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Abstract: Cross-linked chemisorbed n-alkylsilane (CH3(CH2)n−1Si(OH)3) monolayers on amorphous
silica surfaces have been studied and their structural properties and frictional performance were
compared to those of equivalent monolayers without cross-linkages. The simulations isolated for
the first time the effects of both siloxane cross-linkages and the fraction of chains chemisorbed to
the surface, providing insight into a longstanding fundamental question in the literature regarding
molecular-level structure. The results demonstrate that both cross-linkages and the fraction of
chemisorbed chains affect monolayer structure in small but measurable ways, particularly for
monolayers constructed from short chains; however, these changes do not appear to have a significant
impact on frictional performance.

Keywords: molecular dynamics; tribology; surface science; self-assembled monolayers;
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1. Introduction

Micro- and nanoelectromechanical systems (MEMSs and NEMSs) have been used to develop
smaller and more efficient sensors to detect chemical signals, stresses, vibrations, and forces at the
atomic level [1,2]; examples include tips and cantilever beams in atomic force microscopy [3] and
inertial navigation system accelerometers and gyroscopes [4]. MEMS/NEMS devices have small
lateral dimensions and therefore large surface-area-to-volume ratios, which can result in significant
surface interactions (e.g., adhesion and friction) that can lead to surface damage and eventual device
failure [2,5,6]. An effective method to protect and lubricate contacting surfaces in such devices is to
employ chemisorbed or physisorbed monolayers, which provide dense, two-dimensional sheets of
surface-bound films that modify interfacial properties and reduce the risk of direct contact between
surfaces [7–12]. The tribological properties of monolayer-coated surfaces primarily depend on the
structure of the monolayer itself, which can be tailored by manipulating the composition of the precursor
molecules (i.e., monomers) and/or the structure of the underlying surface [13–16]. Different types of
monolayers assembled on a wide variety of surfaces have been shown to reduce static friction (i.e.,
stiction) and surface damage due to oxidation and wear [9–12].

Many MEMS/NEMS devices are fabricated from oxidized silicon (SiO2) [11,17,18], and interest
in lubrication schemes for such devices has led to numerous studies on the tribological behavior of
organosilane monolayers, as they can bond to oxidized surfaces [17,19–27]. The most commonly used
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organosilane molecules are monoalkylsilanes (RSiX3, where “R” is a linear alkyl group and “X” is a
hydrolyzable leaving group) [28]. The hydrolysis rate of “X” is known to play a significant role in both
the formation and final structure of the monolayers. For example, Naik et al. compared monolayers
constructed from octadecylsilane molecules with chloro, methoxy, and ethoxy leaving groups (i.e.,
CH3(CH2)16CH2–SiX3, where “X” is Cl, OCH3, or OCH2CH3); the trichloroalkylsilanes rapidly formed
a densely packed, highly organized monolayer, whereas the other two monolayers remained sparse
and disorganized following much longer immersion times [29]. The difference was primarily attributed
to the much faster hydrolysis rate of Cl, as compared with methoxy and ethoxy groups. Note that high
packing densities are crucial to the tribological performance of alkylsilane monolayers, and so they are
generally prepared using trichloroalkylsilane monomers [9,17,19–21].

Although the exact mechanism by which alkylsilanes are adsorbed onto oxidized surfaces
remains unclear, the most widely accepted model is illustrated in Figure 1 [28]. In the presence of
water, alkylsilanes are hydrolyzed to form alkylsilanols, which react with each other to form Si–O–Si
(siloxane) linkages and also with surface-bound hydroxyl groups via condensation reactions that
release water. Although described sequentially, two or more of these steps may occur through a
concerted mechanism [28]. Monolayer formation is thought to follow an “island growth” mechanism,
whereby the first monomers that bond to the surface, the mobility of which is limited by surface
attachment and cross-polymerization to neighboring monomers, serve as nucleation sites for the
remainder of the monolayer to form [30,31]. This classical model of the reaction mechanism raises two
fundamental questions regarding alkylsilane monolayer structure: to what degree do alkylsilanes (1)
cross-polymerize via siloxane linkages and (2) form covalent bonds to surface-bound hydroxyl groups?
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Figure 1. Proposed mechanism by which monoalkylsilanes (RSiX3, where “R” is a linear alkyl group
and “X” is a hydrolyzable leaving group) are adsorbed onto oxidized surfaces (e.g., silica, titania, and
alumina). Although described sequentially, two or more of these steps may occur through a concerted
mechanism as described in Ref. [28].

Alkylsilane monolayer stability and robustness are generally attributed to cross-polymerization
via the siloxane linkages [30,32–39]. The degree to which alkylsilanes cross-polymerize has been
previously studied, but the results are difficult to interpret because they appear to pose conflicting
requirements on monolayer structure. Data obtained using several different methods (e.g., X-ray
photoelectron spectroscopy [39], X-ray scattering [40], nuclear magnetic resonance [41], and infrared
spectroscopy [29,40–45]) suggest that extensive cross-polymerization occurs; it is estimated that each
monomer forms an average of ~1.5–2 siloxane linkages to other monomers [41]. The length of Si–O
siloxane bonds varies between ~1.59 and 1.65 Å, so the largest possible distance between two Si
atoms connected via a siloxane linkage is ~3.3 Å [40,46,47]. However, the average distance between
neighboring monomers in densely packed alkylsilane monolayers is observed to be ~4.5 Å [47].
Note that parallel linear alkanes must be separated by a minimum distance of ~4.2 Å due to steric
hindrance [48], so only minimal tilting/bending of the alkyl “R” groups can occur in dense monolayers.
Under these conditions, cross-polymerization via siloxane linkages would be limited to a few small
alkylsilane oligomers (two to six monomers) [40]. This apparent discrepancy could be explained
if alkylsilane monolayers exist in a state of dynamic equilibrium involving the rapid breakage and
reformation of siloxane Si–O bonds; at any instant, the monolayer would consist of monomers and
small oligomers with the continuous redistribution of siloxane linkages creating the overall effect of an
extensively cross-polymerized monolayer [40,49]. This idea is supported by the unusual observation
that alkylsilane polar head groups are highly mobile about their equilibrium in-plane positions, while
the alkyl “R” groups form a stable configuration [40]. Plueddemann asserted that continuous Si–O
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bond breakage and reformation proceed via hydrolysis/condensation reactions (i.e., the addition/loss
of water molecules) [49]; note that a submonolayer amount of water is expected to be physisorbed via
hydrogen bonds with alkylsilanol and surface-bound hydroxyl groups [42]. Maoz et al. later proposed
an alternate mechanism, where Si–O bonds are continuously redistributed among Si–O–Si (siloxane)
and Si–O–H (silanol) groups; in this case, the activation energy required for Si–O bond breakage is
thought to be supplied by simultaneous Si–O bond formation [40].

Alkylsilanes may be hydrogen bonded (physisorbed) or covalently bonded (chemisorbed) to the
surface via surface-bound hydroxyl groups. Some experimental studies suggest these reactions compete
near oxidized surfaces; if the density of surface-bound hydroxyl groups is high, monomers will readily
form covalent bonds to the surface, but otherwise, they are more likely to form cross-linkages with other
monomers and/or hydrogen bonds with surface oxygen atoms [28,39,43,44,47]. It is difficult to measure
the fraction of monomers that become chemisorbed and is even more difficult to control due to the large
number of variables involved as well as challenges related to understanding/regulating reactions with
water molecules near the surface [37,39,50]. Some of the variables involved include alkylsilane structure
(e.g., reactivity of hydrolyzable “X” groups) [28,45], surface structure (e.g., density of surface-bound
hydroxyl groups) [28,39], and conditions during monolayer formation (e.g., temperature [41] and
amount of water present [28,39]). The fraction of chemisorbed chains is expected to play a role in
monolayer structure and durability [37,39,50]. For example, Allara et al. compared octadecylsiloxane
monolayers on inert gold substrates to those on oxidized silicon (i.e., SiO2) featuring a high density
of surface-bound hydroxyl groups (~5 OH/nm2), which are capable of reacting with hydrolyzed
alkylsilane monomers. They found monolayers with few or no covalent bonds to the SiO2 surfaces to
be organized, smooth, and uniform (i.e., contain minimal defects), similar to those on gold. Since the
reactive hydroxyl groups on amorphous SiO2 surfaces are randomly distributed, increasing the fraction
of monomers bonded to these sites is expected to force the monolayer into an increasingly disordered
structure [37]. This study suggests that fully or partially physisorbed monolayers can be decoupled
from their underlying surfaces to a degree, allowing for the in-plane lateral reorganization of monomers
into a more ordered configuration; chemisorbed monolayer structure, however, is predominantly
determined by surface structure. Thus, increasing the fraction of chemisorbed chains may lead to
increased coefficients of friction and adhesion, as prior studies have reported a negative correlation
between friction and monolayer ordering [16,23–25]. However, covalent bonds anchoring chains to
the surface are thought to be necessary for durability/robustness [48], so decreasing the fraction of
chemisorbed chains could cause the monolayer to degrade over shorter periods of time. Such behavior
was observed by Booth et al., who compared the frictional properties of physisorbed n-alkanethiols on
gold with chemisorbed n-alkylsilanes on oxidized silicon, finding that the physisorbed monolayers
exhibited a threefold improvement in coefficient of friction at low normal loads, while the chemisorbed
monolayers exhibited significantly improved durability and were able to withstand normal loads at
least 30 times larger than those that damaged the physisorbed monolayers [17].

Direct control over surface morphology and decoupling of the numerous factors that influence
friction and wear in monolayer systems is nearly impossible through a purely experimental approach.
Computational methods, including molecular dynamics (MD) simulations, have emerged as an
important tool to probe the molecular-level behavior of nanotribological systems, and recent
improvements in computational speed and modeling methods have made simulations that closely
mimic experimental systems possible. For example, MD simulations have been applied to improve
our understanding of alkylsilane monolayers on oxidized surfaces [14,16,23,24,51–61], providing
insight into the effects of various monolayer properties on frictional behavior, including monomer
structure (e.g., backbone [14,55] and terminal group [13,16]) and surface structure (e.g., roughness
and density of surface-bound hydroxyl groups) [53–55,57,60]. However, the simulations of alkylsilane
monolayers performed to date have examined systems without siloxane cross-linkages. Furthermore,
most have considered only fully chemisorbed monolayers; notable exceptions include the work of
Chandross et al., who studied the behavior of fully and partially physisorbed monolayers under shear
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by nanometer-scale tips in order to imitate the process by which atomic force microscopes measure
forces between the tip and sample [57–59], and our previous work studying monolayer degradation
under shear, in which interfacial Si–O bonds (i.e., those connecting chemisorbed monomers to the
surface) were severed at random and the mobility of the broken chains examined [61]. While excluding
cross-linkages seems like a reasonable assumption, it introduces an approximation compared to
the experimental systems and is often cited as the reason for discrepancies observed in monolayer
properties between the simulations and experiments. In its role as a stabilizer, cross-polymerization
could potentially influence monolayer structure in measurable ways (e.g., packing density, orientational
and/or conformational ordering, monomer tilt, monolayer surface roughness, or number of defects).
Furthermore, does any observed effect depend on the fraction of monomers covalently bonded to
the surface? For example, physisorbed monolayers can be somewhat decoupled from surfaces [37],
possibly enabling cross-polymerization to play a more significant role than in their chemisorbed
counterparts. These questions remain unanswered and are of particular concern given that previous
studies have reported correlations between alkylsilane monolayers’ structural properties and their
frictional performance [23,25,53,60].

In an effort to address these fundamental questions regarding alkylsilane monolayer structure
and cross-polymerization, we have developed two different simulation procedures to construct fully
and partially chemisorbed n-alkylsilane (CH3(CH2)n−1Si(OH)3) monolayers featuring cross-linkages
on amorphous silica surfaces. The structural properties and frictional performance of these
cross-polymerized monolayers have been assessed and compared to those of equivalent monolayers
without cross-linkages in order to isolate any effects of (1) siloxane cross-linkages and (2) the fraction
of chains covalently bonded to the surface.

2. Simulation Methods

2.1. Initialization of Cross-Polymerized Monolayers

As discussed above, most previous simulations of alkylsilane monolayers on silica substrates
have considered fully chemisorbed monolayers without siloxane cross-linkages [14,16,23,24,51–56,60].
Comparisons to equivalent cross-polymerized monolayers (i.e., those with all chains covalently bonded
to the surface) would isolate any changes to structural properties and/or frictional performance that are
directly correlated with cross-linkages. However, cross-polymerization is more likely to affect structure
if fewer monomers are bonded to the surface; thus, monolayers in which not all chains are directly
chemisorbed must also be considered. Here, two different approaches have been taken to create fully
and partially chemisorbed n-alkylsilane monolayers featuring cross-linkages on amorphous silica
surfaces. The methods used to initialize these systems were developed with the overall goal of creating
monolayers that closely match those prepared experimentally. As such, they are essentially different
implementations of the same underlying idea, guided by a common philosophy: cross-polymerized
monolayers are assembled in a stepwise manner through random processes, restricted only by steric
effects. Both methods yield packing densities that are consistent with experimental n-alkylsilane
monolayers assembled on silica (~4.0–5.0 chains/nm2) [47,52,62,63], as well as cross-linkages that are
consistent with the proposed instantaneous structure of an alkylsilane monolayer in a state of dynamic
equilibrium (i.e., small linear or cyclic oligomers of crosslinked monomers (≤6), most of which are
dimers and trimers) [40].

2.1.1. Chemisorbed Monolayers

To facilitate direct comparison with previous simulations [14,16,23,24,51–56,60], cross-polymerized
alkylsilane monolayers in which all monomers are covalently bonded to the surface have been created.
Fully chemisorbed monolayers featuring cross-linkages have been constructed by the procedure
summarized in Figure 2. A previously developed synthesis mimetic simulation (SMS) procedure was
initially used to generate amorphous silica with a high density of surface-bound hydroxyl groups
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and then to attach a chemisorbed alkylsilane monolayer without cross-linkages (see Figure 2a) [60].
The SMS procedure was designed to mimic the postsynthesis processing of silicon wafers with
“piranha” solution (H2SO4/H2O2), which is done in experiments to encourage the chemisorption of
alkylsilanes during monolayer formation [23]. The process results in surfaces with atomic-scale surface
roughness (root-mean-squared roughness of ~0.13 nm) and a dense layer of surface-bound hydroxyl
group bonding sites for chains (~5.8 OH/nm2); root-mean-squared roughness was estimated by the
standard deviation of the positions of oxygen atoms that are part of surface-bound hydroxyl groups in
the direction normal to the surface plane (i.e., in the z-direction). Monolayers with varying densities
(3.9–4.9 chains/nm2) were then generated by varying the minimum cutoff distance between bonding
sites from 2.0 to 2.5 Å and attaching monomers. Full details of the procedure can be found in the
original paper [60]. To create the final cross-polymerized monolayers, siloxane (Si–O–Si) linkages
were inserted between neighboring monomers (see Figure 2b). Cross-linkages are observed to have
a length of ~2.8–3.3 Å [40], so monomers separated by ≤3.3 Å were considered eligible pairs for
bonding. Cross-linkages were inserted to connect eligible pairs at random, with the restriction that
each monomer can only bond with up to two neighbors. As an example, a system with 96 chains at a
density of 4.9 chains/nm2 is shown in Figure 2b. As can be seen from the figure, its 28 cross-linkages are
scattered throughout the monolayer, creating small clusters of linked chains (i.e., 12 dimers, 6 trimers,
and 1 linear oligomer of 5 chains). Note that this extent/organization of cross-linkages is consistent with
the proposed instantaneous structure of an alkylsilane monolayer in a state of dynamic equilibrium
(i.e., small oligomers of cross-linked monomers (≤6), most of which are dimers and trimers) [40].
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Figure 2. Chemisorbed monolayers with cross-linkages constructed using a two-stage procedure,
whereby (a) a chemisorbed alkylsilane monolayer without cross-linkages is assembled on an amorphous
silica surface with a high density of surface-bound hydroxyl groups (~5.8 OH/nm2), and (b)
cross-linkages are inserted at random between neighboring chains in the monolayer. Spheres represent
the silicon atoms in alkylsilane head groups. These images and others in this work were generated
using the Visual Molecular Dynamics (VMD) software (version 1.9.3, Theoretical and Computational
Biophysics Group (University of Illinois at Urbana-Champaign), Urbana, IL, USA) [64].

2.1.2. Partially Chemisorbed Monolayers

As previously mentioned, cross-polymerization may play a more significant role in the behavior of
alkylsilane monolayers if fewer monomer chains are bonded to the surface. To examine these effects, an
additional set of monolayer systems has been studied in which only a fraction of chains is chemisorbed
to the surface, while the remainder are bonded only via cross-linkages to other chains. Recall that
these partially chemisorbed monolayers are more common in real systems than fully chemisorbed
or physisorbed monolayers as a result of the island growth mechanism by which they form [30,31].
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The procedure used to construct these systems features two stages, as shown in Figure 3, and is
controlled purely by sterics.Nanomaterials 2019, 9, x FOR PEER REVIEW 6 of 19 
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Figure 3. Partially chemisorbed monolayers are constructed using a multistage process whereby (a)
chemisorbed chains are placed in an arrangement to fill all available surface sites without steric overlaps
(using a van der Waals diameter of 0.42 nm per chain [65]), (b) Voronoi tessellation is used to determine
locations for additional insertion of chains not bound to the surface (the arrow designates the site used
for the first chain insertion), and this procedure is repeated until (c) no additional available locations
exist and the monolayer is considered complete. Finally, (d) inserted chains that are not surface bound
have bonds drawn to neighboring chains to create a cross-linked network. Red spheres represent
the silicon atoms in chemisorbed chains and cyan spheres represent those in chains attached only
via cross-linkages.

As with the fully chemisorbed monolayers, amorphous silica substrates were used to construct
the partially chemisorbed monolayer systems. Using the mBuild toolkit [66], an analytical method
was used to generate amorphous surfaces through carving from a bulk silica slab and adjusting
the hydroxyl density to 5 OH/nm2, to match expectations from experiment [37,39], by bridging
neighboring surface oxygen atoms [67,68]. We note that the SMS procedure was not used for the
partially chemisorbed monolayer systems since maximizing the density of surface-bound hydroxyl
groups is not necessary for these systems, and so a more traditional, less computationally intensive
approach to surface generation was taken. This method allows greater control over the initialization of
the film structure needed to construct the partially chemisorbed monolayers. Substrates generated
using this simpler approach featured a surface roughness of ~0.11 nm, thus closely approximating the
structure of the SMS-generated surfaces. The initial stage of monolayer creation, as shown in Figure 3a,
involved the placement of the chains that were directly bonded to the surface. Thus, only the discrete
locations of surface hydroxyls on the substrate acted as available sites for attaching chains. In an
iterative fashion, an available site was chosen at random, a chain was then placed at this location, and
the list of available sites was updated to ensure that future chains would not overlap with existing
chains. When no available sites remained, the chemisorbed portion of the monolayer was considered
complete; however, if a desired number of chemisorbed chains was explicitly specified, then additional
chains were added at locations that featured the furthest distance from existing chains. The second
stage of monolayer construction, shown in Figure 3b,c, considered the placement of chains that were
attached to the surface only through cross-linkages to other chains. To determine the locations for
these chains, an iterative procedure was used whereby a 2D Voronoi tessellation was performed on
the set of points representing the locations of existing monolayer chains. A new chain was placed
at the site of the Voronoi vertex featuring the furthest distance from any existing monolayer chain.
This process was repeated until either no locations exist, whereby overlap with existing chains
occurred, or a desired total number of monolayer chains was reached. Each newly inserted chain was
then attached via a cross-linkage to its nearest neighbor, which may be directly bonded to the surface
or via a cross-linkage to another chain. The code used to construct these monolayers is available
online (see Supplementary Materials). Constructing alkylsilane monolayers via this procedure yielded
an average density of 3.9 ± 0.1 chains/nm2 which was in close agreement with monolayer densities
estimated from experiment (4.0–5.0 chains/nm2) [47,52,62,63]. Additionally, this procedure resulted in
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monolayers featuring roughly 65% chemisorbed chains, with the remaining 35% of chains attached
via cross-linkages only. It is of importance to note that the monolayer density of the chemisorbed
chains (2.5 chains/nm2) agreed well with the density observed experimentally for alkanol molecules
(which cannot form cross-linkages but feature a comparable van der Waals (VDW) diameter) attached
to amorphous silica (2.65 chains/nm2) [69].

2.2. Molecular Dynamics Simulations

Molecular dynamics simulations of fully and partially chemisorbed alkylsilane monolayers
have been performed under equilibrium and nonequilibrium conditions. Postequilibration trajectory
lengths ranged from 1–3 ns for equilibrium simulations and 5–10 ns for nonequilibrium simulations.
These trajectory lengths were found to be sufficient in order for the simulations to converge to a
steady state and to yield data with reasonably low uncertainty. Simulations were conducted using
the optimized potentials for liquid simulations all-atom (OPLS-AA) force field [70]. The OPLS-AA
parameters used for this work were taken from Lorenz et al. [54] for silica and Jorgensen et al. [70]
for alkanes (see Supplementary Materials for details), in accordance with prior simulation studies of
alkylsilane monolayers on silica [14,16,23,24,60,61]. All simulations were performed in the canonical,
or NVT, ensemble (i.e., constant number of atoms, volume, and temperature) at a temperature of
298.15 K, with periodic boundary conditions in the surface plane (i.e., the xy-plane) in order to mimic
the behavior of an infinite surface; simulations did not interact across the z-boundary. Shearing speeds
of 10 m/s were used. While this speed is several orders of magnitude larger than those normally used in
experiments (e.g., atomic force microscopy and tribometry, where shear rates are typically on the order
of micrometers per second [17]), several studies report that shearing velocities of this magnitude and
higher do occur between surfaces in nanotribological systems, including MEMSs/NEMSs [6,14,52–55,71].
Furthermore, prior studies have shown that frictional forces do not significantly depend on sliding
velocity at moderate loads [14,52–55]. For these simulations, thermostatting was not performed in the
direction of shear to allow for the possibility of viscous heating, although appreciable shear-induced
heating has not been observed at the shear rates considered here [61]. Additional details regarding the
simulation procedures are provided in the Supplementary Materials [72–81].

In order to quantify the structural properties of all monolayer systems considered in this work, the
nematic order parameter (S2), average tilt angle (θ), and gauche defect fraction were calculated under
equilibrium and nonequilibrium conditions. The nematic order parameter was used to quantify global
orientational ordering in each layer. A value of S2 = 1 indicates perfect orientational ordering within
a monolayer, and values of S2 less than unity represent proportionately less ordering [82,83]. Here,
values of S2 below ~0.8 indicated a distinct loss of orientational ordering, as determined via visual
inspection. Note that since these molecules are attached to a surface, the transition from well-ordered to
disordered occurs at a higher value of S2 than is typically seen for bulk nematic systems [83]. Average
tilt angle is defined such that monolayers in perfect alignment with a vector normal to the silica surface
yield a tilt angle of 0◦. Monolayers’ gauche defects were assessed via the gauche defect fraction; in
this calculation, a dihedral angle (i.e., the twist of a C–C–C–C quadruplet in the monomer backbone)
was considered to be in the trans state if it was between 90◦ and 270◦, while angles outside this
range were considered to be gauche defects [84]. A detailed description of the calculation of each of
these metrics is provided in the Supplementary Materials [82–85]. To quantify frictional performance,
the coefficient of friction (µ) and adhesion/force intercept (F0) were determined for all monolayers
undergoing shear. Specifically, µ and F0 were calculated according to a modified form of Amontons’s
Law of Friction [20,86,87]:

F f = µFn + F0 (1)

where Ff represents the friction force, Fn represents the normal force, and F0 represents the extrapolated
friction force at zero load, or adhesion/force intercept. Simulations were conducted at several different
normal loads, and µ and F0 were approximated by the slope and y-intercept of the line generated by
plotting friction force as a function of normal force, respectively.
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3. Results and Discussion

To ascertain the impact of cross-polymerization and surface attachment on the structural properties
of alkylsilane monolayers, equilibrium simulations have been performed for all systems. The nematic
order parameter (S2), average tilt angle (θ), and gauche defect fraction have been determined as a
function of alkylsilane backbone length (6–22 carbon atoms) and compared for monolayers with or
without cross-linkages. The results are summarized in Figure 4, with Figure 4a,c,e comparing S2, θ,
and the gauche defect fraction, respectively, for fully chemisorbed monolayers with cross-linkages (see
Figure 2b) and identical chemisorbed monolayers without cross-linkages (see Figure 2a). The same
comparisons are made in Figure 4b,d,f for partially chemisorbed monolayers with cross-linkages (see
Figure 3d) and systems with all chains chemisorbed and no cross-linkages; note that this comparison
also features the fraction of chains chemisorbed to the surface as a second variable. The four systems
studied are summarized in Table 1. The transition from a disordered, liquid-like state to one that was
well-ordered/solid-like occurred when S2 increased to ~0.8, which was observed for all four monolayer
systems as chain length increased from 14 to 16 carbon atoms (see Figure 4a,b). Thus, as highlighted
in Figure 4, three chain-length-dependent regions appeared to exist: (I) a liquid-like region (chain
length < 14), indicated by lower nematic order and more gauche defects per chain; (II) a transition
region (14 ≤ chain length ≤ 16), where monolayers transitioned between liquid-like and solid-like
states and may have featured local regions of order (indicated by larger error bars for global monolayer
properties); and (III) a solid-like region (chain length > 16), indicated by high values of nematic order
and a low number of gauche defects per chain.

As shown in Figure 4a,b, S2 increased with monomer length for all systems with or without
cross-linkages. A positive correlation between monolayer ordering and monomer length has been
observed previously in experiments [23–25] and simulations [16,23,24,60]. This trend can be explained
by an increase in stabilizing VDW forces between chains as the number of backbone carbon atoms was
increased. Our initial expectation was that the addition of cross-linkages would increase orientational
ordering, as neighboring monomers connected by siloxane linkages would be forced into closer
proximity; furthermore, experimental results suggest that reducing the fraction of monomers that
are chemisorbed to the surface also increases global ordering, as nonchemisorbed monomers are
not coupled to the locations of surface-bound hydroxyl groups [37]. However, the results shown
in Figure 4a,b suggest that both cross-linkages and the ratio of chemisorbed to physisorbed chains
play a more complex role in monolayer ordering, which appears to vary as a function of monomer
length. Figure 4b shows that the partially chemisorbed monolayers constructed from short chains
(region I) had reduced ordering compared with the equivalent chemisorbed monolayers without
cross-linkages. Although the same effect is observed in Figure 4a, the differences are not statistically
significant, and thus, it is likely related specifically to the fraction of chains chemisorbed to the surface
rather than cross-linkages. This observation is surprising, as reducing the number of chemisorbed
chains is expected to result in a film that features greater in-plane fluidity (i.e., chains should be
better able to rearrange themselves in the surface plane), thus allowing the chains to adopt a more
uniform configuration. However, it is also known that the VDW forces that provide cohesiveness to
monolayer films are weaker for shorter chains, and it appears that the lack of strong cohesive VDW
forces takes precedence over the increase in surface plane mobility when determining monolayer
ordering for these systems. In Figure 4b, the curves for partially chemisorbed monolayers and their
fully chemisorbed counterparts have different slopes in regions I and II, and as a result, a transition
occurs at a chain length of 14, whereby the partially chemisorbed monolayers exhibit higher ordering
than their chemisorbed analogues. This phenomenon is not observed in Figure 4a, which once again
suggests that it was related to the increase in surface plane mobility when fewer monomers were
chemisorbed to the surface; at chain lengths of 14–16 (region II), the cohesive VDW forces were then
strong enough that increased mobility did in fact lead to a more ordered monolayer. Figure 4a suggests
that fully chemisorbed monolayers with cross-linkages were slightly less ordered than those without
them for all chain lengths below 18 (regions I and II), which may have been due to the fact that
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Si–O–Si cross-linkages were too short to allow the aliphatic tails to be parallel without overlapping; as
a result, chains connected by cross-linkages would tilt or bend/twist away from each other, causing
their tails to be splayed apart and leading to a slightly more disordered monolayer. As chain length
increased to 18 and above (region III), all monolayer systems described in Figure 4a,b existed in a
highly ordered, solid-like state (S2 > 0.95), where neither cross-linkages nor the fraction of chemisorbed
chains appeared to have a significant influence on nematic ordering.

Figure 4c,d indicate that there is a correlation between alkylsilane backbone length and average tilt
angle, where θ is minimized for systems with intermediate monomer lengths just below the transition
from a disordered to well-ordered state (10–14). This observation can be explained by referring back to
the results for S2 (Figure 4a,b). Monolayers with the shortest chain length of 6 backbone carbon atoms
existed in a highly disordered state, where chains were allowed to adopt various tilted conformations
with no preferred orientation. As chain length increased to 14, the cohesive VDW forces became
stronger and caused the chains to stand more upright. When chain length exceeded 14, the chains
once again adopted tilted conformations, except now with a preferred orientation (i.e., chains tilted in
the same direction) in order to maximize film cohesivity. The inclusion of cross-linkages appeared to
increase the average tilt angle at all chain lengths by ~1◦–5◦ in chemisorbed monolayers (Figure 4c)
and ~1◦–10◦ in partially chemisorbed monolayers (Figure 4d). Since this effect is more pronounced in
Figure 4d, it is likely related to both cross-linkages and the fraction of chains chemisorbed to the surface.
Adding cross-linkages may have led to an increase in overall tilt because cross-linked chains must tilt
away from each other to prevent their tails from overlapping, as previously mentioned. Any further
increase in θ when fewer chains were bonded directly to the surface was likely related to the mobility
of the nonchemisorbed chains in the surface plane.

Figure 4e,f suggest that all of the monolayer systems with or without cross-linkages featured
most C–C–C–C dihedrals in the trans state, with only a few gauche defects. This observation is
consistent with experimental results for densely packed alkylsilane monolayers on silica (≤4% gauche
defects) [35,69]. The number of defects appeared to decrease with increasing chain length, a trend
that has been observed previously in experiments [69] and simulations [51,52]. This effect can be
explained by once again referring to the results for S2 (Figure 4a,b). Monolayers with short chain
lengths existed in a disordered state (region I), allowing both monomer tilting and gauche distortions
(i.e., twisting about the C–C bond axis) to occur more easily. As chain length was increased and the
monolayer became more well-ordered, fewer defects were able to form. The presence of cross-linkages
did not appear to have a meaningful impact on the gauche defect fraction for systems in which all
chains were chemisorbed to the surface (Figure 4e). Recall that adding cross-linkages to chemisorbed
monolayers led to a small increase in average tilt angle at all chain lengths (Figure 4c). These results
combined may indicate that cross-linked chains prefer to tilt away from each other rather than contort
via gauche deformations when avoiding overlaps between their aliphatic tails. Partially chemisorbed
monolayers constructed from chains with less than 14 backbone carbon atoms (region I) had a larger
number of gauche defects than equivalent chemisorbed monolayers without cross-linkages (Figure 4f);
this result is somewhat expected, given that the partially chemisorbed monolayer systems in region I
also exhibited reduced nematic ordering (Figure 4b). The effect is most likely related to the fraction of
chains bonded to the surface rather than cross-linkages (as it is not observed in Figure 4e), and more
specifically, to the mobility of nonchemisorbed chains in the surface plane. Chains that are not directly
coupled to bonding sites on the surface can more easily tilt and/or contort via gauche deformations, as
discussed previously.
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Figure 4. Structural properties of monolayers with or without cross-linkages (black circles and red
triangles, respectively) as a function of chain length; the three chain-length-dependent regions described
in the text are indicated by I, II, and III. Fully chemisorbed monolayers with or without cross-linkages
are compared in (a,c,e) (error bars represent the standard deviation for three unique monolayer
systems), and partially chemisorbed monolayers featuring cross-linkages are compared to equivalent
fully chemisorbed monolayers without them in (b,d,f) (error bars represent the standard deviation
for five unique monolayer systems). Structure was assessed via nematic order parameter (S2) (a,b),
average tilt angle (θ) (c,d), and gauche defect fraction (e,f). Lines connecting data points are provided
only to guide the eye. This plot and the others included in this work were generated using the python
plotting library matplotlib [88].

To assess the tribological impact of cross-linkages within alkylsilane monolayers, nonequilibrium
molecular dynamics simulations have been performed to examine the frictional performance and
structural properties of monolayers under shear. As discussed previously, experimental studies have
attributed alkylsilane monolayers’ tribological performance (i.e., robustness under harsh conditions
and ability to protect underlying surfaces from damage) to their capacity to form strong covalent
bonds with both the surface and each other [17,19]. The coefficient of friction (µ) and force intercept
(F0) have been calculated via Equation (1) to quantify frictional performance, and the nematic order
parameter (S2) and tilt angle (θ) have been calculated to assess structural properties; these metrics are
again determined as a function of alkylsilane backbone length (6–22) and compared for monolayers
with or without cross-linkages. The results are summarized in Figure 5. Chemisorbed monolayers
with cross-linkages (see Figure 2b) are compared to identical chemisorbed monolayers without them
(see Figure 2a) in Figure 5a,c,e,g, while partially chemisorbed monolayers with cross-linkages (see
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Figure 3d) are compared to fully chemisorbed systems without cross-linkages in Figure 5b,d,f,h; once
again, note that this comparison also features the fraction of chains chemisorbed to the surface as a
second variable.

These results presented for the coefficient of friction (Figure 5a,b) and force intercept (Figure 5c,d)
suggest that neither cross-linkages nor the fraction of chemisorbed/physisorbed chains play a noticeable
role in frictional performance, as both the chemisorbed (Figure 5a,c) and partially chemisorbed
(Figure 5b,d) monolayer systems yielded similar results compared with their analogues without
cross-linkages. Partially chemisorbed monolayers did appear to yield slightly higher force intercepts
than their chemisorbed counterparts without cross-linkages, but this result was not statistically
significant at most chain lengths (Figure 5d). The results presented here suggest that excluding
cross-linkages, as was done in prior simulations of alkylsilane monolayers, is a reasonable assumption,
at least at short time scales; however, we note that both cross-linkages and covalent surface attachment
are expected to play a more important role in frictional performance over longer periods of time than
can be considered by simulation, especially under conditions that facilitate degradation and wear.

Figure 5a,b show that µ decreased with monomer chain length for all systems with or without
cross-linkages, while Figure 5c,d show that F0 also generally decreased, with the exception of partially
chemisorbed monolayers with six to eight backbone carbon atoms (Figure 5d). Prior experiments [23–25]
and simulations [16,23,24,60] have reported that adhesion and friction decrease with increasing chain
length, a trend which was attributed to increased cohesivity (and thus a higher degree of ordering)
in monolayers constructed from longer chains. This explanation is supported by Figure 5e,f, which
show that S2 increased with chain length for all systems with and without cross-linkages. Recall that
a positive correlation between monomer length and S2 was also observed for monolayer systems at
equilibrium (see Figure 4a,b); however, the three chain-length-dependent regions which were present
at equilibrium were not observed for the same monolayer systems under shear. S2 increased under
shearing conditions (as compared with equilibrium) for all of the fully chemisorbed monolayers, both
with and without cross-linkages, and all partially chemisorbed monolayers except for the C6 system;
this observation is attributable to forced shear alignment of the chains.

Figure 5f indicates that partially chemisorbed monolayers constructed from chain lengths ≤
10 had reduced ordering compared with equivalent chemisorbed systems without cross-linkages;
this effect is not observed in Figure 5e, which suggests it is related specifically to the fraction of
monomers chemisorbed to the surface and not cross-linkages. A more striking structural difference
is visible in Figure 5h; partially chemisorbed monolayers with chain lengths ≤ 10 yielded tilt angles
that were significantly higher than those of their fully chemisorbed counterparts, where the effect
was most pronounced for the shortest backbone chain length of six carbon atoms. Again, this trend
is not observed in Figure 5g, so it is likely related to the fraction of chemisorbed chains rather than
cross-linkages. For all of the fully chemisorbed monolayer systems with and without cross-linkages
shown in Figure 5g,h, the average tilt angle was higher under shearing conditions (as compared with
equilibrium) and also increased with chain length; this trend was also observed for all of the partially
chemisorbed systems with chain lengths > 10 (Figure 5h). These results seem to suggest a lack of shear
alignment for the partially chemisorbed monolayer systems with short chain lengths (6–10), which
would also explain the reduced nematic ordering for these systems (Figure 5f).
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Figure 5. Tribological and structural properties of monolayers with or without cross-linkages (black
circles and red triangles, respectively) under shear as a function of chain length. Fully chemisorbed
monolayers with or without cross-linkages are compared in (a,c,e,f) (error bars represent the standard
deviation for three unique monolayer systems), and partially chemisorbed monolayers featuring
cross-linkages are compared to equivalent fully chemisorbed monolayers without them in (b,d,f,h)
(error bars represent the standard deviation for five unique monolayer systems). Tribology is assessed
via coefficient of friction (µ) (a,b) and force intercept (F0) (c,d), and structure is assessed via nematic
order parameter (S2) (e,f) and average tilt angle (θ) (g,h). Lines connecting data points are provided
only to guide the eye.
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To further investigate the apparent discrepancy in structure between partially chemisorbed
monolayers and their fully chemisorbed counterparts without cross-linkages at short chain lengths
(≤10), fully and partially chemisorbed C6 monolayer systems with varying numbers of cross-linkages
have also been studied (Figure 6). We note that it is not possible to create fully chemisorbed monolayers
with more than ~0.5 cross-linkages per chain due to the requirements that (1) chemisorbed chains
must be coupled to hydroxyl groups on the silica surface that are separated by ≥2.0 Å to avoid steric
hindrance [60], and (2) cross-linked chains must be separated by a maximum of 3.3 Å because siloxane
(Si–O–Si) linkages are observed to have a length of ~2.8–3.3 Å [40]. As shown in Figure 6a,c, the
number of cross-linkages did not appear to have a significant impact on S2 or θ for C6 monolayers in
which all chains were chemisorbed to the surface; however, some structural differences were observed
for the partially chemisorbed C6 monolayers, as shown in Figure 6b,d. As the number of cross-linkages
per chain increased (and thus the fraction of chemisorbed chains decreased), S2 decreased dramatically
and θ increased dramatically. These results combined indicate a lack of shear alignment for partially
chemisorbed C6 monolayers, which becomes more pronounced as the fraction of chains chemisorbed
to the surface decreases. The values of S2 and θ for partially chemisorbed C6 monolayers reached
those of analogous fully chemisorbed monolayers when the fraction of chemisorbed chains exceeded
~0.9 (i.e., the average number of cross-linkages per chain dropped below ~0.1) (see Figure 5b,d); at this
point, the monolayers are expected to be in a forced orientation due to shear alignment.
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Figure 6. Structural properties of C6 monolayers under shear as a function of the average number of
cross-linkages per chain. Structure was assessed via nematic order parameter (S2) (a,b) and average tilt
angle (θ) (c,d). Fully chemisorbed monolayers with cross-linkages are compared in (a,c) and partially
chemisorbed monolayers featuring cross-linkages are compared in (b,d). Lines connecting data points
are provided only to guide the eye.
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We note that about two-thirds of the chains in the partially chemisorbed monolayers described
previously in Figure 5 were bonded to the surface, so given the results in Figure 6, it seems plausible
that decreasing the fraction of chemisorbed chains has little impact on structural properties up to a
certain point for monolayers constructed from longer chains (>10 backbone carbon atoms). To examine
this idea, partially chemisorbed C18 monolayers with varying numbers of cross-linkages have been
studied (Figure 7); note that C18 monolayers are also more commonly used in experimental systems
and applications, as they are more stable and thus better able to reduce stiction and protect surfaces
from wear [24,89]. As can be seen from Figure 7, the values of S2 and θ for these systems reached
those of analogous fully chemisorbed monolayers when the fraction of chemisorbed chains exceeded
~0.4 (i.e., the average number of cross-linkages per chain dropped below ~0.6, see Figure 5b,d), a
value which was significantly lower than that for the C6 systems. Furthermore, the overall changes in
structure for the C18 systems were minimal compared with those in the C6 systems (an overall spread
of ~0.07 in S2 compared with ~0.46, and ~1◦ in θ compared with ~22◦). These results indicate that
reducing the fraction of chains chemisorbed to the surface has a minimal effect on monolayer structure
under shear until a certain threshold is reached, after which the chains become increasingly disordered
and exhibit increasing average tilt due to a lack of shear alignment; this threshold appears to decrease
with increasing chain length, and is below about two-thirds for chain lengths of >10 backbone carbon
atoms. For C18 systems, which are most industrially relevant [24,89], neither cross-linkages nor the
fraction of chemisorbed/physisorbed chains appear to play any significant role in monolayer structure
under shearing conditions.
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Figure 7. Structural properties of partially chemisorbed C18 monolayers under shear as a function of
the average number of cross-linkages per chain. Structure was assessed via (a) nematic order parameter
(S2) and (b) average tilt angle (θ). Error bars represent the standard deviation for five trials (each with
a unique monolayer configuration) and lines are provided only to guide the eye.
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Table 1. Summary of the key structural properties of the fully and partially chemisorbed monolayer
systems studied.

Cross-Linkages Average Number
Cross-Linkages Per Chain

Fraction of
Chemisorbed Chains

Fully Chemisorbed Yes 0.334 ± 0.024 1.000
No 0.000 1.000

Partially Chemisorbed Yes 0.368 ± 0.015 0.632 ± 0.015
No 0.000 1.000

4. Conclusions

In this work, fully and partially chemisorbed n-alkylsilane (CH3(CH2)n−1Si(OH)3) monolayers
featuring cross-linkages on amorphous silica surfaces have been studied. The structural properties
and frictional performance of these cross-polymerized monolayers have been assessed and compared
to those of equivalent monolayers without cross-linkages in order to isolate the impact of (1) siloxane
cross-linkages and (2) the fraction of chains covalently bonded to the surface.

Equilibrium simulations used to ascertain the effects of cross-polymerization on structural
properties showed that both cross-linkages and the ratio of chemisorbed to physisorbed chains
affect monolayer structure in small but measurable ways that vary based on chain length.
Three chain-length-dependent regions were observed: (I) a liquid-like region (chain length < 14),
(II) a transition region (14 ≤ chain length ≤ 16), and (III) a solid-like region (chain length > 16).
Fully chemisorbed monolayers with cross-linkages exhibited slightly reduced nematic ordering
compared with those without them in regions I and II, likely due to the cross-linked chains tilting or
bending/twisting away from each other to prevent overlaps and causing their tails to be splayed apart,
leading to a slightly more disordered monolayer. Chemisorbed monolayers with cross-linkages also
yielded slightly higher average tilt angles than their counterparts without them, but cross-linkages did
not play a meaningful role in the formation of gauche defects. These observations combined suggest
that cross-linked chains prefer to tilt away from each other rather than contort via gauche deformations
when avoiding overlaps. Partially chemisorbed monolayers in region I exhibited reduced nematic
ordering compared with equivalent chemisorbed monolayers without cross-linkages. Albeit surprising,
as reducing the number of chemisorbed chains is expected to result in greater in-plane fluidity, the
VDW forces that provide monolayer cohesiveness are weaker for shorter chains and appear to take
precedence over the increase in surface plane mobility for these systems. The partially chemisorbed
monolayers did exhibit higher ordering than their chemisorbed analogues in region II, which suggests
that the VDW forces were strong enough for increased mobility to lead to a more ordered monolayer for
these systems. Partially chemisorbed monolayers in regions I and II yielded higher tilt angles than their
chemisorbed counterparts, and in region I, they also had more gauche defects. These results can likely
be explained by the increased mobility of nonchemisorbed chains in the surface plane; chains that are
not directly coupled to bonding sites on the surface can more easily tilt into nonupright conformations
and/or contort via gauche defects. In region III, all fully and partially chemisorbed monolayer systems
with and without cross-linkages existed in a highly ordered state, where neither cross-linkages nor the
fraction of chemisorbed chains appeared to have any significant influence on structural properties.

In the nonequilibrium simulations performed, neither cross-linkages nor the fraction of
chemisorbed/physisorbed chains were found to play a noticeable role in frictional performance, as both
the chemisorbed and partially chemisorbed monolayers yielded similar results for friction and adhesion
compared to their analogues without cross-linkages. The results presented here therefore suggest that
excluding cross-linkages, as was done in prior simulation studies, is a reasonable assumption at short
time scales (i.e., before degradation and wear must be considered). Under shearing conditions, partially
chemisorbed monolayers constructed from short chains (≤ 10 backbone carbon atoms) exhibited
reduced nematic ordering and significantly increased chain tilt compared with equivalent chemisorbed
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systems without cross-linkages. This observation suggests a lack of shear alignment for these systems,
which was further investigated by studying partially chemisorbed C6 and C18 monolayers with
varying numbers of cross-linkages (and thus varying numbers of chemisorbed/physisorbed chains).
These results indicated that decreasing the fraction of chemisorbed chains has little impact on structural
properties up until a certain point that depends on chain length. The overall changes in structure for
the C18 system were observed to be minimal over the entire range of average cross-linkages per chain
considered, which indicates that neither cross-linkages nor the fraction of chemisorbed/physisorbed
chains play a significant role in the structure of monolayers constructed from long chains under shear.

Supplementary Materials: Tabulated force field parameters (Tables S1 and S2), additional details of the simulation
methods, and descriptions of the calculations performed to quantify the structural properties of monolayers
(Equations (S1)–(S3)) are available online at http://www.mdpi.com/2079-4991/9/4/639/s1. The code used to construct
partially chemisorbed monolayers is available online at https://github.com/summeraz/crosslinked_monolayer.
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