.M.; Chaput, J.C. Analysis of aptamer discovery and technology. Nat. Rev. Chem. 2017, 1, 1–16. [Google Scholar] [CrossRef]
- Zhu, Q.; Liu, G.; Kai, M. DNA Aptamers in the Diagnosis and Treatment of Human Diseases. Molecules 2015, 20, 20979–20997. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, M.; Jiao, M.; Luo, X. Antifouling and ultrasensitive biosensing interface based on self-assembled peptide and aptamer on macroporous gold for electrochemical detection of immunoglobulin E in serum. Anal. Bioanal. Chem. 2018, 410, 5871–5878. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, C.; Wu, Z.; Lu, L.; Qiu, L.; Zhou, H.; Shen, G.; Yu, R. An electronic channel switching-based aptasensor for ultrasensitive protein detection. Anal. Chim. Acta 2013, 758, 130–137. [Google Scholar] [CrossRef]
- Salimi, A.; Khezrian, S.; Hallaj, R.; Vaziry, A. Highly sensitive electrochemical aptasensor for immunoglobulin E detection based on sandwich assay using enzyme-linked aptamer. Anal. Biochem. 2014, 466, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Khezrian, S.; Salimi, A.; Teymourian, H.; Hallaj, R. Label-free electrochemical IgE aptasensor based on covalent attachment of aptamer onto multiwalled carbon nanotubes/ionic liquid/chitosan nanocomposite modified electrode. Biosens. Bioelectron. 2013, 43, 218–225. [Google Scholar] [CrossRef]
- Chen, Z.-P.; Peng, Z.-F.; Luo, Y.; Qu, B.; Jiang, J.-H.; Zhang, X.-B.; Shen, G.-L.; Yu, R.-Q. Successively amplified electrochemical immunoassay based on biocatalytic deposition of silver nanoparticles and silver enhancement. Biosens. Bioelectron. 2007, 23, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Munir, A.; Li, Z.; Zhou, H.S. Aptamer-Au NPs conjugates-accumulated methylene blue for the sensitive electrochemical immunoassay of protein. Talanta 2010, 81, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-Y.; Wu, K.-Y.; Su, H.-L.; Hung, H.-Y.; Hsieh, Y.-Z. Sensitive label-free electrochemical analysis of human IgE using an aptasensor with cDNA amplification. Biosens. Bioelectron. 2013, 39, 133–138. [Google Scholar] [CrossRef]
- Osteryoung, J.G.; Osteryoung, R.A. Square wave voltammetry. Anal. Chem. 1985, 57, 101–110. [Google Scholar] [CrossRef]
- Liu, L.; Li, Y.; Tian, L.; Guo, T.; Cao, W.; Wei, Q. A label-free voltammetric immunoassay based on 3D-structured rGO–MWCNT–Pd for detection of human immunoglobulin G. Sens. Actuators B Chem. 2015, 211, 170–176. [Google Scholar] [CrossRef]
- Song, W.; Li, H.; Liu, H.; Wu, Z.; Qiang, W.; Xu, D. Fabrication of streptavidin functionalized silver nanoparticle decorated graphene and its application in disposable electrochemical sensor for immunoglobulin E. Electrochem. Commun. 2013, 31, 16–19. [Google Scholar] [CrossRef]
- Copeland, T.R.; Skogerboe, R.K. Anodic stripping voltammetry. Anal. Chem. 1974, 46, 1257A–1268A. [Google Scholar] [CrossRef]
- Zhang, H.; Ning, D.; Zheng, J. An ultrasensitive electrochemical immunosensor for the detection of human immunoglobulin G based on Ag@BSA microspheres. RSC Adv. 2015, 5, 106607–106612. [Google Scholar] [CrossRef]
- Jiang, B.; Li, F.; Yang, C.; Xie, J.; Xiang, Y.; Yuan, R. Aptamer Pseudoknot-Functionalized Electronic Sensor for Reagentless and Single-Step Detection of Immunoglobulin E in Human Serum. Anal. Chem. 2015, 87, 3094–3098. [Google Scholar] [CrossRef] [PubMed]
- Elgrishi, N.; Rountree, K.J.; McCarthy, B.D.; Rountree, E.S.; Eisenhart, T.T.; Dempsey, J.L. A Practical Beginner’s Guide to Cyclic Voltammetry. J. Chem. Educ. 2018, 95, 197–206. [Google Scholar] [CrossRef]
- Oh, S.J.; Ahn, J.K.; Park, H.; Song, Y.; Kwon, S.J.; Shin, H.-B. An electrochemical immunosensing system on patterned electrodes for immunoglobulin E detection. Anal. Methods 2019, 11, 4410–4415. [Google Scholar] [CrossRef]
- Hianik, T.; Šnejdárková, M.; Sokolíková, L.; Meszár, E.; Krivánek, R.; Tvarožek, V.; Novotný, I.; Wang, J. Immunosensors based on supported lipid membranes, protein films and liposomes modified by antibodies. Sens. Actuators B Chem. 1999, 57, 201–212. [Google Scholar] [CrossRef]
- Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical Biosensors - Sensor Principles and Architectures. Sensors 2008, 8, 1400–1458. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Luo, X.; Cui, X.T.; Yun, M. Highly sensitive single polyaniline nanowire biosensor for the detection of immunoglobulin G and myoglobin. Biosens. Bioelectron. 2011, 26, 3297–3302. [Google Scholar] [CrossRef] [Green Version]
- Park, E.-S.; Jang, D.-H.; Lee, Y.-I.; Jung, C.W.; woo Lim, D.; Kim, B.S.; Jeong, Y.; Myung, N.V.; Choa, Y.-H. Fabrication and sensing property for conducting polymer nanowire-based biosensor for detection of immunoglobulin G. Res. Chem. Intermed. 2014, 40, 2565–2570. [Google Scholar] [CrossRef]
- Labib, M.; Hedström, M.; Amin, M.; Mattiasson, B. A multipurpose capacitive biosensor for assay and quality control of human immunoglobulin G. Biotechnol. Bioeng. 2009, 104, 312–320. [Google Scholar] [CrossRef]
- Randviir, E.P.; Banks, C.E. Electrochemical impedance spectroscopy: An overview of bioanalytical applications. Anal. Methods 2013, 5, 1098. [Google Scholar] [CrossRef]
- Qi, H.; Wang, C.; Cheng, N. Label-free electrochemical impedance spectroscopy biosensor for the determination of human immunoglobulin G. Microchim. Acta 2010, 170, 33–38. [Google Scholar] [CrossRef]
- Jin, K.; Zhao, P.; Fang, W.; Zhai, Y.; Hu, S.; Ma, H.; Li, J. An Impedance Sensor in Detection of Immunoglobulin G with Interdigitated Electrodes on Flexible Substrate. Appl. Sci. 2020, 10, 4012. [Google Scholar] [CrossRef]
- Ohno, R.; Ohnuki, H.; Wang, H.; Yokoyama, T.; Endo, H.; Tsuya, D.; Izumi, M. Electrochemical impedance spectroscopy biosensor with interdigitated electrode for detection of human immunoglobulin A. Biosens. Bioelectron. 2013, 40, 422–426. [Google Scholar] [CrossRef]
- Cid, C.C.; Riu, J.; Maroto, A.; Rius, F.X. Carbon nanotube field effect transistors for the fast and selective detection of human immunoglobulin G. Analyst 2008, 133, 1005. [Google Scholar] [CrossRef]
- Maehashi, K.; Matsumoto, K.; Takamura, Y.; Tamiya, E. Aptamer-Based Label-Free Immunosensors Using Carbon Nanotube Field-Effect Transistors. Electroanalysis 2009, 21, 1285–1290. [Google Scholar] [CrossRef]
- Lan, Y.; Farid, S.; Meshik, X.; Xu, K.; Choi, M.; Ranginwala, S.; Wang, Y.Y.; Burke, P.; Dutta, M.; Stroscio, M.A. Detection of Immunoglobulin E with a Graphene-Based Field-Effect Transistor Aptasensor. J. Sens. 2018, 2018, 1–8. [Google Scholar] [CrossRef]
- Hayashi, H.; Sakamoto, N.; Hideshima, S.; Harada, Y.; Tsuna, M.; Kuroiwa, S.; Ohashi, K.; Momma, T.; Osaka, T. Tetrameric jacalin as a receptor for field effect transistor biosensor to detect secretory IgA in human sweat. J. Electroanal. Chem. 2020, 873, 114371. [Google Scholar] [CrossRef]
- Homola, J.; Yee, S.S.; Gauglitz, G. Surface plasmon resonance sensors: Review. Sens. Actuators B Chem. 1999, 54, 3–15. [Google Scholar] [CrossRef]
- Kim, Y.H.; Kim, J.P.; Han, S.J.; Sim, S.J. Aptamer biosensor for lable-free detection of human immunoglobulin E based on surface plasmon resonance. Sens. Actuators B Chem. 2009, 139, 471–475. [Google Scholar] [CrossRef]
- Sriwichai, S.; Baba, A.; Phanichphant, S.; Shinbo, K.; Kato, K.; Kaneko, F. Electrochemically controlled surface plasmon resonance immunosensor for the detection of human immunoglobulin G on poly(3-aminobenzoic acid) ultrathin films. Sens. Actuators B Chem. 2010, 147, 322–329. [Google Scholar] [CrossRef]
- Ertürk, G.; Uzun, L.; Tümer, M.A.; Say, R.; Denizli, A. Fab fragments imprinted SPR biosensor for real-time human immunoglobulin G detection. Biosens. Bioelectron. 2011, 28, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Milgram, S.; Cortes, S.; Villiers, M.-B.; Marche, P.; Buhot, A.; Livache, T.; Roupioz, Y. On chip real time monitoring of B-cells hybridoma secretion of immunoglobulin. Biosens. Bioelectron. 2011, 26, 2728–2732. [Google Scholar] [CrossRef] [Green Version]
- Bakhmachuk, A.; Gorbatiuk, O.; Rachkov, A.; Dons’koi, B.; Khristosenko, R.; Ushenin, I.; Peshkova, V.; Soldatkin, A. Surface Plasmon Resonance Investigations of Bioselective Element Based on the Recombinant Protein A for Immunoglobulin Detection. Nanoscale Res. Lett. 2017, 12, 112. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Jing, J.-Y.; Wang, B.-T. Highly Sensitive SPR Biosensor Based on Graphene Oxide and Staphylococcal Protein A Co-Modified TFBG for Human IgG Detection. IEEE Trans. Instrum. Meas. 2019, 68, 3350–3357. [Google Scholar] [CrossRef]
- Choi, E.; Choi, Y.; Nejad, Y.H.P.; Shin, K.; Park, J. Label-free specific detection of immunoglobulin G antibody using nanoporous hydrogel photonic crystals. Sens. Actuators B Chem. 2013, 180, 107–113. [Google Scholar] [CrossRef]
- Liu, Y.-M.; Yang, J.-J.; Cao, J.-T.; Zhang, J.-J.; Chen, Y.-H.; Ren, S.-W. An electrochemiluminescence aptasensor based on CdSe/ZnS functionalized MoS2 and enzymatic biocatalytic precipitation for sensitive detection of immunoglobulin E. Sens. Actuators B Chem. 2016, 232, 538–544. [Google Scholar] [CrossRef]
- Chen, N.; Guo, W.; Lin, Z.; Wei, Q.; Chen, G. Label-free sensitive luminescence biosensor for immunoglobulin G based on Ag6Au6 ethisterone cluster-estrogen receptor α aggregation and graphene. Talanta 2018, 185, 243–248. [Google Scholar] [CrossRef]
- Bosch, M.E.; Sánchez, A.J.R.; Rojas, F.S.; Ojeda, C.B. Recent Development in Optical Fiber Biosensors. Sensors 2007, 7, 797–859. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.-T.; Wang, Q. An interferometric optical fiber biosensor with high sensitivity for IgG/anti-IgG immunosensing. Opt. Commun. 2018, 426, 388–394. [Google Scholar] [CrossRef]
- Chen, M.; Lang, T.; Cao, B.; Yu, Y.; Shen, C. D-type optical fiber immunoglobulin G sensor based on surface plasmon resonance. Opt. Laser Technol. 2020, 131, 106445. [Google Scholar] [CrossRef]
- Pohanka, M. Overview of Piezoelectric Biosensors, Immunosensors and DNA Sensors and Their Applications. Materials 2018, 11, 448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sauerbrey, G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys. 1959, 155, 206–222. [Google Scholar] [CrossRef]
- Kanazawa, K.K.; Gordon, J.G. Frequency of a quartz microbalance in contact with liquid. Anal. Chem. 1985, 57, 1770–1771. [Google Scholar] [CrossRef]
- König, B.; Grätzel, M. An immunosensor for the detection of human B-lymphocytes. Bioorg. Med. Chem. Lett. 1994, 4, 2429–2434. [Google Scholar] [CrossRef]
- Chu, X.; Lin, Z.-H.; Shen, G.-L.; Yu, R.-Q. Piezoelectric immunosensor for the detection of immunoglobulin M. Analyst 1995, 120, 2829. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Chew, F.T.; Li, S.F.Y. Self-Assembled Monolayer-Based Piezoelectric Crystal Immunosensor for the Quantification of Total Human Immunoglobulin E. Anal. Biochem. 1999, 273, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Pohanka, M. Piezoelectric Immunosensor for the Determination of Immunoglobulin G. Int. J. Electrochem. Sci. 2018, 8784–8791. [Google Scholar] [CrossRef]
- Tajima, I.; Asami, O.; Sugiura, E. Monitor of antibodies in human saliva using a piezoelectric quartz crystal biosensor. Anal. Chim. Acta 1998, 365, 147–149. [Google Scholar] [CrossRef]
- Zhao, Y.; Fu, Y.; Wang, P.; Xing, L.; Xue, X. Highly stable piezo-immunoglobulin-biosensing of a SiO2/ZnO nanogenerator as a self-powered/active biosensor arising from the field effect influenced piezoelectric screening effect. Nanoscale 2015, 7, 1904–1911. [Google Scholar] [CrossRef]
- Yoon, S.H.; Park, J.-H.; Shen, D.; Kim, D.-J. Flexural plate wave devices for biosensor platform. In Micro (MEMS) and Nanotechnologies for Defense and Security; George, T., Cheng, Z., Eds.; International Society for Optics and Photonics: Orlando, FL, USA, 2007; p. 65561I. [Google Scholar]
- Huang, I.Y.; Lee, M.C.; Chang, Y.W. Development of a Novel Flexural Plate Wave Biosensor for Immunoglobulin-E Detection by Using SAM and MEMS Technologies. In Proceedings of the 2006 5th IEEE Conference on Sensors, Daegu, Korea, 22–25 October 2006; IEEE: Daegu, Korea, 2006; pp. 70–73. [Google Scholar]
- Huang, I.-Y.; Lee, M.-C. Development of a FPW allergy biosensor for human IgE detection by MEMS and cystamine-based SAM technologies. Sens. Actuators B Chem. 2008, 132, 340–348. [Google Scholar] [CrossRef]
- Huang, I.-Y.; Lee, M.-C.; Hsu, C.-H.; Wang, C.-C. Development of a flexural plate-wave (FPW) immunoglobulin-E (IgE) allergy bio-sensing microsystem. Sens. Actuators B Chem. 2012, 162, 184–193. [Google Scholar] [CrossRef]
- Carinelli, S.; Xufré Ballesteros, C.; Martí, M.; Alegret, S.; Pividori, M.I. Electrochemical magneto-actuated biosensor for CD4 count in AIDS diagnosis and monitoring. Biosens. Bioelectron. 2015, 74, 974–980. [Google Scholar] [CrossRef]
- Kim, J.; Park, G.; Lee, S.; Hwang, S.-W.; Min, N.; Lee, K.-M. Single wall carbon nanotube electrode system capable of quantitative detection of CD4+ T cells. Biosens. Bioelectron. 2017, 90, 238–244. [Google Scholar] [CrossRef]
- Mishra, N.N.; Retterer, S.; Zieziulewicz, T.J.; Isaacson, M.; Szarowski, D.; Mousseau, D.E.; Lawrence, D.A.; Turner, J.N. On-chip micro-biosensor for the detection of human CD4+ cells based on AC impedance and optical analysis. Biosens. Bioelectron. 2005, 21, 696–704. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wei, Q.; Zhu, T.; Huang, J.; Yu, M.; Sha, Y.; Xiong, C.; Fang, J. CD4+ T Cell Counting by Impedance Measurement on a Chip with Fluidic Electrodes. Int. J. Nonlinear Sci. Numer. Simul. 2012, 13. [Google Scholar] [CrossRef]
- Guan, N.; Deng, J.; Li, T.; Xu, X.; Irelan, J.T.; Wang, M.-W. Label-free monitoring of T cell activation by the impedance-based xCELLigence system. Mol. Biosyst. 2013, 9, 1035. [Google Scholar] [CrossRef]
- Wang, H.; Cai, H.-H.; Zhang, L.; Cai, J.; Yang, P.-H.; Chen, Z.W. A novel gold nanoparticle-doped polyaniline nanofibers-based cytosensor confers simple and efficient evaluation of T-cell activation. Biosens. Bioelectron. 2013, 50, 167–173. [Google Scholar] [CrossRef] [Green Version]
- Law, J.K.Y.; Susloparova, A.; Vu, X.T.; Zhou, X.; Hempel, F.; Qu, B.; Hoth, M.; Ingebrandt, S. Human T cells monitored by impedance spectrometry using field-effect transistor arrays: A novel tool for single-cell adhesion and migration studies. Biosens. Bioelectron. 2015, 67, 170–176. [Google Scholar] [CrossRef]
- Wang, H.Y.; Li, J.J.; Cao, X.N.; Xu, J.Y.; Liu, M.R.; Chen, Y. Detection of CD4+ T-lymphocytes from hemodialyzed patients by surface plasmon resonance. Chin. Chem. Lett. 2012, 23, 1393–1395. [Google Scholar] [CrossRef]
- Rice, J.M.; Stern, L.J.; Guignon, E.F.; Lawrence, D.A.; Lynes, M.A. Antigen-specific T cell phenotyping microarrays using grating coupled surface plasmon resonance imaging and surface plasmon coupled emission. Biosens. Bioelectron. 2012, 31, 264–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soler, M.; Li, X.; John-Herpin, A.; Schmidt, J.; Coukos, G.; Altug, H. Two-Dimensional Label-Free Affinity Analysis of Tumor-Specific CD8 T Cells with a Biomimetic Plasmonic Sensor. ACS Sens. 2018, 3, 2286–2295. [Google Scholar] [CrossRef]
- Thorslund, S.; Larsson, R.; Nikolajeff, F.; Bergquist, J.; Sanchez, J. Bioactivated PDMS microchannel evaluated as sensor for human CD4+ cells—The concept of a point-of-care method for HIV monitoring. Sens. Actuators B Chem. 2007, 123, 847–855. [Google Scholar] [CrossRef]
- Xiao, W.; Xiao, M.; Yao, S.; Cheng, H.; Shen, H.; Fu, Q.; Zhao, J.; Tang, Y. A Rapid, Simple, and Low-Cost CD4 Cell Count Sensor Based on Blocking Immunochromatographic Strip System. ACS Sens. 2019, 4, 1508–1514. [Google Scholar] [CrossRef]
- Jeon, Y.S.; Shin, H.M.; Kim, Y.J.; Nam, D.Y.; Park, B.C.; Yoo, E.; Kim, H.-R.; Kim, Y.K. Metallic Fe–Au Barcode Nanowires as a Simultaneous T Cell Capturing and Cytokine Sensing Platform for Immunoassay at the Single-Cell Level. ACS Appl. Mater. Interfaces 2019, 11, 23901–23908. [Google Scholar] [CrossRef]
- Gohring, J.T.; Fan, X. Label Free Detection of CD4+ and CD8+ T Cells Using the Optofluidic Ring Resonator. Sensors 2010, 10, 5798–5808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glamann, J.; Hansen, A.J. Dynamic Detection of Natural Killer Cell-Mediated Cytotoxicity and Cell Adhesion by Electrical Impedance Measurements. ASSAY Drug Dev. Technol. 2006, 4, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wang, X.; Xu, X.; Abassi, Y.A. Dynamic and label-free monitoring of natural killer cell cytotoxic activity using electronic cell sensor arrays. J. Immunol. Methods 2006, 309, 25–33. [Google Scholar] [CrossRef]
- Moodley, K.; Angel, C.E.; Glass, M.; Graham, E.S. Real-time profiling of NK cell killing of human astrocytes using xCELLigence technology. J. Neurosci. Methods 2011, 200, 173–180. [Google Scholar] [CrossRef]
- Park, K.-H.; Park, H.; Kim, M.; Kim, Y.; Han, K.; Oh, E.-J. Evaluation of NK Cell Function by Flowcytometric Measurement and Impedance Based Assay Using Real-Time Cell Electronic Sensing System. BioMed Res. Int. 2013, 2013, 210726. [Google Scholar] [CrossRef] [Green Version]
- Fasbender, F.; Watzl, C. Impedance-based analysis of Natural Killer cell stimulation. Sci. Rep. 2018, 8, 4938. [Google Scholar] [CrossRef] [PubMed]
Lymphocytes/Immunoglobulins | Normal Range | Reference |
---|---|---|
Total lymphocyte count | 1054–3139 cells/µL | [26] |
B cells | 87–536 cells/µL | [26] |
T Cells | 17–2272 cells/µL | [26] |
NK cells | 93–840/mL cells/µL | [26] |
IgG | 8.19–17.25 mg/mL | [26] |
IgA | 0.70–3.86 mg/mL | [26] |
IgM | 0.55–3.07 mg/mL | [26] |
IgE | 2.4–240 ng/mL | [27,28] |
IgD | 5–240 mg/L 1 | [29] |
CD4 | 376–1292 cells/µL | [26] |
CD8 | 216–1100 cells/µL | [26] |
CD4/CD8 ratio | 1–4 | [10,30] |
Target | Method of Detection | Receptor 1 | Linear Range | Limit of Detection | Medium | Reference |
---|---|---|---|---|---|---|
IgG | Amperometry | Antibody | N.A. | N.A. | Serum | [32] |
IgE | Amperometry | Antibody | 100–1500 ng/mL | 0.09 ng/mL | Plasma | [33] |
IgG | Amperometry | Antibody | 1.12–162 ng/mL | 0.56 ng/mL | Serum | [34] |
IgE | DPV | Aptamer | N.A. | 23 ± 4 ng/mL | Buffer | [36] |
IgE | DPV | Aptamer | 0.1–10 pg/mL | 42 fg/mL | Serum | [39] |
IgE | DPV | Aptamer | ~4 × 10−6–4 × 10−1 μg/mL | ~4 × 10−6 μg/mL | Serum | [40] |
IgE | DPV | Aptamer | 50 pM–2 nM | 6 pM | Serum | [41] |
IgE | DPV | Aptamer | 0.5–30 nM | 37 pM | Serum | [42] |
IgE | DPV | Aptamer | 1–10,000 ng/mL | 0.52 ng/mL | Buffer | [44] |
IgE | SWV | Aptamer | 1–100,000 pM | 0.16 pM | Buffer | [45] |
IgG | SWV | Antibody | 0.01–25 ng/mL | 3.3 pg/mL | Serum | [47] |
IgE | SWASV | Aptamer | 10–1000 ng/mL | 3.6 ng/mL | Buffer | [48] |
IgG | ASV | Antibody | 0.001–10 pg/mL | 0.5 fg/mL | Serum | [50] |
IgE | SWV | Aptamer | 0.1–100 nM | 60 pM | Serum | [51] |
IgE | Conductivity | Antibody | 1–180 nM | 1 nM | Buffer | [54] |
IgG | Conductivity | Antibody | 3 ng/mL–3 µg/mL | 3 ng/mL | Buffer | [56] |
IgG | Conductivity | Antibody | N.A. | N.A. | Buffer | [57] |
IgG | Capacitive biosensor | Con A | 5.0–100 mg/mL | 1 µg/mL | Buffer | [58] |
IgG | EIS | protein A | 10 ng/mL–1 μg/mL | 5 ng/mL | Buffer | [60] |
IgG | EIS | Antibody | 0.01–10 ng/mL | 0.01 ng/mL | Buffer | [61] |
IgA | EIS | Antibody | 0.01–100 ng/mL. | 0.01 ng/mL | Buffer | [62] |
IgG | FET | Antibody | N.A. | 1.25 mg/L | Buffer | [63] |
IgE | FET | Aptamer | 250 pM–160 nM | N.A. | Buffer | [64] |
IgE | FET | Aptamer | N.A. | N.A. | Buffer | [65] |
IgA | FET | Jacalin | 1–100 μg/mL | 1 μg/mL | Sweat | [66] |
Target | Method of Detection | Receptor 1 | Linear Range | Limit of Detection | Medium | Reference |
---|---|---|---|---|---|---|
IgE | SPR | Aptamer | 1–1000 ng/mL | 2 ng/mL | Buffer | [68] |
IgG | SPR | Antibody | 1–10 µg/mL | 1 µg/mL | Buffer | [69] |
IgG | SPR | Fab fragment | 0.02–1 mg/mL | N.A. | Plasma | [70] |
IgG | SPR | Hen egg lysozyme | N.A. | N.A. | Buffer | [71] |
IgG | SPR | Protein A | 2–10 μg/mL | N.A. | Buffer | [72] |
IgG | SPR | Protein A | 30–100 μg/mL | 0.5 μg/mL | Buffer | [73] |
IgG | Photonic crystal | Protein A | 0.5–10 mg/mL | N.A. | Buffer | [74] |
IgE | ECL | Aptamer | 0.5 pM–0.5 nM | 0.18 pM | Serum | [75] |
IgG | PL | Ag6Au6Eth-ERα | 0.0078–10 ng/mL | 0.65 pg/mL | Buffer | [76] |
IgG | Interferometry | Protein A and anti-IgG | 0.5–5 μg/mL | 47 ng/mL | Buffer | [78] |
IgG | SPR (optical fiber) | Antibody | 0.02–0.08 mg/mL | 0.2 μg/ml | Buffer | [79] |
Target | Method of Detection | Receptor | Linear Range | Limit of Detection | Medium | Reference |
---|---|---|---|---|---|---|
B cells | Piezoelectricity, QCM | Antibody | 5 × 103–5.6 × 105 cells | N.A. | Whole blood | [83] |
IgM | Piezoelectricity, QCM | Antibody | 5–93 µg/mL | N.A. | Serum | [84] |
IgE | Piezoelectricity, QCM | Antibody | 5–300 IU/mL | N.A. | Serum | [85] |
IgG | Piezoelectricity, QCM | Antibody | 0.0390–20 mg/mL | 9.7 μg/mL | Plasma | [86] |
IgA | Piezoelectricity, QCM | Antibody | 1–3 µg/mL | N.A. | Saliva | [87] |
IgG | Piezoelectricity, nanowires | Antibody | 10−8–10−3 g/mL | 5.7 ng/mL | Buffer | [88] |
IgE | FPW | Antibody | ~0.09–2.8 µg/mL | N.A. | Buffer | [90] |
IgE | FPW | Antibody | N.A. | N.A. | Buffer | [91] |
IgE | FPW | Antibody | N.A. | N.A. | Serum | [92] |
Target | Method of Detection | Receptor | Linear Range | Limit of Detection | Medium | Reference |
---|---|---|---|---|---|---|
CD4+ | Amperometry | Antibody | 89–912 cells/μL (logistic) | 44 cells/μL | Blood | [93] |
CD4+ | SWV | Antibody | 102–106 cells/mL | 102 cells/mL | Buffer | [94] |
CD4+ | Impedance | Antibody | N.A. | N.A. | Blood | [95] |
CD4+ | Impedance | – 1 | 10–3000 cells/μL | 10 cells/μL | DI water | [96] |
T cells | EIS | Antibody | N.A. | 104 cells/mL | Buffer | [98] |
CD8+ | SPR | p/MHC | 102–105 cells/mL | N.A. | Buffer | [102] |
T cells | SPR | Antibody | 102–105 cells/mL | 500 cells/mL | Buffer | [102] |
CD4+ | Fluorescence | Antibody | 100–800 cells/μL | 44 cells/μL | Blood | [104] |
CD4+ | OFRR | Antibody | 160–300 cells/µL | N.A. | Buffer | [106] |
CD8+ | OFRR | Antibody | 250–1000 cells/µL | N.A. | Buffer | [106] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salvo, P.; Vivaldi, F.M.; Bonini, A.; Biagini, D.; Bellagambi, F.G.; Miliani, F.M.; Di Francesco, F.; Lomonaco, T. Biosensors for Detecting Lymphocytes and Immunoglobulins. Biosensors 2020, 10, 155. https://doi.org/10.3390/bios10110155
Salvo P, Vivaldi FM, Bonini A, Biagini D, Bellagambi FG, Miliani FM, Di Francesco F, Lomonaco T. Biosensors for Detecting Lymphocytes and Immunoglobulins. Biosensors. 2020; 10(11):155. https://doi.org/10.3390/bios10110155
Chicago/Turabian StyleSalvo, Pietro, Federico M. Vivaldi, Andrea Bonini, Denise Biagini, Francesca G. Bellagambi, Filippo M. Miliani, Fabio Di Francesco, and Tommaso Lomonaco. 2020. "Biosensors for Detecting Lymphocytes and Immunoglobulins" Biosensors 10, no. 11: 155. https://doi.org/10.3390/bios10110155
APA StyleSalvo, P., Vivaldi, F. M., Bonini, A., Biagini, D., Bellagambi, F. G., Miliani, F. M., Di Francesco, F., & Lomonaco, T. (2020). Biosensors for Detecting Lymphocytes and Immunoglobulins. Biosensors, 10(11), 155. https://doi.org/10.3390/bios10110155