Investigation of the Impact of Cross-Polymerization on the Structural and Frictional Properties of Alkylsilane Monolayers Using Molecular Simulation
Abstract
:1. Introduction
2. Simulation Methods
2.1. Initialization of Cross-Polymerized Monolayers
2.1.1. Chemisorbed Monolayers
2.1.2. Partially Chemisorbed Monolayers
2.2. Molecular Dynamics Simulations
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ventra, M.; Evoy, S.; Heflin, J.R. Introduction to Nanoscale Science and Technology, 1st ed.; Springer: New York, NY, USA, 2004. [Google Scholar]
- Berman, D.; Krim, J. Surface science, MEMS and NEMS: Progress and opportunities for surface science research performed on, or by, microdevices. Prog. Surf. Sci. 2013, 88, 171–211. [Google Scholar] [CrossRef]
- Willemsen, O.H.; Snel, M.M.E.; Cambi, A.; Greve, J.; Grooth, B.G.D.; Figdor, C.G. Biomolecular interactions measured by atomic force microscopy. Biophys. J. 2000, 79, 3267–3281. [Google Scholar]
- Bush, B.G.; Rio, F.W.D.; Jaye, C.; Fischer, D.A.; Cook, R.F. Interfacial mechanical properties of n-alkylsilane monolayers on silicon substrates. J. Microelectromech. Syst. 2013, 22, 34–43. [Google Scholar] [CrossRef]
- Maboudian, R. Surface processes in MEMS technology. Surf. Sci. Rep. 1998, 30, 207–269. [Google Scholar] [CrossRef]
- Bhushan, B. Nanotribology and nanomechanics of MEMS/NEMS and BioMEMS/BioNEMS materials and devices. Microelectron. Eng. 2007, 84, 387–412. [Google Scholar] [CrossRef]
- Allen, C.; Drauglis, E. Boundary layer lubrication: Monolayer or multilayer. Wear 1969, 14, 363–384. [Google Scholar] [CrossRef]
- Deng, K.; Collins, R.J.; Mehregany, M.; Sukenik, C.N. Performance Impact of Monolayer Coating of Polysilicon Micromotors. J. Electrochem. Soc. 1995, 142, 1278–1285. [Google Scholar] [CrossRef]
- Srinivasan, U.; Houston, M.R.; Howe, R.T.; Maboudian, R. Alkyltrichlorosilane-based self-assembled monolayer films for stiction reduction in silicon micromachines. J. Microelectromech. Syst. 1998, 7, 252–260. [Google Scholar] [CrossRef]
- Maboudian, R.; Ashurst, W.R.; Carraro, C. Self-assembled monolayers as anti-stiction coatings for MEMS: Characteristics and recent developments. Sens. Actuators 2000, 82, 219–223. [Google Scholar]
- Maboudian, R.; Ashurst, W.R.; Carraro, C. Tribological challenges in micromechanical systems. Tribol. Lett. 2002, 12, 95–100. [Google Scholar] [CrossRef]
- Bhushan, B.; Liu, H. Micro/nanoscale tribological and mechanical characterization for MEMS/NEMS. Proc. SPIE 2004, 5392, 1–13. [Google Scholar]
- Park, B.; Lorenz, C.D.; Chandross, M.; Stevens, M.J.; Grest, G.S. Frictional dynamics of fluorine-terminated alkanethiol self-assembled monolayers. Langmuir 2004, 20, 10007–10014. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.B.; Vilt, S.G.; Rivera, J.L.; Jennings, G.K.; McCabe, C. Frictional properties of mixed fluorocarbon/hydrocarbon silane monolayers: A simulation study. Langmuir 2012, 28, 14218–14226. [Google Scholar] [CrossRef]
- Kasai, T.; Bhushan, B.; Kulik, G.; Barbieri, L.; Hoffmann, P. Micro/nanotribological study of perfluorosilane SAMs for antistiction and low wear. J. Vac. Sci. Technol. B 2005, 23, 995–1003. [Google Scholar] [CrossRef]
- Rivera, J.L.; Jennings, G.K.; McCabe, C. Examining the frictional forces between mixed hydrophobic-hydrophilic alkylsilane monolayers. J. Chem. Phys. 2012, 136, 244701. [Google Scholar] [CrossRef] [PubMed]
- Booth, B.D.; Vilt, S.G.; McCabe, C.; Jennings, G.K. Tribology of monolayer films: Comparison between n-alkanethiols on gold and n-alkyl trichlorosilanes on silicon. Langmuir 2009, 25, 9995–10001. [Google Scholar] [CrossRef]
- Merlijn van Spengen, W. MEMS reliability from a failure mechanisms perspective. Microelectron. Reliab. 2003, 43, 1049–1060. [Google Scholar] [CrossRef]
- Bhushan, B.; Kasai, T.; Kulik, G.; Barbieri, L.; Hoffmann, P. AFM study of perfluoroalkylsilane and alkylsilane self-assembled monolayers for antistiction in MEMS/NEMS. Ultramicroscopy 2005, 105, 176–188. [Google Scholar] [CrossRef]
- Clear, S.C.; Nealey, P.F. Chemical force microscopy study of adhesion and friction between surfaces functionalized with self-assembled monolayers and immersed in solvents. J. Colloid Interface Sci. 1999, 213, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.A.; Yoon, E.-S.; Han, H.-G.; Kong, H. Friction behaviour of chemical vapor deposited self-assembled monolayers on silicon wafer. Wear 2007, 262, 130–137. [Google Scholar] [CrossRef]
- Flater, E.E.; Ashurst, W.R.; Carpick, R.W. Nanotribology of octadecyltrichlorosilane monolayers and silicon: Self-mated versus unmated interfaces and local packing density effects. Langmuir 2007, 23, 9242–9252. [Google Scholar] [CrossRef] [PubMed]
- Vilt, S.G.; Leng, Z.; Booth, B.D.; McCabe, C.; Jennings, G.K. Surface and frictional properties of two-component alkylsilane monolayers and hydroxyl-terminated monolayers on silicon. J. Phys. Chem. C 2009, 113, 14972–14977. [Google Scholar] [CrossRef]
- Booth, B.D.; Vilt, S.G.; Lewis, J.B.; Rivera, J.L.; Buehler, E.A.; McCabe, C.; Jennings, G.K. Tribological durability of silane monolayers on silicon. Langmuir 2011, 27, 5909–5917. [Google Scholar] [CrossRef] [PubMed]
- Lio, A.; Charych, D.H.; Salmeron, M. Comparative atomic force microscopy study of the chain length dependence of frictional properties of alkanethiols on gold and alkylsilanes on mica. J. Phys. Chem. B 1997, 101, 3800–3805. [Google Scholar] [CrossRef]
- Escorihuela, J.; Sidharam, P.P.; Zuilhof, H. Organic monolayers by B(C6F5)3-catalyzed siloxanation of oxidized silicon surfaces. Langmuir 2017, 33, 2185–2193. [Google Scholar] [CrossRef]
- Escorihuela, J.; Zuilhof, H. Rapid surface functionalization of hydrogen-terminated silicon by alkyl silanols. J. Am. Chem. Soc. 2017, 139, 5870–5876. [Google Scholar] [CrossRef] [PubMed]
- Arkles, B. Tailoring surfaces with silanes. Chem. Tech. 1977, 7, 766–778. [Google Scholar]
- Naik, V.V.; Städler, R.; Spencer, N.D. Effect of leaving group on the structures of alkylsilane SAMs. Langmuir 2014, 30, 14824–14831. [Google Scholar] [CrossRef]
- Ulman, A. Formation and structure of self-assembled monolayers. Chem. Rev. 1996, 96, 1533–1554. [Google Scholar] [CrossRef]
- Liu, Y.; Wolf, L.K.; Messmer, M.C. A study of alkyl chain conformational changes in self-assembled n-octadecyltrichlorosilane monolayers on fused silica surfaces. Langmuir 2001, 17, 4329–44335. [Google Scholar] [CrossRef]
- Sagiv, J. Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces. J. Am. Chem. Soc. 1980, 102, 92–98. [Google Scholar] [CrossRef]
- Ulman, A. Self-assembled monolayers of alkyltrichlorosilanes: Building blocks for future organic materials. Adv. Mater. 1990, 2, 573–582. [Google Scholar] [CrossRef]
- Parikh, A.N.; Allara, D.L.; Azouz, I.B.; Rondelez, F. An intrinsic relationship between molecular structure in self-assembled n-alkylsiloxane monolayers and deposition temperature. J. Phys. Chem. 1994, 98, 7577–7590. [Google Scholar] [CrossRef]
- Hoffmann, H.; Mayer, U.; Krischanitz, A. Structure of alkylsiloxane monolayers on silicon surfaces investigated by external reflection infrared spectroscopy. Langmuir 1995, 11, 1304–1312. [Google Scholar] [CrossRef]
- Ge, S.; Takahara, A.; Kajiyama, T. Phase separated morphology of an immobilized organosilane monolayer studied by a scanning probe microscope. Langmuir 1995, 11, 1341–1346. [Google Scholar] [CrossRef]
- Allara, D.L.; Parikh, A.N.; Rondelez, F. Evidence for a unique chain organization in long chain silane monolayers deposited on two widely different solid substrates. Langmuir 1995, 11, 2357–2360. [Google Scholar] [CrossRef]
- Zhao, X.; Kopelman, R. Mechanism of organosilane self-assembled monolayer formation on silica studied by second-harmonic generation. J. Phys. Chem. 1996, 100, 11014–11018. [Google Scholar] [CrossRef]
- Rye, R.R.; Nelson, G.C.; Dugger, M.T. Mechanistic aspects of alkylchlorosilane coupling reactions. Langmuir 1997, 13, 2965–2972. [Google Scholar] [CrossRef]
- Maoz, R.; Sagiv, J.; Degenhardt, D.; Möhwald, H.; Quint, P. Hydrogen-bonded multilayers of self-assembling silanes: Structure elucidation by combined Fourier transform infra-red spectroscopy and X-ray scattering techniques. Supramol. Sci. 1995, 2, 9–24. [Google Scholar] [CrossRef]
- Soliveri, G.; Pifferi, V.; Annunziata, R.; Rimoldi, L.; Aina, V.; Cerrato, G.; Falciola, L.; Cappelletti, G.; Meroni, D. Alkylsilane-SiO2 hybrids. A concerted picture of temperature effects in vapor phase functionalization. J. Phys. Chem. C 2015, 119, 15390–15400. [Google Scholar] [CrossRef]
- Angst, D.L.; Simmons, G.W. Moisture absorption characteristics of organosiloxane self-assembled monolayers. Langmuir 1991, 7, 2236–2242. [Google Scholar] [CrossRef]
- Tripp, C.P.; Hair, M.L. An infrared study of the reaction of octadecyltrichlorosilane with silica. Langmuir 1992, 8, 1120–1126. [Google Scholar] [CrossRef]
- Tripp, C.P.; Hair, M.L. Direct observation of the surface bonds between self-assembled monolayers of octadecyltrichlorosilane and silica surfaces: A low-frequency IR study at the solid/liquid interface. Langmuir 1995, 11, 1215–1219. [Google Scholar] [CrossRef]
- Naik, V.V.; Crobu, M.; Venkataraman, N.V.; Spencer, N.D. Multiple transmission-reflection IR spectroscopy shows that surface hydroxyls play only a minor role in alkylsilane monolayer formation on silica. J. Phys. Chem. Lett. 2013, 4, 2745–2751. [Google Scholar] [CrossRef]
- Feher, F.J.; Newman, D.A.; Walzer, J.F. Silsesquioxanes as models for silica surfaces. J. Am. Chem. Soc. 1989, 111, 1741–1748. [Google Scholar] [CrossRef]
- Stevens, M.J. Thoughts on the structure of alkylsilane monolayers. Langmuir 1999, 15, 2773–2778. [Google Scholar] [CrossRef]
- Kenn, R.M.; Boehm, C.; Bibo, A.M.; Peterson, I.R.; Moehwald, H.; Als-Nielsen, J.; Kjaer, K. Mesophases and crystalline phases in fatty acid monolayers. J. Phys. Chem. 1991, 95, 2092–2097. [Google Scholar] [CrossRef]
- Mittal, K.L.; Plueddemann, E.P. Silanes and Other Coupling Agents, 1st ed.; VSP: Utrecht, The Netherlands, 1992. [Google Scholar]
- Tripp, C.P.; Veregin, R.P.N.; McDougall, M.N.V.; Osmond, D. Reaction of alkylchlorosilanes with silica: Importance of a surface attachment in defining the triboelectrification of the modified silica. Langmuir 1995, 11, 1858–1859. [Google Scholar] [CrossRef]
- Mikulski, P.T.; Harrison, J.A. Packing-density effects on the friction of n-alkane monolayers. J. Am. Chem. Soc. 2001, 123, 6873–6881. [Google Scholar] [CrossRef]
- Chandross, M.; Grest, G.S.; Stevens, M.J. Friction between alkylsilane monolayers: Molecular simulation of ordered monolayers. Langmuir 2002, 18, 8392–8399. [Google Scholar] [CrossRef]
- Chandross, M.; Web, E.B., III; Stevens, M.J.; Grest, G.S. Systematic study of the effect of disorder on nanotribology of self-assembled monolayers. Phys. Rev. Lett. 2004, 93, 166103. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, C.D.; Web, E.B., III; Stevens, M.J.; Chandross, M.; Grest, G.S. Frictional dynamics of perfluorinated self-assembled monolayers on amorphous SiO2. Tribol. Lett. 2005, 19, 93–99. [Google Scholar] [CrossRef]
- Lorenz, C.D.; Chandross, M.; Grest, G.S.; Stevens, M.J.; Web, E.B., III. Tribological properties of alkylsilane self-assembled monolayers. Langmuir 2005, 21, 11744–11748. [Google Scholar] [CrossRef] [PubMed]
- Kapila, V.; Deymier, P.A.; Raghavan, S. Molecular dynamics simulations of friction between alkylsilane monolayers. Modell. Simul. Mater. Sci. Eng. 2006, 14, 283–297. [Google Scholar] [CrossRef]
- Chandross, M.; Lorenz, C.D.; Stevens, M.J.; Grest, G.S. Simulations of nanotribology with realistic probe tip models. Langmuir 2008, 24, 1240–1246. [Google Scholar] [CrossRef] [PubMed]
- Lane, J.M.D.; Chandross, M.; Lorenz, C.D.; Stevens, M.J.; Grest, G.S. Water penetration of damaged self-assembled monolayers. Langmuir 2008, 24, 5734–5739. [Google Scholar] [CrossRef]
- Chandross, M.; Lorenz, C.D.; Stevens, M.J.; Grest, G.S. Probe-tip induced damage in compliant substrates. J. Manuf. Sci. Eng. 2010, 132, 030916. [Google Scholar] [CrossRef]
- Black, J.E.; Iacovella, C.R.; Cummings, P.T.; McCabe, C. Molecular dynamics study of alkylsilane monolayers on realistic amorphous silica surfaces. Langmuir 2015, 31, 3086–3093. [Google Scholar] [CrossRef] [PubMed]
- Summers, A.Z.; Iacovella, C.R.; Billingsley, M.R.; Arnold, S.T.; Cummings, P.T.; McCabe, C. Influence of surface morphology on the shear-induced wear of alkylsilane monolayers: Molecular dynamics study. Langmuir 2016, 32, 2348–2359. [Google Scholar] [CrossRef] [PubMed]
- Tidswell, I.M.; Rabedeau, T.A.; Pershan, P.S.; Kosowsky, S.D.; Folkers, J.P.; Whitesides, G.M. X-ray grazing incidence diffraction from alkylsiloxane monolayers on silicon wafers. J. Chem. Phys. 1991, 95, 2854–2861. [Google Scholar] [CrossRef]
- Kojio, K.; Ge, S.; Takahara, A.; Kajiyama, T. Molecular aggregation state of n-octadecyltrichlorosilane monolayer prepared at an air/water interface. Langmuir 1998, 14, 3932–3936. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Kojio, K.; Takahara, A.; Omote, K.; Kajiyama, T. Molecular aggregation state of n-octadecyltrichlorosilane monolayers prepared by the langmuir and chemisorption methods. Langmuir 2000, 16, 3932–3936. [Google Scholar] [CrossRef]
- Klein, C.; Sallai, J.; Jones, T.J.; Iacovella, C.R.; McCabe, C.; Cummings, P.T. Foundations of Molecular Modeling and Simulation, 1st ed.; Snurr, R.Q., Adjiman, C., Kofke, D.A., Eds.; Molecular Modeling and Simulation; Springer: Singapore, 2016; Chapter A Hierarchical, Component Based Approach to Screening Properties of Soft Matter; pp. 79–92. [Google Scholar]
- Zhuravlev, L. The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf. A 2000, 173, 1–38. [Google Scholar] [CrossRef] [Green Version]
- Hartkamp, R.; Siboulet, B.; Dufrêchec, J.-F.; Coasne, B. Ion-specific adsorption and electroosmosis in charged amorphous porous silica. Phys. Chem. Chem. Phys. 2015, 17, 24683–24695. [Google Scholar] [CrossRef] [Green Version]
- Allara, D.L.; Parikh, A.N.; Judge, E. The existence of structure progressions and wetting transitions in intermediately disordered monolayer alkyl chain assemblies. J. Chem. Phys. 1994, 100, 1761–1764. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Maxwell, D.S.; Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 1996, 118, 11225–11236. [Google Scholar] [CrossRef]
- Transition to Advanced Format 4K Sector Hard Drives. Available online: https://www.seagate.com/tech-insights/advanced-format-4k-sector-hard-drives-master-ti/ (accessed on 2 February 2018).
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519. [Google Scholar] [CrossRef]
- Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697. [Google Scholar] [CrossRef]
- Klein, C.; Summers, A.Z.; Thompson, M.W.; Gilmer, J.; McCabe, C.; Cummings, P.T.; Sallai, J.; Iacovella, C.R. Formalizing atom-typing and the dissemination of force fields with foyer. Comput. Mater. Sci. 2018, arXiv:1812.06779. [Google Scholar]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- Hess, B.; Bekker, H.; Berendsen, H.J.C.; Fraaije, J.G.E.M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1998, 18, 1463–1472. [Google Scholar] [CrossRef]
- Hockney, R.W.; Goel, S.P.; Eastwood, J.W. Quiet high-resolution computer models of a plasma. J. Comput. Phys. 1974, 14, 148–158. [Google Scholar] [CrossRef]
- Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef]
- Essmann, U.; Perera, L.; Berkowitz, M.L. A smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577–8593. [Google Scholar] [CrossRef]
- Adorf, C.S.; Dodd, P.M.; Ramasubramani, V.; Glotzer, S.C. Simple data and workflow management with the signac framework. Comput. Mater. Sci. 2018, 146, 220–229. [Google Scholar] [CrossRef] [Green Version]
- Eppenga, R.; Frenkel, D. Monte Carlo study of the isotropic and nematic phases of infinitely thin hard platelets. Mol. Phys. 1984, 52, 1303–1334. [Google Scholar] [CrossRef]
- Wilson, M.R. Determination of order parameters in realistic atom-based models of liquid crystal systems. J. Mol. Liq. 1996, 68, 23–31. [Google Scholar] [CrossRef]
- Knippenberg, M.T.; Mikulski, P.T.; Harrison, J.A. Effects of tip geometry on interfacial contact forces. Model. Simul. Mater. Sci. Eng. 2010, 18, 1–20. [Google Scholar] [CrossRef]
- Blondel, A.; Karplus, M. New formulation for derivatives of torsion angles and improper torsion angles in molecular mechanics: Elimination of singularities. J. Comput. Chem. 1996, 17, 1132–1141. [Google Scholar] [CrossRef]
- Bhushan, B. (Ed.) Handbook of Micro/Nanotribology, 2nd ed.; Mechanics and Materials Science; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Schwarz, U.D.; Allers, W.; Gensterblum, G.; Wiesendanger, R. Low-load friction behavior of epitaxial C60 monolayers under Hertzian contact. Phys. Rev. B 1995, 52, 14976–14984. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Ruehe, J.; Novotny, V.J.; Kanazawa, K.K.; Clarke, T.; Street, G.B. Structure and tribological properties of ultrathin alkylsilane films chemisorbed to solid surfaces. Langmuir 1993, 9, 2383–2388. [Google Scholar] [CrossRef]
Cross-Linkages | Average Number Cross-Linkages Per Chain | Fraction of Chemisorbed Chains | |
---|---|---|---|
Fully Chemisorbed | Yes | 0.334 ± 0.024 | 1.000 |
No | 0.000 | 1.000 | |
Partially Chemisorbed | Yes | 0.368 ± 0.015 | 0.632 ± 0.015 |
No | 0.000 | 1.000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Black, J.E.; Summers, A.Z.; Iacovella, C.R.; Cummings, P.T.; McCabe, C. Investigation of the Impact of Cross-Polymerization on the Structural and Frictional Properties of Alkylsilane Monolayers Using Molecular Simulation. Nanomaterials 2019, 9, 639. https://doi.org/10.3390/nano9040639
Black JE, Summers AZ, Iacovella CR, Cummings PT, McCabe C. Investigation of the Impact of Cross-Polymerization on the Structural and Frictional Properties of Alkylsilane Monolayers Using Molecular Simulation. Nanomaterials. 2019; 9(4):639. https://doi.org/10.3390/nano9040639
Chicago/Turabian StyleBlack, Jana E., Andrew Z. Summers, Christopher R. Iacovella, Peter T. Cummings, and Clare McCabe. 2019. "Investigation of the Impact of Cross-Polymerization on the Structural and Frictional Properties of Alkylsilane Monolayers Using Molecular Simulation" Nanomaterials 9, no. 4: 639. https://doi.org/10.3390/nano9040639
APA StyleBlack, J. E., Summers, A. Z., Iacovella, C. R., Cummings, P. T., & McCabe, C. (2019). Investigation of the Impact of Cross-Polymerization on the Structural and Frictional Properties of Alkylsilane Monolayers Using Molecular Simulation. Nanomaterials, 9(4), 639. https://doi.org/10.3390/nano9040639